NetBSD/sys/fs/udf/udf_subr.c
reinoud 71c9aa3395 Streamline allocation to prepare it for metadata partition. Also add
preliminary Metadata partition write support but its disabled still since
its not finished yet and not functioning correctly. All other formats are
checked and should work fine.
2008-07-28 19:41:13 +00:00

6619 lines
172 KiB
C

/* $NetBSD: udf_subr.c,v 1.70 2008/07/28 19:41:13 reinoud Exp $ */
/*
* Copyright (c) 2006, 2008 Reinoud Zandijk
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
#ifndef lint
__KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.70 2008/07/28 19:41:13 reinoud Exp $");
#endif /* not lint */
#if defined(_KERNEL_OPT)
#include "opt_quota.h"
#include "opt_compat_netbsd.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <miscfs/genfs/genfs_node.h>
#include <sys/mount.h>
#include <sys/buf.h>
#include <sys/file.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/dirent.h>
#include <sys/stat.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <fs/unicode.h>
#include <dev/clock_subr.h>
#include <fs/udf/ecma167-udf.h>
#include <fs/udf/udf_mount.h>
#if defined(_KERNEL_OPT)
#include "opt_udf.h"
#endif
#include "udf.h"
#include "udf_subr.h"
#include "udf_bswap.h"
#define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
#define UDF_SET_SYSTEMFILE(vp) \
/* XXXAD Is the vnode locked? */ \
(vp)->v_vflag |= VV_SYSTEM; \
vref(vp); \
vput(vp); \
extern int syncer_maxdelay; /* maximum delay time */
extern int (**udf_vnodeop_p)(void *);
/* --------------------------------------------------------------------- */
//#ifdef DEBUG
#if 1
#if 0
static void
udf_dumpblob(boid *blob, uint32_t dlen)
{
int i, j;
printf("blob = %p\n", blob);
printf("dump of %d bytes\n", dlen);
for (i = 0; i < dlen; i+ = 16) {
printf("%04x ", i);
for (j = 0; j < 16; j++) {
if (i+j < dlen) {
printf("%02x ", blob[i+j]);
} else {
printf(" ");
}
}
for (j = 0; j < 16; j++) {
if (i+j < dlen) {
if (blob[i+j]>32 && blob[i+j]! = 127) {
printf("%c", blob[i+j]);
} else {
printf(".");
}
}
}
printf("\n");
}
printf("\n");
Debugger();
}
#endif
static void
udf_dump_discinfo(struct udf_mount *ump)
{
char bits[128];
struct mmc_discinfo *di = &ump->discinfo;
if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
return;
printf("Device/media info :\n");
printf("\tMMC profile 0x%02x\n", di->mmc_profile);
printf("\tderived class %d\n", di->mmc_class);
printf("\tsector size %d\n", di->sector_size);
printf("\tdisc state %d\n", di->disc_state);
printf("\tlast ses state %d\n", di->last_session_state);
printf("\tbg format state %d\n", di->bg_format_state);
printf("\tfrst track %d\n", di->first_track);
printf("\tfst on last ses %d\n", di->first_track_last_session);
printf("\tlst on last ses %d\n", di->last_track_last_session);
printf("\tlink block penalty %d\n", di->link_block_penalty);
bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
sizeof(bits));
printf("\tdisc flags %s\n", bits);
printf("\tdisc id %x\n", di->disc_id);
printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
printf("\tnum sessions %d\n", di->num_sessions);
printf("\tnum tracks %d\n", di->num_tracks);
bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
printf("\tcapabilities cur %s\n", bits);
bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
printf("\tcapabilities cap %s\n", bits);
}
#else
#define udf_dump_discinfo(a);
#endif
/* --------------------------------------------------------------------- */
/* not called often */
int
udf_update_discinfo(struct udf_mount *ump)
{
struct vnode *devvp = ump->devvp;
struct partinfo dpart;
struct mmc_discinfo *di;
int error;
DPRINTF(VOLUMES, ("read/update disc info\n"));
di = &ump->discinfo;
memset(di, 0, sizeof(struct mmc_discinfo));
/* check if we're on a MMC capable device, i.e. CD/DVD */
error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
if (error == 0) {
udf_dump_discinfo(ump);
return 0;
}
/* disc partition support */
error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
if (error)
return ENODEV;
/* set up a disc info profile for partitions */
