2dbd96c75c
address) on the DP83815. Noted by Shiva Shenoy <shiva@riverstonenet.com> in private correspondence.
2276 lines
57 KiB
C
2276 lines
57 KiB
C
/* $NetBSD: if_sip.c,v 1.27 2001/03/24 19:40:51 briggs Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999 Network Computer, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Network Computer, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the Silicon Integrated Systems SiS 900 and
|
|
* SiS 7016 10/100 PCI Ethernet controllers.
|
|
*
|
|
* Written by Jason R. Thorpe for Network Computer, Inc.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ns.h"
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
#endif
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
#include <machine/endian.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/if_sipreg.h>
|
|
|
|
/*
|
|
* Transmit descriptor list size. This is arbitrary, but allocate
|
|
* enough descriptors for 64 pending transmissions, and 16 segments
|
|
* per packet. This MUST work out to a power of 2.
|
|
*/
|
|
#define SIP_NTXSEGS 16
|
|
|
|
#define SIP_TXQUEUELEN 64
|
|
#define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
|
|
#define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
|
|
#define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
|
|
|
|
/*
|
|
* Receive descriptor list size. We have one Rx buffer per incoming
|
|
* packet, so this logic is a little simpler.
|
|
*/
|
|
#define SIP_NRXDESC 64
|
|
#define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
|
|
#define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
|
|
|
|
/*
|
|
* Control structures are DMA'd to the SiS900 chip. We allocate them in
|
|
* a single clump that maps to a single DMA segment to make several things
|
|
* easier.
|
|
*/
|
|
struct sip_control_data {
|
|
/*
|
|
* The transmit descriptors.
|
|
*/
|
|
struct sip_desc scd_txdescs[SIP_NTXDESC];
|
|
|
|
/*
|
|
* The receive descriptors.
|
|
*/
|
|
struct sip_desc scd_rxdescs[SIP_NRXDESC];
|
|
};
|
|
|
|
#define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
|
|
#define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
|
|
#define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
|
|
|
|
/*
|
|
* Software state for transmit jobs.
|
|
*/
|
|
struct sip_txsoft {
|
|
struct mbuf *txs_mbuf; /* head of our mbuf chain */
|
|
bus_dmamap_t txs_dmamap; /* our DMA map */
|
|
int txs_firstdesc; /* first descriptor in packet */
|
|
int txs_lastdesc; /* last descriptor in packet */
|
|
SIMPLEQ_ENTRY(sip_txsoft) txs_q;
|
|
};
|
|
|
|
SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
|
|
|
|
/*
|
|
* Software state for receive jobs.
|
|
*/
|
|
struct sip_rxsoft {
|
|
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
|
|
bus_dmamap_t rxs_dmamap; /* our DMA map */
|
|
};
|
|
|
|
/*
|
|
* Software state per device.
|
|
*/
|
|
struct sip_softc {
|
|
struct device sc_dev; /* generic device information */
|
|
bus_space_tag_t sc_st; /* bus space tag */
|
|
bus_space_handle_t sc_sh; /* bus space handle */
|
|
bus_dma_tag_t sc_dmat; /* bus DMA tag */
|
|
struct ethercom sc_ethercom; /* ethernet common data */
|
|
void *sc_sdhook; /* shutdown hook */
|
|
|
|
const struct sip_product *sc_model; /* which model are we? */
|
|
|
|
void *sc_ih; /* interrupt cookie */
|
|
|
|
struct mii_data sc_mii; /* MII/media information */
|
|
|
|
struct callout sc_tick_ch; /* tick callout */
|
|
|
|
bus_dmamap_t sc_cddmamap; /* control data DMA map */
|
|
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
|
|
|
|
/*
|
|
* Software state for transmit and receive descriptors.
|
|
*/
|
|
struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
|
|
struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
|
|
|
|
/*
|
|
* Control data structures.
|
|
*/
|
|
struct sip_control_data *sc_control_data;
|
|
#define sc_txdescs sc_control_data->scd_txdescs
|
|
#define sc_rxdescs sc_control_data->scd_rxdescs
|
|
|
|
u_int32_t sc_txcfg; /* prototype TXCFG register */
|
|
u_int32_t sc_rxcfg; /* prototype RXCFG register */
|
|
u_int32_t sc_imr; /* prototype IMR register */
|
|
u_int32_t sc_rfcr; /* prototype RFCR register */
|
|
|
|
u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
|
|
u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
|
|
|
|
u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
|
|
|
|
int sc_flags; /* misc. flags; see below */
|
|
|
|
int sc_txfree; /* number of free Tx descriptors */
|
|
int sc_txnext; /* next ready Tx descriptor */
|
|
|
|
struct sip_txsq sc_txfreeq; /* free Tx descsofts */
|
|
struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
|
|
|
|
int sc_rxptr; /* next ready Rx descriptor/descsoft */
|
|
};
|
|
|
|
/* sc_flags */
|
|
#define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
|
|
|
|
#define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
|
|
#define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
|
|
|
|
#define SIP_CDTXSYNC(sc, x, n, ops) \
|
|
do { \
|
|
int __x, __n; \
|
|
\
|
|
__x = (x); \
|
|
__n = (n); \
|
|
\
|
|
/* If it will wrap around, sync to the end of the ring. */ \
|
|
if ((__x + __n) > SIP_NTXDESC) { \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
|
|
(SIP_NTXDESC - __x), (ops)); \
|
|
__n -= (SIP_NTXDESC - __x); \
|
|
__x = 0; \
|
|
} \
|
|
\
|
|
/* Now sync whatever is left. */ \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
|
|
} while (0)
|
|
|
|
#define SIP_CDRXSYNC(sc, x, ops) \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
|
|
|
|
/*
|
|
* Note we rely on MCLBYTES being a power of two below.
