NetBSD/sys/arch/i386/pci/glxsb.c
2009-05-16 16:52:03 +00:00

679 lines
20 KiB
C

/* $NetBSD: glxsb.c,v 1.9 2009/05/16 16:52:03 cegger Exp $ */
/* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
/*
* Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
* Copyright (c) 2003, 2004 Theo de Raadt
* Copyright (c) 2003 Jason Wright
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for the security block on the AMD Geode LX processors
* http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.9 2009/05/16 16:52:03 cegger Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/types.h>
#include <sys/callout.h>
#include <sys/rnd.h>
#include <sys/bus.h>
#include <machine/cpufunc.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <opencrypto/cryptodev.h>
#include <crypto/rijndael/rijndael.h>
#define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */
#define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */
#define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */
#define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */
#define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */
#define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */
#define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */
/* For GLD_MSR_CTRL: */
#define SB_GMC_DIV0 0x0000 /* AES update divisor values */
#define SB_GMC_DIV1 0x0001
#define SB_GMC_DIV2 0x0002
#define SB_GMC_DIV3 0x0003
#define SB_GMC_DIV_MASK 0x0003
#define SB_GMC_SBI 0x0004 /* AES swap bits */
#define SB_GMC_SBY 0x0008 /* AES swap bytes */
#define SB_GMC_TW 0x0010 /* Time write (EEPROM) */
#define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */
#define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */
#define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */
#define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */
#define SB_GMC_T_SEL_MASK 0x0300
#define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */
#define SB_GMC_T_TM 0x0800 /* RNG test mode */
/* (deterministic) */
/* Security Block configuration/control registers (offsets from base) */
#define SB_CTL_A 0x0000 /* RW - SB Control A */
#define SB_CTL_B 0x0004 /* RW - SB Control B */
#define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */
#define SB_SOURCE_A 0x0010 /* RW - Source A */
#define SB_DEST_A 0x0014 /* RW - Destination A */
#define SB_LENGTH_A 0x0018 /* RW - Length A */
#define SB_SOURCE_B 0x0020 /* RW - Source B */
#define SB_DEST_B 0x0024 /* RW - Destination B */
#define SB_LENGTH_B 0x0028 /* RW - Length B */
#define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */
#define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */
#define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */
#define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */
#define SB_WKEY_3 0x003C /* WO - Writable Key 3 */
#define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */
#define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */
#define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */
#define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */
#define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */
#define SB_RANDOM_NUM 0x0050 /* RW - Random Number */
#define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */
#define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */
#define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */
#define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */
#define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */
/* For SB_CTL_A and _B */
#define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */
#define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */
#define SB_CTL_DEC 0x0000 /* Decrypt */
#define SB_CTL_WK 0x0004 /* Use writable key (we set) */
#define SB_CTL_DC 0x0008 /* Destination coherent */
#define SB_CTL_SC 0x0010 /* Source coherent */
#define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */
/* For SB_AES_INT */
#define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */
#define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */
#define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */
#define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */
#define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */
#define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */
#define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */
#define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */
#define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */
#define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */
#define SB_MEM_SIZE 0x0810 /* Size of memory block */
#define SB_AES_ALIGN 0x0010 /* Source and dest buffers */
/* must be 16-byte aligned */
#define SB_AES_BLOCK_SIZE 0x0010
/*
* The Geode LX security block AES acceleration doesn't perform scatter-
* gather: it just takes source and destination addresses. Therefore the
* plain- and ciphertexts need to be contiguous. To this end, we allocate
* a buffer for both, and accept the overhead of copying in and out. If
* the number of bytes in one operation is bigger than allowed for by the
* buffer (buffer is twice the size of the max length, as it has both input
* and output) then we have to perform multiple encryptions/decryptions.
*/
#define GLXSB_MAX_AES_LEN 16384
struct glxsb_dma_map {
bus_dmamap_t dma_map;
bus_dma_segment_t dma_seg;
int dma_nsegs;
int dma_size;
void * dma_vaddr;
uint32_t dma_paddr;
};
struct glxsb_session {
uint32_t ses_key[4];
uint8_t ses_iv[SB_AES_BLOCK_SIZE];
int ses_klen;
int ses_used;
};
struct glxsb_softc {
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
struct callout sc_co;
bus_dma_tag_t sc_dmat;
struct glxsb_dma_map sc_dma;
int32_t sc_cid;
int sc_nsessions;
struct glxsb_session *sc_sessions;
rndsource_element_t sc_rnd_source;
};
int glxsb_match(device_t, cfdata_t, void *);
void glxsb_attach(device_t, device_t, void *);
void glxsb_rnd(void *);
CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
glxsb_match, glxsb_attach, NULL, NULL);
#define GLXSB_SESSION(sid) ((sid) & 0x0fffffff)
#define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff))
int glxsb_crypto_setup(struct glxsb_softc *);
int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
int glxsb_crypto_process(void *, struct cryptop *, int);
int glxsb_crypto_freesession(void *, uint64_t);
static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
uint32_t, void *, int, void *);
int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
int
glxsb_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
return (1);
return (0);
}
void
glxsb_attach(device_t parent, device_t self, void *aux)
{
struct glxsb_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
bus_addr_t membase;
bus_size_t memsize;
uint64_t msr;
uint32_t intr;
msr = rdmsr(SB_GLD_MSR_CAP);
if ((msr & 0xFFFF00) != 0x130400) {
printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
return;
}
/* printf(": revision %d", (int) (msr & 0xFF)); */
/* Map in the security block configuration/control registers */
if (pci_mapreg_map(pa, PCI_MAPREG_START,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
&sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
printf(": can't find mem space\n");
return;
}
sc->sc_dev = self;
/*
* Configure the Security Block.