di->mmc_profile = 0x01; /* disc type */
di->mmc_class = MMC_CLASS_DISC;
di->disc_state = MMC_STATE_CLOSED;
di->last_session_state = MMC_STATE_CLOSED;
di->bg_format_state = MMC_BGFSTATE_COMPLETED;
di->link_block_penalty = 0;
di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
di->mmc_cap = di->mmc_cur;
di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
/* TODO problem with last_possible_lba on resizable VND; request */
di->last_possible_lba = dpart.part->p_size;
di->sector_size = dpart.disklab->d_secsize;
di->num_sessions = 1;
di->num_tracks = 1;
di->first_track = 1;
di->first_track_last_session = di->last_track_last_session = 1;
udf_dump_discinfo(ump);
return 0;
}
int
udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
{
struct vnode *devvp = ump->devvp;
struct mmc_discinfo *di = &ump->discinfo;
int error, class;
DPRINTF(VOLUMES, ("read track info\n"));
class = di->mmc_class;
if (class != MMC_CLASS_DISC) {
/* tracknr specified in struct ti */
error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
return error;
}
/* disc partition support */
if (ti->tracknr != 1)
return EIO;
/* create fake ti (TODO check for resized vnds) */
ti->sessionnr = 1;
ti->track_mode = 0; /* XXX */
ti->data_mode = 0; /* XXX */
ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
ti->track_start = 0;
ti->packet_size = 1;
/* TODO support for resizable vnd */
ti->track_size = di->last_possible_lba;
ti->next_writable = di->last_possible_lba;
ti->last_recorded = ti->next_writable;
ti->free_blocks = 0;
return 0;
}
int
udf_setup_writeparams(struct udf_mount *ump)
{
struct mmc_writeparams mmc_writeparams;
int error;
if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
return 0;
/*
* only CD burning normally needs setting up, but other disc types
* might need other settings to be made. The MMC framework will set up
* the nessisary recording parameters according to the disc
* characteristics read in. Modifications can be made in the discinfo
* structure passed to change the nature of the disc.
*/
memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
/*
* UDF dictates first track to determine track mode for the whole
* disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
* To prevent problems with a `reserved' track in front we start with
* the 2nd track and if that is not valid, go for the 1st.
*/
mmc_writeparams.tracknr = 2;
mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
FKIOCTL, NOCRED);
if (error) {
mmc_writeparams.tracknr = 1;
error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
&mmc_writeparams, FKIOCTL, NOCRED);
}
return error;
}
int
udf_synchronise_caches(struct udf_mount *ump)
{
struct mmc_op mmc_op;
DPRINTF(CALL, ("udf_synchronise_caches()\n"));
if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
return 0;
/* discs are done now */
if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
return 0;
bzero(&mmc_op, sizeof(struct mmc_op));
mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
/* ignore return code */
(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
return 0;
}
/* --------------------------------------------------------------------- */
/* track/session searching for mounting */
int
udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
int *first_tracknr, int *last_tracknr)
{
struct mmc_trackinfo trackinfo;
uint32_t tracknr, start_track, num_tracks;
int error;
/* if negative, sessionnr is relative to last session */
if (args->sessionnr < 0) {
args->sessionnr += ump->discinfo.num_sessions;
}
/* sanity */
if (args->sessionnr < 0)
args->sessionnr = 0;
if (args->sessionnr > ump->discinfo.num_sessions)
args->sessionnr = ump->discinfo.num_sessions;
/* search the tracks for this session, zero session nr indicates last */
if (args->sessionnr == 0)
args->sessionnr = ump->discinfo.num_sessions;
if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
args->sessionnr--;
/* sanity again */
if (args->sessionnr < 0)
args->sessionnr = 0;
/* search the first and last track of the specified session */