|
|
*/
|
|
#define SIP_INIT_RXDESC(sc, x) \
|
|
do { \
|
|
struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
|
|
struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
|
|
\
|
|
__sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
|
|
__sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
|
|
__sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
|
|
((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
|
|
SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
|
|
} while (0)
|
|
|
|
#define SIP_TIMEOUT 1000
|
|
|
|
void sip_start __P((struct ifnet *));
|
|
void sip_watchdog __P((struct ifnet *));
|
|
int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
int sip_init __P((struct ifnet *));
|
|
void sip_stop __P((struct ifnet *, int));
|
|
|
|
void sip_shutdown __P((void *));
|
|
|
|
void sip_reset __P((struct sip_softc *));
|
|
void sip_rxdrain __P((struct sip_softc *));
|
|
int sip_add_rxbuf __P((struct sip_softc *, int));
|
|
void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
|
|
void sip_tick __P((void *));
|
|
|
|
void sip_sis900_set_filter __P((struct sip_softc *));
|
|
void sip_dp83815_set_filter __P((struct sip_softc *));
|
|
|
|
void sip_sis900_read_macaddr __P((struct sip_softc *, u_int8_t *));
|
|
void sip_dp83815_read_macaddr __P((struct sip_softc *, u_int8_t *));
|
|
|
|
int sip_intr __P((void *));
|
|
void sip_txintr __P((struct sip_softc *));
|
|
void sip_rxintr __P((struct sip_softc *));
|
|
|
|
int sip_sis900_mii_readreg __P((struct device *, int, int));
|
|
void sip_sis900_mii_writereg __P((struct device *, int, int, int));
|
|
void sip_sis900_mii_statchg __P((struct device *));
|
|
|
|
int sip_dp83815_mii_readreg __P((struct device *, int, int));
|
|
void sip_dp83815_mii_writereg __P((struct device *, int, int, int));
|
|
void sip_dp83815_mii_statchg __P((struct device *));
|
|
|
|
int sip_mediachange __P((struct ifnet *));
|
|
void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
int sip_match __P((struct device *, struct cfdata *, void *));
|
|
void sip_attach __P((struct device *, struct device *, void *));
|
|
|
|
int sip_copy_small = 0;
|
|
|
|
struct cfattach sip_ca = {
|
|
sizeof(struct sip_softc), sip_match, sip_attach,
|
|
};
|
|
|
|
/*
|
|
* Descriptions of the variants of the SiS900.
|
|
*/
|
|
struct sip_variant {
|
|
int (*sipv_mii_readreg) __P((struct device *, int, int));
|
|
void (*sipv_mii_writereg) __P((struct device *, int, int, int));
|
|
void (*sipv_mii_statchg) __P((struct device *));
|
|
void (*sipv_set_filter) __P((struct sip_softc *));
|
|
void (*sipv_read_macaddr) __P((struct sip_softc *, u_int8_t *));
|
|
};
|
|
|
|
const struct sip_variant sip_variant_sis900 = {
|
|
sip_sis900_mii_readreg, sip_sis900_mii_writereg,
|
|
sip_sis900_mii_statchg, sip_sis900_set_filter,
|
|
sip_sis900_read_macaddr
|
|
};
|
|
|
|
const struct sip_variant sip_variant_dp83815 = {
|
|
sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
|
|
sip_dp83815_mii_statchg, sip_dp83815_set_filter,
|
|
sip_dp83815_read_macaddr
|
|
};
|
|
|
|
/*
|
|
* Devices supported by this driver.
|
|
*/
|
|
const struct sip_product {
|
|
pci_vendor_id_t sip_vendor;
|
|
pci_product_id_t sip_product;
|
|
const char *sip_name;
|
|
const struct sip_variant *sip_variant;
|
|
} sip_products[] = {
|
|
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
|
|
"SiS 900 10/100 Ethernet",
|
|
&sip_variant_sis900 },
|
|
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
|
|
"SiS 7016 10/100 Ethernet",
|
|
&sip_variant_sis900 },
|
|
|
|
{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
|
|
"NatSemi DP83815 10/100 Ethernet",
|
|
&sip_variant_dp83815 },
|
|
|
|
{ 0, 0,
|
|
NULL,
|
|
NULL },
|
|
};
|
|
|
|
const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
|
|
|
|
const struct sip_product *
|
|
sip_lookup(pa)
|
|
const struct pci_attach_args *pa;
|
|
{
|
|
const struct sip_product *sip;
|
|
|
|
for (sip = sip_products; sip->sip_name != NULL; sip++) {
|
|
if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
|
|
PCI_PRODUCT(pa->pa_id) == sip->sip_product)
|
|
return (sip);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
int
|
|
sip_match(parent, cf, aux)
|
|
struct device *parent;
|
|
struct cfdata *cf;
|
|
void *aux;
|
|
{
|
|
struct pci_attach_args *pa = aux;
|
|
|
|
if (sip_lookup(pa) != NULL)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
sip_attach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
struct sip_softc *sc = (struct sip_softc *) self;
|
|
struct pci_attach_args *pa = aux;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr = NULL;
|
|
bus_space_tag_t iot, memt;
|
|
bus_space_handle_t ioh, memh;
|
|
bus_dma_segment_t seg;
|
|
int ioh_valid, memh_valid;
|
|
int i, rseg, error;
|
|
const struct sip_product *sip;
|
|
pcireg_t pmode;
|
|
u_int8_t enaddr[ETHER_ADDR_LEN];
|
|
int pmreg;
|
|
|
|
callout_init(&sc->sc_tick_ch);
|
|
|
|
sip = sip_lookup(pa);
|
|
if (sip == NULL) {
|
|
printf("\n");
|
|
panic("sip_attach: impossible");
|
|
}
|
|
|
|
printf(": %s\n", sip->sip_name);
|
|
|
|
sc->sc_model = sip;
|
|
|
|
/*
|
|
* Map the device.
|
|
*/
|
|
ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
|
|
PCI_MAPREG_TYPE_IO, 0,
|
|
&iot, &ioh, NULL, NULL) == 0);
|
|
memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
|
|
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
|
|
&memt, &memh, NULL, NULL) == 0);
|
|
|
|
if (memh_valid) {
|
|
sc->sc_st = memt;
|
|
sc->sc_sh = memh;
|
|
} else if (ioh_valid) {
|
|
sc->sc_st = iot;
|
|
sc->sc_sh = ioh;
|
|
} else {
|
|
printf("%s: unable to map device registers\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
|
|
/* Enable bus mastering. */
|
|
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
|
|
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
|
|
PCI_COMMAND_MASTER_ENABLE);
|
|
|
|
/* Get it out of power save mode if needed. */
|
|
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
|
|
pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
|
|
if (pmode == 3) {
|
|
/*
|
|
* The card has lost all configuration data in
|
|
* this state, so punt.
|
|
*/
|
|
printf("%s: unable to wake up from power state D3\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
if (pmode != 0) {
|
|
printf("%s: waking up from power state D%d\n",
|
|
sc->sc_dev.dv_xname, pmode);
|
|
pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map and establish our interrupt.
|
|
*/
|
|
if (pci_intr_map(pa, &ih)) {
|
|
printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
intrstr = pci_intr_string(pc, ih);
|
|
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
|
|
if (sc->sc_ih == NULL) {
|
|
printf("%s: unable to establish interrupt",
|
|
sc->sc_dev.dv_xname);
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
return;
|
|
}
|
|
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
|
|
|
|
SIMPLEQ_INIT(&sc->sc_txfreeq);
|
|
SIMPLEQ_INIT(&sc->sc_txdirtyq);
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
|
|
0)) != 0) {
|
|
printf("%s: unable to allocate control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
printf("%s: unable to map control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct sip_control_data), 1,
|
|
sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
|
|
printf("%s: unable to create control data DMA map, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct sip_control_data), NULL,
|
|
0)) != 0) {
|
|
printf("%s: unable to load control data DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < SIP_TXQUEUELEN; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
SIP_NTXSEGS, MCLBYTES, 0, 0,
|
|
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
|
|
printf("%s: unable to create tx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < SIP_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
|
|
printf("%s: unable to create rx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_5;
|
|
}
|
|
sc->sc_rxsoft[i].rxs_mbuf = NULL;
|
|
}
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
sip_reset(sc);
|
|
|
|
/*
|
|
* Read the Ethernet address from the EEPROM.
