NetBSD/sys/kern/kern_resource.c

527 lines
12 KiB
C

/* $NetBSD: kern_resource.c,v 1.67 2002/10/03 05:18:59 itojun Exp $ */
/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.67 2002/10/03 05:18:59 itojun Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/resourcevar.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/syscallargs.h>
#include <uvm/uvm_extern.h>
/*
* Maximum process data and stack limits.
* They are variables so they are patchable.
*
* XXXX Do we really need them to be patchable?
*/
rlim_t maxdmap = MAXDSIZ;
rlim_t maxsmap = MAXSSIZ;
/*
* Resource controls and accounting.
*/
int
sys_getpriority(curp, v, retval)
struct proc *curp;
void *v;
register_t *retval;
{
struct sys_getpriority_args /* {
syscallarg(int) which;
syscallarg(int) who;
} */ *uap = v;
struct proc *p;
int low = NZERO + PRIO_MAX + 1;
switch (SCARG(uap, which)) {
case PRIO_PROCESS:
if (SCARG(uap, who) == 0)
p = curp;
else
p = pfind(SCARG(uap, who));
if (p == 0)
break;
low = p->p_nice;
break;
case PRIO_PGRP: {
struct pgrp *pg;
if (SCARG(uap, who) == 0)
pg = curp->p_pgrp;
else if ((pg = pgfind(SCARG(uap, who))) == NULL)
break;
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
if (p->p_nice < low)
low = p->p_nice;
}
break;
}
case PRIO_USER:
if (SCARG(uap, who) == 0)
SCARG(uap, who) = curp->p_ucred->cr_uid;
proclist_lock_read();
LIST_FOREACH(p, &allproc, p_list) {
if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who) &&
p->p_nice < low)
low = p->p_nice;
}
proclist_unlock_read();
break;
default:
return (EINVAL);
}
if (low == NZERO + PRIO_MAX + 1)
return (ESRCH);
*retval = low - NZERO;
return (0);
}
/* ARGSUSED */
int
sys_setpriority(curp, v, retval)
struct proc *curp;
void *v;
register_t *retval;
{
struct sys_setpriority_args /* {
syscallarg(int) which;
syscallarg(int) who;
syscallarg(int) prio;
} */ *uap = v;
struct proc *p;
int found = 0, error = 0;
switch (SCARG(uap, which)) {
case PRIO_PROCESS:
if (SCARG(uap, who) == 0)
p = curp;
else
p = pfind(SCARG(uap, who));
if (p == 0)
break;
error = donice(curp, p, SCARG(uap, prio));
found++;
break;
case PRIO_PGRP: {
struct pgrp *pg;
if (SCARG(uap, who) == 0)
pg = curp->p_pgrp;
else if ((pg = pgfind(SCARG(uap, who))) == NULL)
break;
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
error = donice(curp, p, SCARG(uap, prio));
found++;
}
break;
}
case PRIO_USER:
if (SCARG(uap, who) == 0)
SCARG(uap, who) = curp->p_ucred->cr_uid;
proclist_lock_read();
LIST_FOREACH(p, &allproc, p_list) {
if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who)) {
error = donice(curp, p, SCARG(uap, prio));
found++;
}
}
proclist_unlock_read();
break;
default:
return (EINVAL);
}
if (found == 0)
return (ESRCH);
return (error);
}
int
donice(curp, chgp, n)
struct proc *curp, *chgp;
int n;
{
struct pcred *pcred = curp->p_cred;
int s;
if (pcred->pc_ucred->cr_uid && pcred->p_ruid &&
pcred->pc_ucred->cr_uid != chgp->p_ucred->cr_uid &&
pcred->p_ruid != chgp->p_ucred->cr_uid)
return (EPERM);
if (n > PRIO_MAX)
n = PRIO_MAX;
if (n < PRIO_MIN)
n = PRIO_MIN;
n += NZERO;
if (n < chgp->p_nice && suser(pcred->pc_ucred, &curp->p_acflag))
return (EACCES);
chgp->p_nice = n;
SCHED_LOCK(s);
(void)resetpriority(chgp);
SCHED_UNLOCK(s);
return (0);
}
/* ARGSUSED */
int
sys_setrlimit(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct sys_setrlimit_args /* {
syscallarg(int) which;
syscallarg(const struct rlimit *) rlp;