num_tracks = ump->discinfo.num_tracks;
start_track = ump->discinfo.first_track;
/* search for first track of this session */
for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
/* get track info */
trackinfo.tracknr = tracknr;
error = udf_update_trackinfo(ump, &trackinfo);
if (error)
return error;
if (trackinfo.sessionnr == args->sessionnr)
break;
}
*first_tracknr = tracknr;
/* search for last track of this session */
for (;tracknr <= num_tracks; tracknr++) {
/* get track info */
trackinfo.tracknr = tracknr;
error = udf_update_trackinfo(ump, &trackinfo);
if (error || (trackinfo.sessionnr != args->sessionnr)) {
tracknr--;
break;
}
}
if (tracknr > num_tracks)
tracknr--;
*last_tracknr = tracknr;
if (*last_tracknr < *first_tracknr) {
printf( "udf_search_tracks: sanity check on drive+disc failed, "
"drive returned garbage\n");
return EINVAL;
}
assert(*last_tracknr >= *first_tracknr);
return 0;
}
/*
* NOTE: this is the only routine in this file that directly peeks into the
* metadata file but since its at a larval state of the mount it can't hurt.
*
* XXX candidate for udf_allocation.c
* XXX clean me up!, change to new node reading code.
*/
static void
udf_check_track_metadata_overlap(struct udf_mount *ump,
struct mmc_trackinfo *trackinfo)
{
struct part_desc *part;
struct file_entry *fe;
struct extfile_entry *efe;
struct short_ad *s_ad;
struct long_ad *l_ad;
uint32_t track_start, track_end;
uint32_t phys_part_start, phys_part_end, part_start, part_end;
uint32_t sector_size, len, alloclen, plb_num;
uint8_t *pos;
int addr_type, icblen, icbflags, flags;
/* get our track extents */
track_start = trackinfo->track_start;
track_end = track_start + trackinfo->track_size;
/* get our base partition extent */
part = ump->partitions[ump->metadata_part];
phys_part_start = udf_rw32(part->start_loc);
phys_part_end = phys_part_start + udf_rw32(part->part_len);
/* no use if its outside the physical partition */
if ((phys_part_start >= track_end) || (phys_part_end < track_start))
return;
/*
* now follow all extents in the fe/efe to see if they refer to this
* track
*/
sector_size = ump->discinfo.sector_size;
/* XXX should we claim exclusive access to the metafile ? */
/* TODO: move to new node read code */
fe = ump->metadata_node->fe;
efe = ump->metadata_node->efe;
if (fe) {
alloclen = udf_rw32(fe->l_ad);
pos = &fe->data[0] + udf_rw32(fe->l_ea);
icbflags = udf_rw16(fe->icbtag.flags);
} else {
assert(efe);
alloclen = udf_rw32(efe->l_ad);
pos = &efe->data[0] + udf_rw32(efe->l_ea);
icbflags = udf_rw16(efe->icbtag.flags);
}
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
while (alloclen) {
if (addr_type == UDF_ICB_SHORT_ALLOC) {
icblen = sizeof(struct short_ad);
s_ad = (struct short_ad *) pos;
len = udf_rw32(s_ad->len);
plb_num = udf_rw32(s_ad->lb_num);
} else {
/* should not be present, but why not */
icblen = sizeof(struct long_ad);
l_ad = (struct long_ad *) pos;
len = udf_rw32(l_ad->len);
plb_num = udf_rw32(l_ad->loc.lb_num);
/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
}
/* process extent */
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
part_start = phys_part_start + plb_num;
part_end = part_start + (len / sector_size);
if ((part_start >= track_start) && (part_end <= track_end)) {
/* extent is enclosed within this track */
ump->metadata_track = *trackinfo;
return;
}
pos += icblen;
alloclen -= icblen;
}
}
int
udf_search_writing_tracks(struct udf_mount *ump)
{
struct mmc_trackinfo trackinfo;
struct part_desc *part;
uint32_t tracknr, start_track, num_tracks;
uint32_t track_start, track_end, part_start, part_end;
int error;
/*
* in the CD/(HD)DVD/BD recordable device model a few tracks within
* the last session might be open but in the UDF device model at most
* three tracks can be open: a reserved track for delayed ISO VRS
* writing, a data track and a metadata track. We search here for the
* data track and the metadata track. Note that the reserved track is
* troublesome but can be detected by its small size of < 512 sectors.
