NetBSD/sys/arch/evbarm/ixm1200/ixm1200_machdep.c

790 lines
23 KiB
C

/* $NetBSD: ixm1200_machdep.c,v 1.49 2011/07/01 20:42:37 dyoung Exp $ */
/*
* Copyright (c) 2002, 2003
* Ichiro FUKUHARA <ichiro@ichiro.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY ICHIRO FUKUHARA ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ICHIRO FUKUHARA OR THE VOICES IN HIS HEAD BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ixm1200_machdep.c,v 1.49 2011/07/01 20:42:37 dyoung Exp $");
#include "opt_ddb.h"
#include "opt_modular.h"
#include "opt_pmap_debug.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include "ksyms.h"
#if NKSYMS || defined(DDB) || defined(MODULAR)
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifndef DB_ELFSIZE
#error Must define DB_ELFSIZE!
#endif
#define ELFSIZE DB_ELFSIZE
#include <sys/exec_elf.h>
#endif
#include <machine/bootconfig.h>
#include <sys/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <arm/ixp12x0/ixp12x0reg.h>
#include <arm/ixp12x0/ixp12x0var.h>
#include <arm/ixp12x0/ixp12x0_comreg.h>
#include <arm/ixp12x0/ixp12x0_comvar.h>
#include <arm/ixp12x0/ixp12x0_pcireg.h>
#include <evbarm/ixm1200/ixm1200reg.h>
#include <evbarm/ixm1200/ixm1200var.h>
/* XXX for consinit related hacks */
#include <sys/conf.h>
void ixp12x0_reset(void) __attribute__((noreturn));
/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0C000000
/*
* Address to call from cpu_reset() to reset the machine.
* This is machine architecture dependent as it varies depending
* on where the ROM appears when you turn the MMU off.
*/
u_int cpu_reset_address = (u_int) ixp12x0_reset;
/*
* Define the default console speed for the board.
*/
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB)) | CS8) /* 8N1 */
#endif
#ifndef CONSPEED
#define CONSPEED B38400
#endif
#ifndef CONADDR
#define CONADDR IXPCOM_UART_BASE
#endif
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#define UND_STACK_SIZE 1
BootConfig bootconfig; /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
u_int free_pages;
/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
/* Physical and virtual addresses for some global pages */
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
vm_offset_t msgbufphys;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
extern int end;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif /* PMAP_DEBUG */
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 2
#define KERNEL_PT_IO (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
/* Page table for mapping IO */
#define KERNEL_PT_VMDATA (KERNEL_PT_IO + 1)
/* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
#ifdef CPU_IXP12X0
#define CPU_IXP12X0_CACHE_CLEAN_SIZE (0x4000 * 2)
extern unsigned int ixp12x0_cache_clean_addr;
extern unsigned int ixp12x0_cache_clean_size;
static vaddr_t ixp12x0_cc_base;
#endif /* CPU_IXP12X0 */
/* Prototypes */
void consinit(void);
u_int cpu_get_control(void);
void ixdp_ixp12x0_cc_setup(void);
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
pmf_system_shutdown(boothowto);
printf("Halted while still in the ICE age.\n");
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
ixp12x0_reset();
}
/* Disable console buffering */
cnpollc(1);
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the unmount.