} */ *uap = v;
int which = SCARG(uap, which);
struct rlimit alim;
int error;
error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
if (error)
return (error);
return (dosetrlimit(p, p->p_cred, which, &alim));
}
int
dosetrlimit(p, cred, which, limp)
struct proc *p;
struct pcred *cred;
int which;
struct rlimit *limp;
{
struct rlimit *alimp;
struct plimit *newplim;
int error;
if ((u_int)which >= RLIM_NLIMITS)
return (EINVAL);
if (limp->rlim_cur < 0 || limp->rlim_max < 0)
return (EINVAL);
alimp = &p->p_rlimit[which];
/* if we don't change the value, no need to limcopy() */
if (limp->rlim_cur == alimp->rlim_cur &&
limp->rlim_max == alimp->rlim_max)
return 0;
if (limp->rlim_cur > limp->rlim_max) {
/*
* This is programming error. According to SUSv2, we should
* return error in this case.
*/
return (EINVAL);
}
if (limp->rlim_max > alimp->rlim_max
&& (error = suser(cred->pc_ucred, &p->p_acflag)) != 0)
return (error);
if (p->p_limit->p_refcnt > 1 &&
(p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
newplim = limcopy(p->p_limit);
limfree(p->p_limit);
p->p_limit = newplim;
alimp = &p->p_rlimit[which];
}
switch (which) {
case RLIMIT_DATA:
if (limp->rlim_cur > maxdmap)
limp->rlim_cur = maxdmap;
if (limp->rlim_max > maxdmap)
limp->rlim_max = maxdmap;
break;
case RLIMIT_STACK:
if (limp->rlim_cur > maxsmap)
limp->rlim_cur = maxsmap;
if (limp->rlim_max > maxsmap)
limp->rlim_max = maxsmap;
/*
* Return EINVAL if the new stack size limit is lower than
* current usage. Otherwise, the process would get SIGSEGV the
* moment it would try to access anything on it's current stack.
* This conforms to SUSv2.
*/
if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
|| limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
return (EINVAL);
/*
* Stack is allocated to the max at exec time with
* only "rlim_cur" bytes accessible (In other words,
* allocates stack dividing two contiguous regions at
* "rlim_cur" bytes boundary).
*
* Since allocation is done in terms of page, roundup
* "rlim_cur" (otherwise, contiguous regions
* overlap). If stack limit is going up make more
* accessible, if going down make inaccessible.
*/
limp->rlim_cur = round_page(limp->rlim_cur);
if (limp->rlim_cur != alimp->rlim_cur) {
vaddr_t addr;
vsize_t size;
vm_prot_t prot;
if (limp->rlim_cur > alimp->rlim_cur) {
prot = VM_PROT_ALL;
size = limp->rlim_cur - alimp->rlim_cur;
addr = USRSTACK - limp->rlim_cur;
} else {
prot = VM_PROT_NONE;
size = alimp->rlim_cur - limp->rlim_cur;
addr = USRSTACK - alimp->rlim_cur;
}
(void) uvm_map_protect(&p->p_vmspace->vm_map,
addr, addr+size, prot, FALSE);
}
break;
case RLIMIT_NOFILE:
if (limp->rlim_cur > maxfiles)
limp->rlim_cur = maxfiles;
if (limp->rlim_max > maxfiles)
limp->rlim_max = maxfiles;
break;
case RLIMIT_NPROC:
if (limp->rlim_cur > maxproc)
limp->rlim_cur = maxproc;
if (limp->rlim_max > maxproc)
limp->rlim_max = maxproc;
break;
}
*alimp = *limp;
return (0);
}
/* ARGSUSED */
int
sys_getrlimit(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct sys_getrlimit_args /* {
syscallarg(int) which;
syscallarg(struct rlimit *) rlp;
} */ *uap = v;
int which = SCARG(uap, which);
if ((u_int)which >= RLIM_NLIMITS)
return (EINVAL);
return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
sizeof(struct rlimit)));
}
/*
* Transform the running time and tick information in proc p into user,
* system, and interrupt time usage.
