60219ba2a6
anyway.
591 lines
15 KiB
C
591 lines
15 KiB
C
/* $NetBSD: cpu.c,v 1.22 2002/03/10 00:44:09 bjh21 Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1995 Mark Brinicombe.
|
|
* Copyright (c) 1995 Brini.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Brini.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* RiscBSD kernel project
|
|
*
|
|
* cpu.c
|
|
*
|
|
* Probing and configuration for the master cpu
|
|
*
|
|
* Created : 10/10/95
|
|
*/
|
|
|
|
#include "opt_armfpe.h"
|
|
#include "opt_cputypes.h"
|
|
|
|
#include <sys/param.h>
|
|
|
|
__RCSID("$NetBSD: cpu.c,v 1.22 2002/03/10 00:44:09 bjh21 Exp $");
|
|
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/device.h>
|
|
#include <sys/proc.h>
|
|
#include <uvm/uvm_extern.h>
|
|
#include <machine/conf.h>
|
|
#include <machine/cpu.h>
|
|
#include <arm/undefined.h>
|
|
|
|
#include <arm/cpus.h>
|
|
|
|
#ifdef ARMFPE
|
|
#include <machine/bootconfig.h> /* For boot args */
|
|
#include <arm/fpe-arm/armfpe.h>
|
|
#endif
|
|
|
|
cpu_t cpus[MAX_CPUS];
|
|
|
|
char cpu_model[256];
|
|
volatile int undefined_test; /* Used for FPA test */
|
|
|
|
/* Prototypes */
|
|
void identify_master_cpu(struct device *dv, int cpu_number);
|
|
void identify_arm_cpu(struct device *dv, int cpu_number, struct cpu_info *);
|
|
void identify_arm_fpu(struct device *dv, int cpu_number);
|
|
int fpa_test(u_int, u_int, trapframe_t *, int);
|
|
int fpa_handler(u_int, u_int, trapframe_t *, int);
|
|
|
|
/*
|
|
* void cpusattach(struct device *parent, struct device *dev, void *aux)
|
|
*
|
|
* Attach the main cpu
|
|
*/
|
|
|
|
void
|
|
cpu_attach(struct device *dv)
|
|
{
|
|
|
|
identify_master_cpu(dv, CPU_MASTER);
|
|
}
|
|
|
|
/*
|
|
* Used to test for an FPA. The following function is installed as a coproc1
|
|
* handler on the undefined instruction vector and then we issue a FPA
|
|
* instruction. If undefined_test is non zero then the FPA did not handle
|
|
* the instruction so must be absent.
|
|
*/
|
|
|
|
int
|
|
fpa_test(u_int address, u_int instruction, trapframe_t *frame, int fault_code)
|
|
{
|
|
|
|
frame->tf_pc += INSN_SIZE;
|
|
++undefined_test;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If an FPA was found then this function is installed as the coproc1 handler
|
|
* on the undefined instruction vector. Currently we don't support FPA's
|
|
* so this just triggers an exception.
|
|
*/
|
|
|
|
int
|
|
fpa_handler(u_int address, u_int instruction, trapframe_t *frame,
|
|
int fault_code)
|
|
{
|
|
u_int fpsr;
|
|
|
|
__asm __volatile("rfs %0" : "=r" (fpsr));
|
|
|
|
printf("FPA exception: fpsr = %08x\n", fpsr);
|
|
|
|
return(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Identify the master (boot) CPU
|
|
* This also probes for an FPU and will install an FPE if necessary
|
|
*/
|
|
|
|
void
|
|
identify_master_cpu(struct device *dv, int cpu_number)
|
|
{
|
|
u_int fpsr;
|
|
void *uh;
|
|
|
|
evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
|
|
NULL, dv->dv_xname, "arm700swibug");
|
|
|
|
/* Get the cpu ID from coprocessor 15 */
|
|
|
|
curcpu()->ci_cpuid = cpu_id();
|
|
|
|
identify_arm_cpu(dv, cpu_number, curcpu());
|
|
|
|
if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_SA110
|
|
&& (curcpu()->ci_cpuid & CPU_ID_REVISION_MASK) < 3) {
|
|
printf("%s: SA-110 with bugged STM^ instruction\n",
|
|
dv->dv_xname);
|
|
}
|
|
|
|
#ifdef CPU_ARM8
|
|
if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
|
|
int clock = arm8_clock_config(0, 0);
|
|
char *fclk;
|
|
printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
|
|
printf(" clock:%s", (clock & 1) ? " dynamic" : "");
|
|
printf("%s", (clock & 2) ? " sync" : "");
|
|
switch ((clock >> 2) & 3) {
|
|
case 0:
|
|
fclk = "bus clock";
|
|
break;
|
|
case 1:
|
|
fclk = "ref clock";
|
|
break;
|
|
case 3:
|
|
fclk = "pll";
|
|
break;
|
|
default:
|
|
fclk = "illegal";
|
|
break;
|
|
}
|
|
printf(" fclk source=%s\n", fclk);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Ok now we test for an FPA
|
|
* At this point no floating point emulator has been installed.