*/
num_tracks = ump->discinfo.num_tracks;
start_track = ump->discinfo.first_track;
/* fetch info on first and possibly only track */
trackinfo.tracknr = start_track;
error = udf_update_trackinfo(ump, &trackinfo);
if (error)
return error;
/* copy results to our mount point */
ump->data_track = trackinfo;
ump->metadata_track = trackinfo;
/* if not sequential, we're done */
if (num_tracks == 1)
return 0;
for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
/* get track info */
trackinfo.tracknr = tracknr;
error = udf_update_trackinfo(ump, &trackinfo);
if (error)
return error;
if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
continue;
track_start = trackinfo.track_start;
track_end = track_start + trackinfo.track_size;
/* check for overlap on data partition */
part = ump->partitions[ump->data_part];
part_start = udf_rw32(part->start_loc);
part_end = part_start + udf_rw32(part->part_len);
if ((part_start < track_end) && (part_end > track_start)) {
ump->data_track = trackinfo;
/* TODO check if UDF partition data_part is writable */
}
/* check for overlap on metadata partition */
if ((ump->meta_alloc == UDF_ALLOC_METASEQUENTIAL) ||
(ump->meta_alloc == UDF_ALLOC_METABITMAP)) {
udf_check_track_metadata_overlap(ump, &trackinfo);
} else {
ump->metadata_track = trackinfo;
}
}
if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
return EROFS;
if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
return EROFS;
return 0;
}
/* --------------------------------------------------------------------- */
/*
* Check if the blob starts with a good UDF tag. Tags are protected by a
* checksum over the reader except one byte at position 4 that is the checksum
* itself.
*/
int
udf_check_tag(void *blob)
{
struct desc_tag *tag = blob;
uint8_t *pos, sum, cnt;
/* check TAG header checksum */
pos = (uint8_t *) tag;
sum = 0;
for(cnt = 0; cnt < 16; cnt++) {
if (cnt != 4)
sum += *pos;
pos++;
}
if (sum != tag->cksum) {
/* bad tag header checksum; this is not a valid tag */
return EINVAL;
}
return 0;
}
/*
* check tag payload will check descriptor CRC as specified.
* If the descriptor is too long, it will return EIO otherwise EINVAL.
*/
int
udf_check_tag_payload(void *blob, uint32_t max_length)
{
struct desc_tag *tag = blob;
uint16_t crc, crc_len;
crc_len = udf_rw16(tag->desc_crc_len);
/* check payload CRC if applicable */
if (crc_len == 0)
return 0;
if (crc_len > max_length)
return EIO;
crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
if (crc != udf_rw16(tag->desc_crc)) {
/* bad payload CRC; this is a broken tag */
return EINVAL;
}
return 0;
}
void
udf_validate_tag_sum(void *blob)
{
struct desc_tag *tag = blob;
uint8_t *pos, sum, cnt;
/* calculate TAG header checksum */
pos = (uint8_t *) tag;
sum = 0;
for(cnt = 0; cnt < 16; cnt++) {
if (cnt != 4) sum += *pos;
pos++;
}
tag->cksum = sum; /* 8 bit */
}
/* assumes sector number of descriptor to be saved already present */
void
udf_validate_tag_and_crc_sums(void *blob)
{
struct desc_tag *tag = blob;
uint8_t *btag = (uint8_t *) tag;
uint16_t crc, crc_len;
crc_len = udf_rw16(tag->desc_crc_len);
/* check payload CRC if applicable */
if (crc_len > 0) {
crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
tag->desc_crc = udf_rw16(crc);
}
/* calculate TAG header checksum */
udf_validate_tag_sum(blob);
}
/* --------------------------------------------------------------------- */
/*
* XXX note the different semantics from udfclient: for FIDs it still rounds
* up to sectors. Use udf_fidsize() for a correct length.