*/
void
calcru(p, up, sp, ip)
struct proc *p;
struct timeval *up;
struct timeval *sp;
struct timeval *ip;
{
u_quad_t u, st, ut, it, tot;
long sec, usec;
int s;
struct timeval tv;
s = splstatclock();
st = p->p_sticks;
ut = p->p_uticks;
it = p->p_iticks;
splx(s);
tot = st + ut + it;
if (tot == 0) {
up->tv_sec = up->tv_usec = 0;
sp->tv_sec = sp->tv_usec = 0;
if (ip != NULL)
ip->tv_sec = ip->tv_usec = 0;
return;
}
sec = p->p_rtime.tv_sec;
usec = p->p_rtime.tv_usec;
if (p->p_stat == SONPROC) {
struct schedstate_percpu *spc;
KDASSERT(p->p_cpu != NULL);
spc = &p->p_cpu->ci_schedstate;
/*
* Adjust for the current time slice. This is actually fairly
* important since the error here is on the order of a time
* quantum, which is much greater than the sampling error.
*/
microtime(&tv);
sec += tv.tv_sec - spc->spc_runtime.tv_sec;
usec += tv.tv_usec - spc->spc_runtime.tv_usec;
}
u = (u_quad_t) sec * 1000000 + usec;
st = (u * st) / tot;
sp->tv_sec = st / 1000000;
sp->tv_usec = st % 1000000;
ut = (u * ut) / tot;
up->tv_sec = ut / 1000000;
up->tv_usec = ut % 1000000;
if (ip != NULL) {
it = (u * it) / tot;
ip->tv_sec = it / 1000000;
ip->tv_usec = it % 1000000;
}
}
/* ARGSUSED */
int
sys_getrusage(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct sys_getrusage_args /* {
syscallarg(int) who;
syscallarg(struct rusage *) rusage;
} */ *uap = v;
struct rusage *rup;
switch (SCARG(uap, who)) {
case RUSAGE_SELF:
rup = &p->p_stats->p_ru;
calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
break;
case RUSAGE_CHILDREN:
rup = &p->p_stats->p_cru;
break;
default:
return (EINVAL);
}
return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
}
void
ruadd(ru, ru2)
struct rusage *ru, *ru2;
{
long *ip, *ip2;
int i;
timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
if (ru->ru_maxrss < ru2->ru_maxrss)
ru->ru_maxrss = ru2->ru_maxrss;
ip = &ru->ru_first; ip2 = &ru2->ru_first;
for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
*ip++ += *ip2++;
}
/*
* Make a copy of the plimit structure.
* We share these structures copy-on-write after fork,
* and copy when a limit is changed.
*/
struct plimit *
limcopy(lim)
struct plimit *lim;
{
struct plimit *newlim;
newlim = pool_get(&plimit_pool, PR_WAITOK);
memcpy(newlim->pl_rlimit, lim->pl_rlimit,
sizeof(struct rlimit) * RLIM_NLIMITS);
if (lim->pl_corename == defcorename) {
newlim->pl_corename = defcorename;
} else {
newlim->pl_corename = malloc(strlen(lim->pl_corename)+1,
M_TEMP, M_WAITOK);
strcpy(newlim->pl_corename, lim->pl_corename);
}
newlim->p_lflags = 0;
newlim->p_refcnt = 1;
return (newlim);
}
void
limfree(lim)
struct plimit *lim;
{
if (--lim->p_refcnt > 0)
return;
#ifdef DIAGNOSTIC
if (lim->p_refcnt < 0)
panic("limfree");
#endif
if (lim->pl_corename != defcorename)
free(lim->pl_corename, M_TEMP);
pool_put(&plimit_pool, lim);
}