|
|
* This means any FP instruction will cause undefined exception.
|
|
* We install a temporay coproc 1 handler which will modify
|
|
* undefined_test if it is called.
|
|
* We then try to read the FP status register. If undefined_test
|
|
* has been decremented then the instruction was not handled by
|
|
* an FPA so we know the FPA is missing. If undefined_test is
|
|
* still 1 then we know the instruction was handled by an FPA.
|
|
* We then remove our test handler and look at the
|
|
* FP status register for identification.
|
|
*/
|
|
|
|
uh = install_coproc_handler(FP_COPROC, fpa_test);
|
|
|
|
undefined_test = 0;
|
|
|
|
__asm __volatile("rfs %0" : "=r" (fpsr));
|
|
|
|
remove_coproc_handler(uh);
|
|
|
|
if (undefined_test == 0) {
|
|
cpus[cpu_number].fpu_type = (fpsr >> 24);
|
|
switch (fpsr >> 24) {
|
|
case 0x81:
|
|
cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
|
|
break;
|
|
|
|
default:
|
|
cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
|
|
break;
|
|
}
|
|
install_coproc_handler(FP_COPROC, fpa_handler);
|
|
} else {
|
|
cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
|
|
|
|
/*
|
|
* Ok if ARMFPE is defined and the boot options request the
|
|
* ARM FPE then it will be installed as the FPE.
|
|
* This is just while I work on integrating the new FPE.
|
|
* It means the new FPE gets installed if compiled int (ARMFPE
|
|
* defined) and also gives me a on/off option when I boot in
|
|
* case the new FPE is causing panics.
|
|
*/
|
|
|
|
#ifdef ARMFPE
|
|
if (boot_args) {
|
|
int usearmfpe = 1;
|
|
|
|
get_bootconf_option(boot_args, "armfpe",
|
|
BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
|
|
if (usearmfpe) {
|
|
if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
|
|
identify_arm_fpu(dv, cpu_number);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
identify_arm_fpu(dv, cpu_number);
|
|
}
|
|
|
|
enum cpu_class {
|
|
CPU_CLASS_NONE,
|
|
CPU_CLASS_ARM2,
|
|
CPU_CLASS_ARM2AS,
|
|
CPU_CLASS_ARM3,
|
|
CPU_CLASS_ARM6,
|
|
CPU_CLASS_ARM7,
|
|
CPU_CLASS_ARM7TDMI,
|
|
CPU_CLASS_ARM8,
|
|
CPU_CLASS_ARM9TDMI,
|
|
CPU_CLASS_ARM9ES,
|
|
CPU_CLASS_SA1,
|
|
CPU_CLASS_XSCALE,
|
|
};
|
|
|
|
static const char *generic_steppings[16] = {
|
|
"rev 0", "rev 1", "rev 2", "rev 3",
|
|
"rev 4", "rev 5", "rev 6", "rev 7",
|
|
"rev 8", "rev 9", "rev 10", "rev 11",
|
|
"rev 12", "rev 13", "rev 14", "rev 15",
|
|
};
|
|
|
|
static const char *sa110_steppings[16] = {
|
|
"rev 0", "step J", "step K", "step S",
|
|
"step T", "rev 5", "rev 6", "rev 7",
|
|
"rev 8", "rev 9", "rev 10", "rev 11",
|
|
"rev 12", "rev 13", "rev 14", "rev 15",
|
|
};
|
|
|
|
static const char *sa1100_steppings[16] = {
|
|
"rev 0", "step B", "step C", "rev 3",
|
|
"rev 4", "rev 5", "rev 6", "rev 7",
|
|
"step D", "step E", "rev 10" "step G",
|
|
"rev 12", "rev 13", "rev 14", "rev 15",
|
|
};
|
|
|
|
static const char *sa1110_steppings[16] = {
|
|
"step A-0", "rev 1", "rev 2", "rev 3",
|
|
"step B-0", "step B-1", "step B-2", "step B-3",
|
|
"step B-4", "step B-5", "rev 10", "rev 11",
|
|
"rev 12", "rev 13", "rev 14", "rev 15",
|
|
};
|
|
|
|
static const char *i80200_steppings[16] = {
|
|
"step A-0", "step A-1", "step B-0", "step C-0",
|
|
"rev 4", "rev 5", "rev 6", "rev 7",
|
|
"rev 8", "rev 9", "rev 10", "rev 11",
|
|
"rev 12", "rev 13", "rev 14", "rev 15",
|
|
};
|
|
|
|
struct cpuidtab {
|
|
u_int32_t cpuid;
|
|
enum cpu_class cpu_class;
|
|
const char *cpu_name;
|
|
const char **cpu_steppings;
|
|
};
|
|
|
|
const struct cpuidtab cpuids[] = {
|
|
{ CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
|
|
generic_steppings },
|
|
|
|
{ CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
|
|
generic_steppings },
|
|
|
|
{ CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
|
|
generic_steppings },
|
|
|
|
{ CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
|
|
generic_steppings },
|
|
|
|
{ CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
|
|
generic_steppings },
|
|
|
|
{ CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
|
|
generic_steppings },
|
|
{ CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
|
|
generic_steppings },
|
|
|
|
{ CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
|
|
sa110_steppings },
|
|
{ CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
|
|
sa1100_steppings },
|
|
{ CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
|
|
sa1110_steppings },
|
|
|
|
{ CPU_ID_I80200, CPU_CLASS_XSCALE, "i80200",
|
|
i80200_steppings },
|
|
|
|
{ 0, CPU_CLASS_NONE, NULL, NULL }
|
|
};
|
|
|
|
struct cpu_classtab {
|
|
const char *class_name;
|
|
const char *class_option;
|
|
};
|
|
|
|
const struct cpu_classtab cpu_classes[] = {
|
|
{ "unknown", NULL }, /* CPU_CLASS_NONE */
|
|
{ "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
|
|
{ "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
|
|
{ "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
|
|
{ "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
|
|
{ "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
|
|
{ "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
|
|
{ "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
|
|
{ "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
|
|
{ "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
|
|
{ "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
|
|
{ "XScale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
|
|
};
|
|
|
|
/*
|
|
* Report the type of the specifed arm processor. This uses the generic and
|
|
* arm specific information in the cpu structure to identify the processor.
|
|
* The remaining fields in the cpu structure are filled in appropriately.
|
|
*/
|
|
|
|
static const char *wtnames[] = {
|
|
"write-through",
|
|
"write-back",
|
|
"write-back",
|
|
"**unknown 3**",
|
|
"**unknown 4**",
|
|
"write-back-locking", /* XXX XScale-specific? */
|
|
"write-back-locking-A",
|
|
"write-back-locking-B",
|
|
"**unknown 8**",
|
|
"**unknown 9**",
|
|
"**unknown 10**",
|
|
"**unknown 11**",
|
|
"**unknown 12**",
|
|
"**unknown 13**",
|
|
"**unknown 14**",
|
|
"**unknown 15**",
|
|
};
|
|
|
|
void
|
|
identify_arm_cpu(struct device *dv, int cpu_number, struct cpu_info *ci)
|
|
{
|
|
cpu_t *cpu;
|
|
u_int cpuid;
|
|
enum cpu_class cpu_class;
|
|
int i;
|
|
|
|
cpu = &cpus[cpu_number];
|
|
cpuid = ci->ci_cpuid;
|
|
|
|
if (cpuid == 0) {
|
|
printf("Processor failed probe - no CPU ID\n");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; cpuids[i].cpuid != 0; i++)
|
|
if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
|
|
cpu_class = cpuids[i].cpu_class;
|
|
sprintf(cpu_model, "%s %s (%s core)",
|
|
cpuids[i].cpu_name,
|
|
cpuids[i].cpu_steppings[cpuid &
|
|
CPU_ID_REVISION_MASK],
|
|
cpu_classes[cpu_class].class_name);
|
|
break;
|
|
}
|
|
|
|
if (cpuids[i].cpuid == 0)
|
|
sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
|
|
|
|
switch (cpu_class) {
|
|
case CPU_CLASS_ARM6:
|
|
case CPU_CLASS_ARM7:
|
|
case CPU_CLASS_ARM7TDMI:
|
|
case CPU_CLASS_ARM8:
|
|
if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
|
|
strcat(cpu_model, " IDC disabled");
|
|
else
|
|
strcat(cpu_model, " IDC enabled");
|
|
break;
|
|
case CPU_CLASS_ARM9TDMI:
|
|
case CPU_CLASS_SA1:
|
|
case CPU_CLASS_XSCALE:
|
|