|
|
*/
|
|
sip->sip_variant->sipv_read_macaddr(sc, enaddr);
|
|
|
|
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
|
|
ether_sprintf(enaddr));
|
|
|
|
/*
|
|
* Initialize our media structures and probe the MII.
|
|
*/
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
|
|
sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
|
|
sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
|
|
sip_mediastatus);
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = sip_ioctl;
|
|
ifp->if_start = sip_start;
|
|
ifp->if_watchdog = sip_watchdog;
|
|
ifp->if_init = sip_init;
|
|
ifp->if_stop = sip_stop;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* Attach the interface.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
|
|
/*
|
|
* Make sure the interface is shutdown during reboot.
|
|
*/
|
|
sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
|
|
if (sc->sc_sdhook == NULL)
|
|
printf("%s: WARNING: unable to establish shutdown hook\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < SIP_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_rxsoft[i].rxs_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < SIP_TXQUEUELEN; i++) {
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
|
|
sizeof(struct sip_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* sip_shutdown:
|
|
*
|
|
* Make sure the interface is stopped at reboot time.
|
|
*/
|
|
void
|
|
sip_shutdown(arg)
|
|
void *arg;
|
|
{
|
|
struct sip_softc *sc = arg;
|
|
|
|
sip_stop(&sc->sc_ethercom.ec_if, 1);
|
|
}
|
|
|
|
/*
|
|
* sip_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
void
|
|
sip_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sip_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
struct sip_txsoft *txs;
|
|
bus_dmamap_t dmamap;
|
|
int error, firsttx, nexttx, lasttx, ofree, seg;
|
|
|
|
/*
|
|
* If we've been told to pause, don't transmit any more packets.
|
|
*/
|
|
if (sc->sc_flags & SIPF_PAUSED)
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of free descriptors and
|
|
* the first descriptor we'll use.
|
|
*/
|
|
ofree = sc->sc_txfree;
|
|
firsttx = sc->sc_txnext;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
|
|
sc->sc_txfree != 0) {
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
m = NULL;
|
|
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the alloted number of segments, or we
|
|
* were short on resources. In this case, we'll copy
|
|
* and try again.
|
|
*/
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_NOWAIT) != 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
printf("%s: unable to allocate Tx mbuf\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
printf("%s: unable to allocate Tx "
|
|
"cluster\n", sc->sc_dev.dv_xname);
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
|
|
m, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: unable to load Tx buffer, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet.
|
|
*/
|
|
if (dmamap->dm_nsegs > sc->sc_txfree) {
|
|
/*
|
|
* Not enough free descriptors to transmit this
|
|
* packet. We haven't committed anything yet,
|
|
* so just unload the DMA map, put the packet
|
|
* back on the queue, and punt. Notify the upper
|
|
* layer that there are not more slots left.
|
|
*
|
|
* XXX We could allocate an mbuf and copy, but
|
|
* XXX is it worth it?
|
|
*/
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m != NULL) {
|
|
m_freem(m0);
|
|
m0 = m;
|
|
}
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
for (nexttx = sc->sc_txnext, seg = 0;
|
|
seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = SIP_NEXTTX(nexttx)) {
|
|
/*
|
|
* If this is the first descriptor we're
|
|
* enqueueing, don't set the OWN bit just
|
|
* yet. That could cause a race condition.
|
|
* We'll do it below.
|
|
*/
|
|
sc->sc_txdescs[nexttx].sipd_bufptr =
|
|
htole32(dmamap->dm_segs[seg].ds_addr);
|
|
sc->sc_txdescs[nexttx].sipd_cmdsts =
|
|
htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
|
|
CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
|
|
lasttx = nexttx;
|
|
}
|
|
|
|
/* Clear the MORE bit on the last segment. */
|
|
sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
|
|
|
|
/* Sync the descriptors we're using. */
|
|
SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later,
|
|
* and remember what txdirty will be once the packet is
|
|
* done.
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
txs->txs_lastdesc = lasttx;
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txfree -= dmamap->dm_nsegs;
|
|
sc->sc_txnext = nexttx;
|
|
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif /* NBPFILTER > 0 */
|
|
}
|
|
|
|
if (txs == NULL || sc->sc_txfree == 0) {
|
|
/* No more slots left; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
|
|
if (sc->sc_txfree != ofree) {
|
|
/*
|
|
* Cause a descriptor interrupt to happen on the
|
|
* last packet we enqueued.
|
|
*/
|
|
sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
|
|
SIP_CDTXSYNC(sc, lasttx, 1,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* The entire packet chain is set up. Give the
|
|
* first descrptor to the chip now.
|
|
*/
|
|
sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
|
|
SIP_CDTXSYNC(sc, firsttx, 1,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Start the transmit process. */
|
|
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
|
|
CR_TXE) == 0) {
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
|
|
SIP_CDTXADDR(sc, firsttx));
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
|
|
}
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sip_watchdog: [ifnet interface function]
|
|
*
|
|
* Watchdog timer handler.
|
|
*/
|
|
void
|
|
sip_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sip_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* The chip seems to ignore the CMDSTS_INTR bit sometimes!
|
|
* If we get a timeout, try and sweep up transmit descriptors.
|
|
* If we manage to sweep them all up, ignore the lack of
|
|
* interrupt.
|
|
*/
|
|
sip_txintr(sc);
|
|
|
|
if (sc->sc_txfree != SIP_NTXDESC) {
|
|
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
|
|
/* Reset the interface. */
|
|
(void) sip_init(ifp);
|
|
} else if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: recovered from device timeout\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
/* Try to get more packets going. */
|
|
sip_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* sip_ioctl: [ifnet interface function]
|
|
*
|
|
* Handle control requests from the operator.
|
|
*/
|
|
int
|
|
sip_ioctl(ifp, cmd, data)
|
|
struct ifnet *ifp;
|
|
u_long cmd;
|
|
caddr_t data;
|
|
{
|
|
struct sip_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
sip_start(ifp);
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* sip_intr:
|
|
*
|
|
* Interrupt service routine.