*
* We want to enable the noise generator (T_NE), and enable the
* linear feedback shift register and whitener post-processing
* (T_SEL = 3). Also ensure that test mode (deterministic values)
* is disabled.
*/
msr = rdmsr(SB_GLD_MSR_CTRL);
msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
#if 0
msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */
#endif
wrmsr(SB_GLD_MSR_CTRL, msr);
rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
/* Install a periodic collector for the "true" (AMD's word) RNG */
callout_init(&sc->sc_co, 0);
callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
glxsb_rnd(sc);
printf(": RNG");
/* We don't have an interrupt handler, so disable completion INTs */
intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
sc->sc_dmat = pa->pa_dmat;
if (glxsb_crypto_setup(sc))
printf(" AES");
printf("\n");
}
void
glxsb_rnd(void *v)
{
struct glxsb_softc *sc = v;
uint32_t status, value;
extern int hz;
status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
if (status & SB_RNS_TRNG_VALID) {
value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
rnd_add_uint32(&sc->sc_rnd_source, value);
}
callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
}
int
glxsb_crypto_setup(struct glxsb_softc *sc)
{
/* Allocate a contiguous DMA-able buffer to work in */
if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
return 0;
sc->sc_cid = crypto_get_driverid(0);
if (sc->sc_cid < 0)
return 0;
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
glxsb_crypto_newsession, glxsb_crypto_freesession,
glxsb_crypto_process, sc);
sc->sc_nsessions = 0;
return 1;
}
int
glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
{
struct glxsb_softc *sc = aux;
struct glxsb_session *ses = NULL;
int sesn;
if (sc == NULL || sidp == NULL || cri == NULL ||
cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
cri->cri_klen != 128)
return (EINVAL);
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
if (sc->sc_sessions[sesn].ses_used == 0) {
ses = &sc->sc_sessions[sesn];
break;
}
}
if (ses == NULL) {
sesn = sc->sc_nsessions;
ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
if (sesn != 0) {
memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
free(sc->sc_sessions, M_DEVBUF);
}
sc->sc_sessions = ses;
ses = &sc->sc_sessions[sesn];
sc->sc_nsessions++;
}
memset(ses, 0, sizeof(*ses));
ses->ses_used = 1;
arc4randbytes(ses->ses_iv, sizeof(ses->ses_iv));
ses->ses_klen = cri->cri_klen;
/* Copy the key (Geode LX wants the primary key only) */
memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
*sidp = GLXSB_SID(0, sesn);
return (0);
}
int
glxsb_crypto_freesession(void *aux, uint64_t tid)
{
struct glxsb_softc *sc = aux;
int sesn;
uint32_t sid = ((uint32_t)tid) & 0xffffffff;
if (sc == NULL)
return (EINVAL);
sesn = GLXSB_SESSION(sid);
if (sesn >= sc->sc_nsessions)
return (EINVAL);
memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
return (0);
}
/*
* Must be called at splnet() or higher
*/
static __inline void
glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
uint32_t pdst, void *key, int len, void *iv)
{
uint32_t status;
int i;
if (len & 0xF) {
printf("%s: len must be a multiple of 16 (not %d)\n",
device_xname(sc->sc_dev), len);
return;
}
/* Set the source */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
/* Set the destination address */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
/* Set the data length */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
/* Set the IV */
if (iv != NULL) {
bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
SB_CBC_IV, iv, 4);
control |= SB_CTL_CBC;
}
/* Set the key */
bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
/* Ask the security block to do it */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
/*
* Now wait until it is done.
*
* We do a busy wait. Obviously the number of iterations of
* the loop required to perform the AES operation depends upon
* the number of bytes to process.
*
* On a 500 MHz Geode LX we see
*
* length (bytes) typical max iterations
* 16 12
* 64 22
* 256 59
* 1024 212
* 8192 1,537
*
* Since we have a maximum size of operation defined in
* GLXSB_MAX_AES_LEN, we use this constant to decide how long
* to wait. Allow an order of magnitude longer than it should
* really take, just in case.