* It looks like syslogd is getting woken up only to find that it cannot
* page part of the binary in as the filesystem has been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
pmf_system_shutdown(boothowto);
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
/* all interrupts are disabled */
disable_interrupts(I32_bit);
ixp12x0_reset();
/* ...and if that didn't work, just croak. */
printf("RESET FAILED!\n");
for (;;);
}
/* Static device mappings. */
static const struct pmap_devmap ixm1200_devmap[] = {
/* StrongARM System and Peripheral Registers */
{
IXP12X0_SYS_VBASE,
IXP12X0_SYS_HWBASE,
IXP12X0_SYS_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/* PCI Registers Accessible Through StrongARM Core */
{
IXP12X0_PCI_VBASE, IXP12X0_PCI_HWBASE,
IXP12X0_PCI_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/* PCI Registers Accessible Through I/O Cycle Access */
{
IXP12X0_PCI_IO_VBASE, IXP12X0_PCI_IO_HWBASE,
IXP12X0_PCI_IO_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/* PCI Type0 Configuration Space */
{
IXP12X0_PCI_TYPE0_VBASE, IXP12X0_PCI_TYPE0_HWBASE,
IXP12X0_PCI_TYPE0_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/* PCI Type1 Configuration Space */
{
IXP12X0_PCI_TYPE1_VBASE, IXP12X0_PCI_TYPE1_HWBASE,
IXP12X0_PCI_TYPE1_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
0,
0,
0,
0,
0
},
};
/*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
u_int
initarm(void *arg)
{
int loop;
int loop1;
u_int kerneldatasize, symbolsize;
vaddr_t l1pagetable;
vaddr_t freemempos;
#if NKSYMS || defined(DDB) || defined(MODULAR)
Elf_Shdr *sh;
#endif
/*
* Since we map v0xf0000000 == p0x90000000, it's possible for
* us to initialize the console now.
*/
consinit();
#ifdef VERBOSE_INIT_ARM
/* Talk to the user */
printf("\nNetBSD/evbarm (IXM1200) booting ...\n");
#endif
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("CPU not recognized!");
/* XXX overwrite bootconfig to hardcoded values */
bootconfig.dram[0].address = 0xc0000000;
bootconfig.dram[0].pages = 0x10000000 / PAGE_SIZE; /* SDRAM 256MB */
bootconfig.dramblocks = 1;
kerneldatasize = (u_int32_t)&end - (u_int32_t)KERNEL_TEXT_BASE;
symbolsize = 0;
#ifdef PMAP_DEBUG
pmap_debug(-1);
#endif
#if NKSYMS || defined(DDB) || defined(MODULAR)
if (! memcmp(&end, "\177ELF", 4)) {
sh = (Elf_Shdr *)((char *)&end + ((Elf_Ehdr *)&end)->e_shoff);
loop = ((Elf_Ehdr *)&end)->e_shnum;
for(; loop; loop--, sh++)
if (sh->sh_offset > 0 &&
(sh->sh_offset + sh->sh_size) > symbolsize)
symbolsize = sh->sh_offset + sh->sh_size;
}
#endif
#ifdef VERBOSE_INIT_ARM
printf("kernsize=0x%x\n", kerneldatasize);
#endif
kerneldatasize += symbolsize;
kerneldatasize = ((kerneldatasize - 1) & ~(PAGE_SIZE * 4 - 1)) + PAGE_SIZE * 8;
/*
* Set up the variables that define the availablilty of physcial
* memory
*/
physical_start = bootconfig.dram[0].address;
physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
physical_freestart = physical_start
+ (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
physical_freeend = physical_end;
physmem = (physical_end - physical_start) / PAGE_SIZE;
freemempos = 0xc0000000;
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("CP15 Register1 = 0x%08x\n", cpu_get_control());
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
printf("physical_start = 0x%08lx, physical_end = 0x%08lx\n",
physical_start, physical_end);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
(var) = freemempos; \
memset((char *)(var), 0, ((np) * PAGE_SIZE)); \
freemempos += (np) * PAGE_SIZE;
loop1 = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
#ifdef DIAGNOSTIC
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
#endif
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va);
#endif
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
#ifdef CPU_IXP12X0
/*
* XXX totally stuffed hack to work round problems introduced
* in recent versions of the pmap code. Due to the calls used there
* we cannot allocate virtual memory during bootstrap.