|
|
*/
|
|
int
|
|
sip_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct sip_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
u_int32_t isr;
|
|
int handled = 0;
|
|
|
|
for (;;) {
|
|
/* Reading clears interrupt. */
|
|
isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
|
|
if ((isr & sc->sc_imr) == 0)
|
|
break;
|
|
|
|
handled = 1;
|
|
|
|
if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
|
|
/* Grab any new packets. */
|
|
sip_rxintr(sc);
|
|
|
|
if (isr & ISR_RXORN) {
|
|
printf("%s: receive FIFO overrun\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
/* XXX adjust rx_drain_thresh? */
|
|
}
|
|
|
|
if (isr & ISR_RXIDLE) {
|
|
printf("%s: receive ring overrun\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
/* Get the receive process going again. */
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh,
|
|
SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh,
|
|
SIP_CR, CR_RXE);
|
|
}
|
|
}
|
|
|
|
if (isr & (ISR_TXURN|ISR_TXDESC)) {
|
|
/* Sweep up transmit descriptors. */
|
|
sip_txintr(sc);
|
|
|
|
if (isr & ISR_TXURN) {
|
|
u_int32_t thresh;
|
|
|
|
printf("%s: transmit FIFO underrun",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
thresh = sc->sc_tx_drain_thresh + 1;
|
|
if (thresh <= TXCFG_DRTH &&
|
|
(thresh * 32) <= (SIP_TXFIFO_SIZE -
|
|
(sc->sc_tx_fill_thresh * 32))) {
|
|
printf("; increasing Tx drain "
|
|
"threshold to %u bytes\n",
|
|
thresh * 32);
|
|
sc->sc_tx_drain_thresh = thresh;
|
|
(void) sip_init(ifp);
|
|
} else {
|
|
(void) sip_init(ifp);
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
|
|
if (isr & ISR_PAUSE_ST) {
|
|
sc->sc_flags |= SIPF_PAUSED;
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
if (isr & ISR_PAUSE_END) {
|
|
sc->sc_flags &= ~SIPF_PAUSED;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
}
|
|
|
|
if (isr & ISR_HIBERR) {
|
|
#define PRINTERR(bit, str) \
|
|
if (isr & (bit)) \
|
|
printf("%s: %s\n", sc->sc_dev.dv_xname, str)
|
|
PRINTERR(ISR_DPERR, "parity error");
|
|
PRINTERR(ISR_SSERR, "system error");
|
|
PRINTERR(ISR_RMABT, "master abort");
|
|
PRINTERR(ISR_RTABT, "target abort");
|
|
PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
|
|
(void) sip_init(ifp);
|
|
#undef PRINTERR
|
|
}
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
sip_start(ifp);
|
|
|
|
return (handled);
|
|
}
|
|
|
|
/*
|
|
* sip_txintr:
|
|
*
|
|
* Helper; handle transmit interrupts.
|
|
*/
|
|
void
|
|
sip_txintr(sc)
|
|
struct sip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct sip_txsoft *txs;
|
|
u_int32_t cmdsts;
|
|
|
|
if ((sc->sc_flags & SIPF_PAUSED) == 0)
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
|
|
if (cmdsts & CMDSTS_OWN)
|
|
break;
|
|
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
|
|
|
|
sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
|
|
/*
|
|
* Check for errors and collisions.
|
|
*/
|
|
if (cmdsts &
|
|
(CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
if (CMDSTS_Tx_ED)
|
|
printf("%s: excessive deferral\n",
|
|
sc->sc_dev.dv_xname);
|
|
if (CMDSTS_Tx_EC) {
|
|
printf("%s: excessive collisions\n",
|
|
sc->sc_dev.dv_xname);
|
|
ifp->if_collisions += 16;
|
|
}
|
|
}
|
|
} else {
|
|
/* Packet was transmitted successfully. */
|
|
ifp->if_opackets++;
|
|
ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there are no more pending transmissions, cancel the watchdog
|
|
* timer.
|
|
*/
|
|
if (txs == NULL)
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* sip_rxintr:
|
|
*
|
|
* Helper; handle receive interrupts.
|
|
*/
|
|
void
|
|
sip_rxintr(sc)
|
|
struct sip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct sip_rxsoft *rxs;
|
|
struct mbuf *m;
|
|
u_int32_t cmdsts;
|
|
int i, len;
|
|
|
|
for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
|
|
SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
|
|
|
|
/*
|
|
* NOTE: OWN is set if owned by _consumer_. We're the
|
|
* consumer of the receive ring, so if the bit is clear,
|
|
* we have processed all of the packets.
|
|
*/
|
|
if ((cmdsts & CMDSTS_OWN) == 0) {
|
|
/*
|
|
* We have processed all of the receive buffers.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If any collisions were seen on the wire, count one.
|
|
*/
|
|
if (cmdsts & CMDSTS_Rx_COL)
|
|
ifp->if_collisions++;
|
|
|
|
/*
|
|
* If an error occurred, update stats, clear the status
|
|
* word, and leave the packet buffer in place. It will
|
|
* simply be reused the next time the ring comes around.
|
|
*/
|
|
if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
|
|
CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
|
|
ifp->if_ierrors++;
|
|
if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
|
|
(cmdsts & CMDSTS_Rx_RXO) == 0) {
|
|
/* Receive overrun handled elsewhere. */
|
|
printf("%s: receive descriptor error\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
#define PRINTERR(bit, str) \
|
|
if (cmdsts & (bit)) \
|
|
printf("%s: %s\n", sc->sc_dev.dv_xname, str)
|
|
PRINTERR(CMDSTS_Rx_LONG, "packet too long");
|
|
PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
|
|
PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
|
|
PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
|
|
PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
|
|
#undef PRINTERR
|
|
SIP_INIT_RXDESC(sc, i);
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
* No errors; receive the packet. Note, the SiS 900
|
|
* includes the CRC with every packet.
|
|
*/
|
|
len = CMDSTS_SIZE(cmdsts);
|
|
|
|
#ifdef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* If the packet is small enough to fit in a
|
|
* single header mbuf, allocate one and copy
|
|
* the data into it. This greatly reduces
|
|
* memory consumption when we receive lots
|
|
* of small packets.
|
|
*
|
|
* Otherwise, we add a new buffer to the receive
|
|
* chain. If this fails, we drop the packet and
|
|
* recycle the old buffer.
|
|
*/
|
|
if (sip_copy_small != 0 && len <= MHLEN) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
goto dropit;
|
|
memcpy(mtod(m, caddr_t),
|
|
mtod(rxs->rxs_mbuf, caddr_t), len);
|
|
SIP_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
} else {
|
|
m = rxs->rxs_mbuf;
|
|
if (sip_add_rxbuf(sc, i) != 0) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
SIP_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
}
|
|
#else
|
|
/*
|
|
* The SiS 900's receive buffers must be 4-byte aligned.
|
|
* But this means that the data after the Ethernet header
|
|
* is misaligned. We must allocate a new buffer and
|
|
* copy the data, shifted forward 2 bytes.
|
|
*/
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
SIP_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
if (len > (MHLEN - 2)) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
goto dropit;
|
|
}
|
|
}
|
|
m->m_data += 2;
|
|
|
|
/*
|
|
* Note that we use clusters for incoming frames, so the
|
|
* buffer is virtually contiguous.