if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
|
|
strcat(cpu_model, " DC disabled");
|
|
else
|
|
strcat(cpu_model, " DC enabled");
|
|
if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
|
|
strcat(cpu_model, " IC disabled");
|
|
else
|
|
strcat(cpu_model, " IC enabled");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
|
|
strcat(cpu_model, " WB disabled");
|
|
else
|
|
strcat(cpu_model, " WB enabled");
|
|
|
|
if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
|
|
strcat(cpu_model, " LABT");
|
|
else
|
|
strcat(cpu_model, " EABT");
|
|
|
|
if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
|
|
strcat(cpu_model, " branch prediction enabled");
|
|
|
|
/* Print the info */
|
|
printf(": %s\n", cpu_model);
|
|
|
|
/* Print cache info. */
|
|
if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
|
|
goto skip_pcache;
|
|
|
|
if (arm_pcache_unified) {
|
|
printf("%s: %dKB/%dB %d-way %s unified cache\n",
|
|
dv->dv_xname, arm_pdcache_size / 1024,
|
|
arm_pdcache_line_size, arm_pdcache_ways,
|
|
wtnames[arm_pcache_type]);
|
|
} else {
|
|
printf("%s: %dKB/%dB %d-way Instruction cache\n",
|
|
dv->dv_xname, arm_picache_size / 1024,
|
|
arm_picache_line_size, arm_picache_ways);
|
|
printf("%s: %dKB/%dB %d-way %s Data cache\n",
|
|
dv->dv_xname, arm_pdcache_size / 1024,
|
|
arm_pdcache_line_size, arm_pdcache_ways,
|
|
wtnames[arm_pcache_type]);
|
|
}
|
|
|
|
skip_pcache:
|
|
|
|
switch (cpu_class) {
|
|
#ifdef CPU_ARM2
|
|
case CPU_CLASS_ARM2:
|
|
#endif
|
|
#ifdef CPU_ARM250
|
|
case CPU_CLASS_ARM2AS:
|
|
#endif
|
|
#ifdef CPU_ARM3
|
|
case CPU_CLASS_ARM3:
|
|
#endif
|
|
#ifdef CPU_ARM6
|
|
case CPU_CLASS_ARM6:
|
|
#endif
|
|
#ifdef CPU_ARM7
|
|
case CPU_CLASS_ARM7:
|
|
#endif
|
|
#ifdef CPU_ARM7TDMI
|
|
case CPU_CLASS_ARM7TDMI:
|
|
#endif
|
|
#ifdef CPU_ARM8
|
|
case CPU_CLASS_ARM8:
|
|
#endif
|
|
#ifdef CPU_ARM9
|
|
case CPU_CLASS_ARM9TDMI:
|
|
#endif
|
|
#ifdef CPU_SA110
|
|
case CPU_CLASS_SA1:
|
|
#endif
|
|
#ifdef CPU_XSCALE
|
|
case CPU_CLASS_XSCALE:
|
|
#endif
|
|
break;
|
|
default:
|
|
if (cpu_classes[cpu_class].class_option != NULL)
|
|
printf("%s: %s does not fully support this CPU."
|
|
"\n", dv->dv_xname, ostype);
|
|
else {
|
|
printf("%s: This kernel does not fully support "
|
|
"this CPU.\n", dv->dv_xname);
|
|
printf("%s: Recompile with \"options %s\" to "
|
|
"correct this.\n", dv->dv_xname,
|
|
cpu_classes[cpu_class].class_option);
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* Report the type of the specifed arm fpu. This uses the generic and arm
|
|
* specific information in the cpu structure to identify the fpu. The
|
|
* remaining fields in the cpu structure are filled in appropriately.
|
|
*/
|
|
|
|
void
|
|
identify_arm_fpu(struct device *dv, int cpu_number)
|
|
{
|
|
cpu_t *cpu;
|
|
|
|
cpu = &cpus[cpu_number];
|
|
|
|
/* Now for the FP info */
|
|
|
|
switch (cpu->fpu_class) {
|
|
case FPU_CLASS_NONE :
|
|
strcpy(cpu->fpu_model, "None");
|
|
break;
|
|
case FPU_CLASS_FPE :
|
|
printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
|
|
printf("%s: no FP hardware found\n", dv->dv_xname);
|
|
break;
|
|
case FPU_CLASS_FPA :
|
|
printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
|
|
if (cpu->fpu_type == FPU_TYPE_FPA11) {
|
|
strcpy(cpu->fpu_model, "FPA11");
|
|
printf("%s: FPA11 found\n", dv->dv_xname);
|
|
} else {
|
|
strcpy(cpu->fpu_model, "FPA");
|
|
printf("%s: FPA10 found\n", dv->dv_xname);
|
|
}
|
|
case FPU_CLASS_FPU :
|
|
sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
|
|
cpu->fpu_type);
|
|
printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* End of cpu.c */
|