*/
for(;;) {
alloc_pages(ixp12x0_cc_base, 1);
if (! (ixp12x0_cc_base & (CPU_IXP12X0_CACHE_CLEAN_SIZE - 1)))
break;
}
{
vaddr_t dummy;
alloc_pages(dummy, CPU_IXP12X0_CACHE_CLEAN_SIZE / PAGE_SIZE - 1);
}
ixp12x0_cache_clean_addr = ixp12x0_cc_base;
ixp12x0_cache_clean_size = CPU_IXP12X0_CACHE_CLEAN_SIZE / 2;
#endif /* CPU_IXP12X0 */
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
pmap_link_l2pt(l1pagetable, IXP12X0_IO_VBASE,
&kernel_pt_table[KERNEL_PT_IO]);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
#if XXX
/* Now we fill in the L2 pagetable for the kernel code/data */
{
extern char etext[], _end[];
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
u_int logical;
textsize = (textsize + PGOFSET) & ~PGOFSET;
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
logical = 0x00200000; /* offset of kernel in RAM */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
}
#else
{
pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
KERNEL_TEXT_BASE, kerneldatasize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
}
#endif
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Map the vector page. */
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#ifdef VERBOSE_INIT_ARM
printf("systempage (vector page): p0x%08lx v0x%08lx\n",
systempage.pv_pa, vector_page);
#endif
/* Map the statically mapped devices. */
pmap_devmap_bootstrap(l1pagetable, ixm1200_devmap);
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
/*
* Map the Dcache Flush page.
* Hw Ref Manual 3.2.4.5 Software Dcache Flush
*/
pmap_map_chunk(l1pagetable, ixp12x0_cache_clean_addr, 0xe0000000,
CPU_IXP12X0_CACHE_CLEAN_SIZE, VM_PROT_READ, PTE_CACHE);
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/* Switch tables */
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
cpu_setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved here from cpu_startup() as data_abort_handler() references
* this during init
*/
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in cpu_setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross reloations of the kernel thus
* this problem will not occur after initarm().
*/
cpu_idcache_wbinv_all();
arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0)
printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
kernelstack.pv_pa);
#endif /* PMAP_DEBUG */
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler. Until then we will use a handler that just panics but
* tells us why.
* Initialisation of the vetcors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
#ifdef VERBOSE_INIT_ARM
printf("\ndata_abort_handler_address = %08x\n", data_abort_handler_address);
printf("prefetch_abort_handler_address = %08x\n", prefetch_abort_handler_address);
printf("undefined_handler_address = %08x\n", undefined_handler_address);
#endif
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
printf("irq ");
#endif
ixp12x0_intr_init();
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("freemempos=%08lx\n", freemempos);
printf("switching to new L1 page table @%#lx... \n", kernel_l1pt.pv_pa);
#endif
consinit();
#ifdef VERBOSE_INIT_ARM
printf("consinit \n");
#endif
ixdp_ixp12x0_cc_setup();
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
#if NKSYMS || defined(DDB) || defined(MODULAR)
ksyms_addsyms_elf(symbolsize, ((int *)&end), ((char *)&end) + symbolsize);
#endif
#ifdef DDB
db_machine_init();
if (boothowto & RB_KDB)
Debugger();
#endif
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
void
consinit(void)
{
static int consinit_called = 0;
if (consinit_called != 0)
return;
consinit_called = 1;
pmap_devmap_register(ixm1200_devmap);
if (ixpcomcnattach(&ixp12x0_bs_tag,
IXPCOM_UART_HWBASE, IXPCOM_UART_VBASE,
CONSPEED, CONMODE))
panic("can't init serial console @%lx", IXPCOM_UART_HWBASE);
}
/*
* For optimal cache cleaning we need two 16K banks of
* virtual address space that NOTHING else will access
* and then we alternate the cache cleaning between the
* two banks.
* The cache cleaning code requires requires 2 banks aligned
* on total size boundry so the banks can be alternated by
* eorring the size bit (assumes the bank size is a power of 2)
*/
void
ixdp_ixp12x0_cc_setup(void)
{
int loop;
paddr_t kaddr;
pt_entry_t *pte;
(void) pmap_extract(pmap_kernel(), KERNEL_TEXT_BASE, &kaddr);
for (loop = 0; loop < CPU_IXP12X0_CACHE_CLEAN_SIZE; loop += PAGE_SIZE) {
pte = vtopte(ixp12x0_cc_base + loop);
*pte = L2_S_PROTO | kaddr |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
PTE_SYNC(pte);
}
ixp12x0_cache_clean_addr = ixp12x0_cc_base;
ixp12x0_cache_clean_size = CPU_IXP12X0_CACHE_CLEAN_SIZE / 2;
}