|
|
*/
|
|
memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
|
|
|
|
/* Allow the receive descriptor to continue using its mbuf. */
|
|
SIP_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
#endif /* __NO_STRICT_ALIGNMENT */
|
|
|
|
ifp->if_ipackets++;
|
|
m->m_flags |= M_HASFCS;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass this up to any BPF listeners, but only
|
|
* pass if up the stack if it's for us.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif /* NBPFILTER > 0 */
|
|
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
/* Update the receive pointer. */
|
|
sc->sc_rxptr = i;
|
|
}
|
|
|
|
/*
|
|
* sip_tick:
|
|
*
|
|
* One second timer, used to tick the MII.
|
|
*/
|
|
void
|
|
sip_tick(arg)
|
|
void *arg;
|
|
{
|
|
struct sip_softc *sc = arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* sip_reset:
|
|
*
|
|
* Perform a soft reset on the SiS 900.
|
|
*/
|
|
void
|
|
sip_reset(sc)
|
|
struct sip_softc *sc;
|
|
{
|
|
bus_space_tag_t st = sc->sc_st;
|
|
bus_space_handle_t sh = sc->sc_sh;
|
|
int i;
|
|
|
|
bus_space_write_4(st, sh, SIP_CR, CR_RST);
|
|
|
|
for (i = 0; i < SIP_TIMEOUT; i++) {
|
|
if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
|
|
break;
|
|
delay(2);
|
|
}
|
|
|
|
if (i == SIP_TIMEOUT)
|
|
printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
|
|
|
|
delay(1000);
|
|
}
|
|
|
|
/*
|
|
* sip_init: [ ifnet interface function ]
|
|
*
|
|
* Initialize the interface. Must be called at splnet().
|
|
*/
|
|
int
|
|
sip_init(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sip_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t st = sc->sc_st;
|
|
bus_space_handle_t sh = sc->sc_sh;
|
|
struct sip_txsoft *txs;
|
|
struct sip_rxsoft *rxs;
|
|
struct sip_desc *sipd;
|
|
u_int32_t cfg;
|
|
int i, error = 0;
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
sip_stop(ifp, 0);
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
sip_reset(sc);
|
|
|
|
if ( sc->sc_model->sip_vendor == PCI_VENDOR_NS
|
|
&& sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
|
|
/*
|
|
* DP83815 manual, page 78:
|
|
* 4.4 Recommended Registers Configuration
|
|
* For optimum performance of the DP83815, version noted
|
|
* as DP83815CVNG (SRR = 203h), the listed register
|
|
* modifications must be followed in sequence...
|
|
*
|
|
* It's not clear if this should be 302h or 203h because that
|
|
* chip name is listed as SRR 302h in the description of the
|
|
* SRR register. However, my revision 302h DP83815 on the
|
|
* Netgear FA311 purchased in 02/2001 needs these settings
|
|
* to avoid tons of errors in AcceptPerfectMatch (non-
|
|
* IFF_PROMISC) mode. I do not know if other revisions need
|
|
* this set or not. [briggs -- 09 March 2001]
|
|
*
|
|
* Note that only the low-order 12 bits of 0xe4 are documented
|
|
* and that this sets reserved bits in that register.
|
|
*/
|
|
cfg = bus_space_read_4(st, sh, SIP_NS_SRR);
|
|
if (cfg == 0x302) {
|
|
bus_space_write_4(st, sh, 0x00cc, 0x0001);
|
|
bus_space_write_4(st, sh, 0x00e4, 0x189C);
|
|
bus_space_write_4(st, sh, 0x00fc, 0x0000);
|
|
bus_space_write_4(st, sh, 0x00f4, 0x5040);
|
|
bus_space_write_4(st, sh, 0x00f8, 0x008c);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring.
|
|
*/
|
|
for (i = 0; i < SIP_NTXDESC; i++) {
|
|
sipd = &sc->sc_txdescs[i];
|
|
memset(sipd, 0, sizeof(struct sip_desc));
|
|
sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
|
|
}
|
|
SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
sc->sc_txfree = SIP_NTXDESC;
|
|
sc->sc_txnext = 0;
|
|
|
|
/*
|
|
* Initialize the transmit job descriptors.
|
|
*/
|
|
SIMPLEQ_INIT(&sc->sc_txfreeq);
|
|
SIMPLEQ_INIT(&sc->sc_txdirtyq);
|
|
for (i = 0; i < SIP_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
txs->txs_mbuf = NULL;
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
/*
|
|
* Initialize the receive descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
for (i = 0; i < SIP_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf == NULL) {
|
|
if ((error = sip_add_rxbuf(sc, i)) != 0) {
|
|
printf("%s: unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
sip_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
|
|
/*
|
|
* Initialize the configuration register: aggressive PCI
|
|
* bus request algorithm, default backoff, default OW timer,
|
|
* default parity error detection.
|
|
*/
|
|
cfg = 0;
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
/*
|
|
* ...descriptors in big-endian mode.
|
|
*/
|
|
#if 0
|
|
/* "Big endian mode" does not work properly. */
|
|
cfg |= CFG_BEM;
|
|
#endif
|
|
#endif
|
|
bus_space_write_4(st, sh, SIP_CFG, cfg);
|
|
|
|
/*
|
|
* Initialize the transmit fill and drain thresholds if
|
|
* we have never done so.
|
|
*/
|
|
if (sc->sc_tx_fill_thresh == 0) {
|
|
/*
|
|
* XXX This value should be tuned. This is the
|
|
* minimum (32 bytes), and we may be able to
|
|
* improve performance by increasing it.
|
|
*/
|
|
sc->sc_tx_fill_thresh = 1;
|
|
}
|
|
if (sc->sc_tx_drain_thresh == 0) {
|
|
/*
|
|
* Start at a drain threshold of 512 bytes. We will
|
|
* increase it if a DMA underrun occurs.
|
|
*
|
|
* XXX The minimum value of this variable should be
|
|
* tuned. We may be able to improve performance
|
|
* by starting with a lower value. That, however,
|
|
* may trash the first few outgoing packets if the
|
|
* PCI bus is saturated.
|
|
*/
|
|
sc->sc_tx_drain_thresh = 512 / 32;
|
|
}
|
|
|
|
/*
|
|
* Initialize the prototype TXCFG register.
|
|
*/
|
|
sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
|
|
(sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
|
|
sc->sc_tx_drain_thresh;
|
|
bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
|
|
|
|
/*
|
|
* Initialize the receive drain threshold if we have never
|
|
* done so.
|
|
*/
|
|
if (sc->sc_rx_drain_thresh == 0) {
|
|
/*
|
|
* XXX This value should be tuned. This is set to the
|
|
* maximum of 248 bytes, and we may be able to improve
|
|
* performance by decreasing it (although we should never
|
|
* set this value lower than 2; 14 bytes are required to
|
|
* filter the packet).
|
|
*/
|
|
sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Initialize the prototype RXCFG register.
|
|
*/
|
|
sc->sc_rxcfg = RXCFG_MXDMA_512 |
|
|
(sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
|
|
bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
|
|
|
|
/* Set up the receive filter. */
|
|
(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
|
|
|
|
/*
|
|
* Give the transmit and receive rings to the chip.
|
|
*/
|
|
bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
|
|
bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
|
|
|
|
/*
|
|
* Initialize the interrupt mask.
|
|
*/
|
|
sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
|
|
ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
|
|
bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
|
|
|
|
/*
|
|
* Set the current media. Do this after initializing the prototype
|
|
* IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
|
|
* control.
|
|
*/
|
|
mii_mediachg(&sc->sc_mii);
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
bus_space_write_4(st, sh, SIP_IER, IER_IE);
|
|
|
|
/*
|
|
* Start the transmit and receive processes.
|
|
*/
|
|
bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
|
|
|
|
/*
|
|
* Start the one second MII clock.
|
|
*/
|
|
callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
|
|
|
|
/*
|
|
* ...all done!