*/
for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
if ((status & SB_CTL_ST) == 0) /* Done */
return;
}
aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
}
int
glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
{
struct glxsb_softc *sc = aux;
struct glxsb_session *ses;
struct cryptodesc *crd;
char *op_src, *op_dst;
uint32_t op_psrc, op_pdst;
uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
int sesn, err = 0;
int len, tlen, xlen;
int offset;
uint32_t control;
int s;
s = splnet();
if (crp == NULL || crp->crp_callback == NULL) {
err = EINVAL;
goto out;
}
crd = crp->crp_desc;
if (crd == NULL || crd->crd_next != NULL ||
crd->crd_alg != CRYPTO_AES_CBC ||
(crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
err = EINVAL;
goto out;
}
sesn = GLXSB_SESSION(crp->crp_sid);
if (sesn >= sc->sc_nsessions) {
err = EINVAL;
goto out;
}
ses = &sc->sc_sessions[sesn];
/* How much of our buffer will we need to use? */
xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
GLXSB_MAX_AES_LEN : crd->crd_len;
/*
* XXX Check if we can have input == output on Geode LX.
* XXX In the meantime, use two separate (adjacent) buffers.
*/
op_src = sc->sc_dma.dma_vaddr;
op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
op_psrc = sc->sc_dma.dma_paddr;
op_pdst = sc->sc_dma.dma_paddr + xlen;
if (crd->crd_flags & CRD_F_ENCRYPT) {
control = SB_CTL_ENC;
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
else
memcpy(op_iv, ses->ses_iv, sizeof(op_iv));
if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copyback((struct mbuf *)crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copyback((struct uio *)crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv);
else
bcopy(op_iv,
(char *)crp->crp_buf + crd->crd_inject,
sizeof(op_iv));
}
} else {
control = SB_CTL_DEC;
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
else {
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copydata((struct mbuf *)crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copydata((struct uio *)crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv);
else
bcopy((char *)crp->crp_buf + crd->crd_inject,
op_iv, sizeof(op_iv));
}
}
offset = 0;
tlen = crd->crd_len;
piv = op_iv;
/* Process the data in GLXSB_MAX_AES_LEN chunks */
while (tlen > 0) {
len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copydata((struct mbuf *)crp->crp_buf,
crd->crd_skip + offset, len, op_src);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copydata((struct uio *)crp->crp_buf,
crd->crd_skip + offset, len, op_src);
else
bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
op_src, len);
glxsb_dma_pre_op(sc, &sc->sc_dma);
glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
len, op_iv);
glxsb_dma_post_op(sc, &sc->sc_dma);
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copyback((struct mbuf *)crp->crp_buf,
crd->crd_skip + offset, len, op_dst);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copyback((struct uio *)crp->crp_buf,
crd->crd_skip + offset, len, op_dst);
else
memcpy((char *)crp->crp_buf + crd->crd_skip + offset, op_dst,
len);
offset += len;
tlen -= len;
if (tlen <= 0) { /* Ideally, just == 0 */
/* Finished - put the IV in session IV */
piv = ses->ses_iv;
}
/*
* Copy out last block for use as next iteration/session IV.
*
* piv is set to op_iv[] before the loop starts, but is
* set to ses->ses_iv if we're going to exit the loop this
* time.
*/
if (crd->crd_flags & CRD_F_ENCRYPT) {
memcpy(piv, op_dst + len - sizeof(op_iv), sizeof(op_iv));
} else {
/* Decryption, only need this if another iteration */
if (tlen > 0) {
memcpy(piv, op_src + len - sizeof(op_iv),
sizeof(op_iv));
}
}
}
/* All AES processing has now been done. */
memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
out:
crp->crp_etype = err;
crypto_done(crp);
splx(s);
return (err);
}
int
glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
{
int rc;
dma->dma_nsegs = 1;
dma->dma_size = size;
rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
0, BUS_DMA_NOWAIT, &dma->dma_map);
if (rc != 0) {
aprint_error_dev(sc->sc_dev, "couldn't create DMA map for %d bytes (%d)\n",
size, rc);
goto fail0;
}
rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
&dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
if (rc != 0) {
aprint_error_dev(sc->sc_dev, "couldn't allocate DMA memory of %d bytes (%d)\n",
size, rc);
goto fail1;
}
rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
&dma->dma_vaddr, BUS_DMA_NOWAIT);
if (rc != 0) {
aprint_error_dev(sc->sc_dev, "couldn't map DMA memory for %d bytes (%d)\n",
size, rc);
goto fail2;
}
rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
size, NULL, BUS_DMA_NOWAIT);
if (rc != 0) {
aprint_error_dev(sc->sc_dev, "couldn't load DMA memory for %d bytes (%d)\n",
size, rc);
goto fail3;
}
dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
return 0;
fail3:
bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
fail2:
bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
fail1:
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
fail0:
return rc;
}
void
glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
{
bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
void
glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
{
bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
void
glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
{
bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
}