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
out:
|
|
if (error)
|
|
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* sip_drain:
|
|
*
|
|
* Drain the receive queue.
|
|
*/
|
|
void
|
|
sip_rxdrain(sc)
|
|
struct sip_softc *sc;
|
|
{
|
|
struct sip_rxsoft *rxs;
|
|
int i;
|
|
|
|
for (i = 0; i < SIP_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sip_stop: [ ifnet interface function ]
|
|
*
|
|
* Stop transmission on the interface.
|
|
*/
|
|
void
|
|
sip_stop(ifp, disable)
|
|
struct ifnet *ifp;
|
|
int disable;
|
|
{
|
|
struct sip_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t st = sc->sc_st;
|
|
bus_space_handle_t sh = sc->sc_sh;
|
|
struct sip_txsoft *txs;
|
|
u_int32_t cmdsts = 0; /* DEBUG */
|
|
|
|
/*
|
|
* Stop the one second clock.
|
|
*/
|
|
callout_stop(&sc->sc_tick_ch);
|
|
|
|
/* Down the MII. */
|
|
mii_down(&sc->sc_mii);
|
|
|
|
/*
|
|
* Disable interrupts.
|
|
*/
|
|
bus_space_write_4(st, sh, SIP_IER, 0);
|
|
|
|
/*
|
|
* Stop receiver and transmitter.
|
|
*/
|
|
bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
|
|
SIMPLEQ_NEXT(txs, txs_q) == NULL &&
|
|
(le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
|
|
CMDSTS_INTR) == 0)
|
|
printf("%s: sip_stop: last descriptor does not "
|
|
"have INTR bit set\n", sc->sc_dev.dv_xname);
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
|
|
#ifdef DIAGNOSTIC
|
|
if (txs->txs_mbuf == NULL) {
|
|
printf("%s: dirty txsoft with no mbuf chain\n",
|
|
sc->sc_dev.dv_xname);
|
|
panic("sip_stop");
|
|
}
|
|
#endif
|
|
cmdsts |= /* DEBUG */
|
|
le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
if (disable)
|
|
sip_rxdrain(sc);
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
|
|
(cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
|
|
printf("%s: sip_stop: no INTR bits set in dirty tx "
|
|
"descriptors\n", sc->sc_dev.dv_xname);
|
|
}
|
|
|
|
/*
|
|
* sip_read_eeprom:
|
|
*
|
|
* Read data from the serial EEPROM.
|
|
*/
|
|
void
|
|
sip_read_eeprom(sc, word, wordcnt, data)
|
|
struct sip_softc *sc;
|
|
int word, wordcnt;
|
|
u_int16_t *data;
|
|
{
|
|
bus_space_tag_t st = sc->sc_st;
|
|
bus_space_handle_t sh = sc->sc_sh;
|
|
u_int16_t reg;
|
|
int i, x;
|
|
|
|
for (i = 0; i < wordcnt; i++) {
|
|
/* Send CHIP SELECT. */
|
|
reg = EROMAR_EECS;
|
|
bus_space_write_4(st, sh, SIP_EROMAR, reg);
|
|
|
|
/* Shift in the READ opcode. */
|
|
for (x = 3; x > 0; x--) {
|
|
if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
|
|
reg |= EROMAR_EEDI;
|
|
else
|
|
reg &= ~EROMAR_EEDI;
|
|
bus_space_write_4(st, sh, SIP_EROMAR, reg);
|
|
bus_space_write_4(st, sh, SIP_EROMAR,
|
|
reg | EROMAR_EESK);
|
|
delay(4);
|
|
bus_space_write_4(st, sh, SIP_EROMAR, reg);
|
|
delay(4);
|
|
}
|
|
|
|
/* Shift in address. */
|
|
for (x = 6; x > 0; x--) {
|
|
if ((word + i) & (1 << (x - 1)))
|
|
reg |= EROMAR_EEDI;
|
|
else
|
|
reg &= ~EROMAR_EEDI;
|
|
bus_space_write_4(st, sh, SIP_EROMAR, reg);
|
|
bus_space_write_4(st, sh, SIP_EROMAR,
|
|
reg | EROMAR_EESK);
|
|
delay(4);
|
|
bus_space_write_4(st, sh, SIP_EROMAR, reg);
|
|
delay(4);
|
|
}
|
|
|
|
/* Shift out data. */
|
|
reg = EROMAR_EECS;
|
|
data[i] = 0;
|
|
for (x = 16; x > 0; x--) {
|
|
bus_space_write_4(st, sh, SIP_EROMAR,
|
|
reg | EROMAR_EESK);
|
|
delay(4);
|
|
if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
|
|
data[i] |= (1 << (x - 1));
|
|
bus_space_write_4(st, sh, SIP_EROMAR, reg);
|
|
delay(4);
|
|
}
|
|
|
|
/* Clear CHIP SELECT. */
|
|
bus_space_write_4(st, sh, SIP_EROMAR, 0);
|
|
delay(4);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sip_add_rxbuf:
|
|
*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
int
|
|
sip_add_rxbuf(sc, idx)
|
|
struct sip_softc *sc;
|
|
int idx;
|
|
{
|
|
struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (rxs->rxs_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
|
|
rxs->rxs_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: can't load rx DMA map %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, idx, error);
|
|
panic("sip_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
SIP_INIT_RXDESC(sc, idx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* sip_sis900_set_filter:
|
|
*
|
|
* Set up the receive filter.
|
|
*/
|
|
void
|
|
sip_sis900_set_filter(sc)
|
|
struct sip_softc *sc;
|
|
{
|
|
bus_space_tag_t st = sc->sc_st;
|
|
bus_space_handle_t sh = sc->sc_sh;
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
u_int8_t *cp;
|
|
struct ether_multistep step;
|
|
u_int32_t crc, mchash[8];
|
|
|
|
/*
|
|
* Initialize the prototype RFCR.
|
|
*/
|
|
sc->sc_rfcr = RFCR_RFEN;
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
sc->sc_rfcr |= RFCR_AAB;
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
sc->sc_rfcr |= RFCR_AAP;
|
|
goto allmulti;
|
|
}
|
|
|
|
/*
|
|
* Set up the multicast address filter by passing all multicast
|
|
* addresses through a CRC generator, and then using the high-order
|
|
* 6 bits as an index into the 128 bit multicast hash table (only
|
|
* the lower 16 bits of each 32 bit multicast hash register are
|
|
* valid). The high order bits select the register, while the
|
|
* rest of the bits select the bit within the register.
|
|
*/
|
|
|
|
memset(mchash, 0, sizeof(mchash));
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 7 most significant bits. */
|
|
crc >>= 25;
|
|
|
|
/* Set the corresponding bit in the hash table. */
|
|
mchash[crc >> 4] |= 1 << (crc & 0xf);
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
goto setit;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
sc->sc_rfcr |= RFCR_AAM;
|
|
|
|
setit:
|
|
#define FILTER_EMIT(addr, data) \
|
|
bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
|
|
delay(1); \
|
|
bus_space_write_4(st, sh, SIP_RFDR, (data)); \
|
|
delay(1)
|
|
|
|
/*
|
|
* Disable receive filter, and program the node address.
|
|
*/
|
|
cp = LLADDR(ifp->if_sadl);
|
|
FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
|
|
FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
|
|
FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
|
|
|
|
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
|
|
/*
|
|
* Program the multicast hash table.
|
|
*/
|
|
FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
|
|
FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
|
|
FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
|
|
FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
|
|
FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
|
|
FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
|
|
FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
|
|
FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
|
|
}
|
|
#undef FILTER_EMIT
|
|
|
|
/*
|
|
* Re-enable the receiver filter.
|
|
*/
|
|
bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
|
|
}
|
|
|
|
/*
|
|
* sip_dp83815_set_filter:
|
|
*
|
|
* Set up the receive filter.
|
|
*/
|
|
void
|
|
sip_dp83815_set_filter(sc)
|
|
struct sip_softc *sc;
|
|
{
|
|
bus_space_tag_t st = sc->sc_st;
|
|
bus_space_handle_t sh = sc->sc_sh;
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
u_int8_t *cp;
|
|
struct ether_multistep step;
|
|
u_int32_t crc, mchash[16];
|
|
int i;
|
|
|
|
/*
|
|
* Initialize the prototype RFCR.
|
|
* Enable the receive filter, and accept on
|
|
* Perfect (destination address) Match
|
|
* If IFF_BROADCAST, also accept all broadcast packets.
|
|
* If IFF_PROMISC, accept all unicast packets (and later, set
|
|
* IFF_ALLMULTI and accept all multicast, too).
|
|
*/
|
|
sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
sc->sc_rfcr |= RFCR_AAB;
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
sc->sc_rfcr |= RFCR_AAP;
|
|
goto allmulti;
|
|
}
|
|
|
|
/*
|
|
* Set up the multicast address filter by passing all multicast
|
|
* addresses through a CRC generator, and then using the high-order
|
|
* 9 bits as an index into the 512 bit multicast hash table. The
|
|
* high-order bits select the slot, while the rest of the bits
|
|
* select the bit within the slot. Note that only the low 16-bits
|
|
* of each filter word are used, and there are 64 filter words.
|
|
*/
|
|
|
|
memset(mchash, 0, sizeof(mchash));
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
if (enm != NULL) {
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 9 most significant bits. */
|
|
crc >>= 23;
|
|
|
|
/* Set the corresponding bit in the hash table. */
|
|
mchash[crc >> 5] |= 1 << (crc & 0x1f);
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
sc->sc_rfcr |= RFCR_MHEN;
|
|
}
|
|
goto setit;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
sc->sc_rfcr |= RFCR_AAM;
|
|
|
|
setit:
|
|
#define FILTER_EMIT(addr, data) \
|
|
bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
|
|
delay(1); \
|
|
bus_space_write_4(st, sh, SIP_RFDR, (data)); \
|
|
delay(1);
|
|
|
|
/*
|
|
* Disable receive filter, and program the node address.
|
|
*/
|
|
cp = LLADDR(ifp->if_sadl);
|
|
FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
|
|
FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
|
|
FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
|
|
|
|
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
|
|
/*
|
|
* Program the multicast hash table.
|
|
*/
|
|
for (i = 0; i < 16; i++) {
|
|
FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
|
|
mchash[i] & 0xffff);
|
|
FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
|
|
(mchash[i] >> 16) & 0xffff);
|
|
}
|
|
}
|
|
#undef FILTER_EMIT
|
|
|
|
/*
|
|
* Re-enable the receiver filter.
|
|
*/
|
|
bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
|
|
}
|
|
|
|
/*
|
|
* sip_sis900_mii_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the MII.
|
|
*/
|
|
int
|
|
sip_sis900_mii_readreg(self, phy, reg)
|
|
struct device *self;
|
|
int phy, reg;
|
|
{
|
|
struct sip_softc *sc = (struct sip_softc *) self;
|
|
u_int32_t enphy;
|
|
|
|
/*
|
|
* The SiS 900 has only an internal PHY on the MII. Only allow
|
|
* MII address 0.
|
|
*/
|
|
if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
|
|
return (0);
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
|
|
(phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
|
|
ENPHY_RWCMD | ENPHY_ACCESS);
|
|
do {
|
|
enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
|
|
} while (enphy & ENPHY_ACCESS);
|
|
return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* sip_sis900_mii_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the MII.
|
|
*/
|
|
void
|
|
sip_sis900_mii_writereg(self, phy, reg, val)
|
|
struct device *self;
|
|
int phy, reg, val;
|
|
{
|
|
struct sip_softc *sc = (struct sip_softc *) self;
|
|
u_int32_t enphy;
|
|
|
|
/*
|
|
* The SiS 900 has only an internal PHY on the MII. Only allow
|
|
* MII address 0.
|
|
*/
|
|
if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
|
|
return;
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
|
|
(val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
|
|
(reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
|
|
do {
|
|
enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
|
|
} while (enphy & ENPHY_ACCESS);
|
|
}
|
|
|
|
/*
|
|
* sip_sis900_mii_statchg: [mii interface function]
|
|
*
|
|
* Callback from MII layer when media changes.
|
|
*/
|
|
void
|
|
sip_sis900_mii_statchg(self)
|
|
struct device *self;
|
|
{
|
|
struct sip_softc *sc = (struct sip_softc *) self;
|
|
u_int32_t flowctl;
|
|
|
|
/*
|
|
* Update TXCFG for full-duplex operation.
|
|
*/
|
|
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
|
|
sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
|
|
else
|
|
sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
|
|
|
|
/*
|
|
* Update RXCFG for full-duplex or loopback.
|
|
*/
|
|
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
|
|
IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
|
|
sc->sc_rxcfg |= RXCFG_ATX;
|
|
else
|
|
sc->sc_rxcfg &= ~RXCFG_ATX;
|
|
|
|
/*
|
|
* Update IMR for use of 802.3x flow control.
|
|
*/
|
|
if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
|
|
sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
|
|
flowctl = FLOWCTL_FLOWEN;
|
|
} else {
|
|
sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
|
|
flowctl = 0;
|
|
}
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
|
|
}
|
|
|
|
/*
|
|
* sip_dp83815_mii_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the MII.
|
|
*/
|
|
int
|
|
sip_dp83815_mii_readreg(self, phy, reg)
|
|
struct device *self;
|
|
int phy, reg;
|
|
{
|
|
struct sip_softc *sc = (struct sip_softc *) self;
|
|
u_int32_t val;
|
|
|
|
/*
|
|
* The DP83815 only has an internal PHY. Only allow
|
|
* MII address 0.
|
|
*/
|
|
if (phy != 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Apparently, after a reset, the DP83815 can take a while
|
|
* to respond. During this recovery period, the BMSR returns
|
|
* a value of 0. Catch this -- it's not supposed to happen
|
|
* (the BMSR has some hardcoded-to-1 bits), and wait for the
|
|
* PHY to come back to life.
|
|
*
|
|
* This works out because the BMSR is the first register
|
|
* read during the PHY probe process.
|
|
*/
|
|
do {
|
|
val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
|
|
} while (reg == MII_BMSR && val == 0);
|
|
|
|
return (val & 0xffff);
|
|
}
|
|
|
|
/*
|
|
* sip_dp83815_mii_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register to the MII.
|
|
*/
|
|
void
|
|
sip_dp83815_mii_writereg(self, phy, reg, val)
|
|
struct device *self;
|
|
int phy, reg, val;
|
|
{
|
|
struct sip_softc *sc = (struct sip_softc *) self;
|
|
|
|
/*
|
|
* The DP83815 only has an internal PHY. Only allow
|
|
* MII address 0.
|
|
*/
|
|
if (phy != 0)
|
|
return;
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
|
|
}
|
|
|
|
/*
|
|
* sip_dp83815_mii_statchg: [mii interface function]
|
|
*
|
|
* Callback from MII layer when media changes.
|
|
*/
|
|
void
|
|
sip_dp83815_mii_statchg(self)
|
|
struct device *self;
|
|
{
|
|
struct sip_softc *sc = (struct sip_softc *) self;
|
|
|
|
/*
|
|
* Update TXCFG for full-duplex operation.
|
|
*/
|
|
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
|
|
sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
|
|
else
|
|
sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
|
|
|
|
/*
|
|
* Update RXCFG for full-duplex or loopback.
|
|
*/
|
|
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
|
|
IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
|
|
sc->sc_rxcfg |= RXCFG_ATX;
|
|
else
|
|
sc->sc_rxcfg &= ~RXCFG_ATX;
|
|
|
|
/*
|
|
* XXX 802.3x flow control.
|
|
*/
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
|
|
}
|
|
|
|
void
|
|
sip_sis900_read_macaddr(sc, enaddr)
|
|
struct sip_softc *sc;
|
|
u_int8_t *enaddr;
|
|
{
|
|
u_int16_t myea[ETHER_ADDR_LEN / 2];
|
|
|
|
sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
|
|
sizeof(myea) / sizeof(myea[0]), myea);
|
|
|
|
enaddr[0] = myea[0] & 0xff;
|
|
enaddr[1] = myea[0] >> 8;
|
|
enaddr[2] = myea[1] & 0xff;
|
|
enaddr[3] = myea[1] >> 8;
|
|
enaddr[4] = myea[2] & 0xff;
|
|
enaddr[5] = myea[2] >> 8;
|
|
}
|
|
|
|
static u_char bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
|
|
#define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
|
|
|
|
void
|
|
sip_dp83815_read_macaddr(sc, enaddr)
|
|
struct sip_softc *sc;
|
|
u_int8_t *enaddr;
|
|
{
|
|
u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
|
|
u_int8_t cksum, *e, match;
|
|
int i;
|
|
|
|
sip_read_eeprom(sc, 0, sizeof(eeprom_data) / sizeof(eeprom_data[0]),
|
|
eeprom_data);
|
|
|
|
match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
|
|
match = ~(match - 1);
|
|
|
|
cksum = 0x55;
|
|
e = (u_int8_t *) eeprom_data;
|
|
for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
|
|
cksum += *e++;
|
|
}
|
|
if (cksum != match) {
|
|
printf("%s: Checksum (%x) mismatch (%x)",
|
|
sc->sc_dev.dv_xname, cksum, match);
|
|
}
|
|
|
|
/*
|
|
* Unrolled because it makes slightly more sense this way.
|
|
* The DP83815 stores the MAC address in bit 0 of word 6
|
|
* through bit 15 of word 8.
|
|
*/
|
|
ea = &eeprom_data[6];
|
|
enaddr[0] = ((*ea & 0x1) << 7);
|
|
ea++;
|
|
enaddr[0] |= ((*ea & 0xFE00) >> 9);
|
|
enaddr[1] = ((*ea & 0x1FE) >> 1);
|
|
enaddr[2] = ((*ea & 0x1) << 7);
|
|
ea++;
|
|
enaddr[2] |= ((*ea & 0xFE00) >> 9);
|
|
enaddr[3] = ((*ea & 0x1FE) >> 1);
|
|
enaddr[4] = ((*ea & 0x1) << 7);
|
|
ea++;
|
|
enaddr[4] |= ((*ea & 0xFE00) >> 9);
|
|
enaddr[5] = ((*ea & 0x1FE) >> 1);
|
|
|
|
/*
|
|
* In case that's not weird enough, we also need to reverse
|
|
* the bits in each byte. This all actually makes more sense
|
|
* if you think about the EEPROM storage as an array of bits
|
|
* being shifted into bytes, but that's not how we're looking
|
|
* at it here...
|
|
*/
|
|
for (i=0 ; i<6 ; i++)
|
|
enaddr[i] = bbr(enaddr[i]);
|
|
}
|
|
|
|
/*
|
|
* sip_mediastatus: [ifmedia interface function]
|
|
*
|
|
* Get the current interface media status.
|
|
*/
|
|
void
|
|
sip_mediastatus(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct sip_softc *sc = ifp->if_softc;
|
|
|
|
mii_pollstat(&sc->sc_mii);
|
|
ifmr->ifm_status = sc->sc_mii.mii_media_status;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media_active;
|
|
}
|
|
|
|
/*
|
|
* sip_mediachange: [ifmedia interface function]
|
|
*
|
|
* Set hardware to newly-selected media.
|
|
*/
|
|
int
|
|
sip_mediachange(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sip_softc *sc = ifp->if_softc;
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
mii_mediachg(&sc->sc_mii);
|
|
return (0);
|
|
}
|