*/
int
udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
{
uint32_t size, tag_id, num_lb, elmsz;
tag_id = udf_rw16(dscr->tag.id);
switch (tag_id) {
case TAGID_LOGVOL :
size = sizeof(struct logvol_desc) - 1;
size += udf_rw32(dscr->lvd.mt_l);
break;
case TAGID_UNALLOC_SPACE :
elmsz = sizeof(struct extent_ad);
size = sizeof(struct unalloc_sp_desc) - elmsz;
size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
break;
case TAGID_FID :
size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
size = (size + 3) & ~3;
break;
case TAGID_LOGVOL_INTEGRITY :
size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
size += udf_rw32(dscr->lvid.l_iu);
size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
break;
case TAGID_SPACE_BITMAP :
size = sizeof(struct space_bitmap_desc) - 1;
size += udf_rw32(dscr->sbd.num_bytes);
break;
case TAGID_SPARING_TABLE :
elmsz = sizeof(struct spare_map_entry);
size = sizeof(struct udf_sparing_table) - elmsz;
size += udf_rw16(dscr->spt.rt_l) * elmsz;
break;
case TAGID_FENTRY :
size = sizeof(struct file_entry);
size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
break;
case TAGID_EXTFENTRY :
size = sizeof(struct extfile_entry);
size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
break;
case TAGID_FSD :
size = sizeof(struct fileset_desc);
break;
default :
size = sizeof(union dscrptr);
break;
}
if ((size == 0) || (lb_size == 0))
return 0;
if (lb_size == 1)
return size;
/* round up in sectors */
num_lb = (size + lb_size -1) / lb_size;
return num_lb * lb_size;
}
int
udf_fidsize(struct fileid_desc *fid)
{
uint32_t size;
if (udf_rw16(fid->tag.id) != TAGID_FID)
panic("got udf_fidsize on non FID\n");
size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
size = (size + 3) & ~3;
return size;
}
/* --------------------------------------------------------------------- */
void
udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
{
int ret;
mutex_enter(&udf_node->node_mutex);
/* wait until free */
while (udf_node->i_flags & IN_LOCKED) {
ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
/* TODO check if we should return error; abort */
if (ret == EWOULDBLOCK) {
DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
"wanted at %s:%d, previously locked at %s:%d\n",
udf_node, fname, lineno,
udf_node->lock_fname, udf_node->lock_lineno));
}
}
/* grab */
udf_node->i_flags |= IN_LOCKED | flag;
/* debug */
udf_node->lock_fname = fname;
udf_node->lock_lineno = lineno;
mutex_exit(&udf_node->node_mutex);
}
void
udf_unlock_node(struct udf_node *udf_node, int flag)
{
mutex_enter(&udf_node->node_mutex);
udf_node->i_flags &= ~(IN_LOCKED | flag);
cv_broadcast(&udf_node->node_lock);
mutex_exit(&udf_node->node_mutex);
}
/* --------------------------------------------------------------------- */
static int
udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
{
int error;
error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
(union dscrptr **) dst);
if (!error) {
/* blank terminator blocks are not allowed here */
if (*dst == NULL)
return ENOENT;
if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
error = ENOENT;
free(*dst, M_UDFVOLD);
*dst = NULL;
DPRINTF(VOLUMES, ("Not an anchor\n"));
}
}
return error;
}
int
udf_read_anchors(struct udf_mount *ump)
{
struct udf_args *args = &ump->mount_args;
struct mmc_trackinfo first_track;
struct mmc_trackinfo second_track;
struct mmc_trackinfo last_track;
struct anchor_vdp **anchorsp;
uint32_t track_start;
uint32_t track_end;
uint32_t positions[4];
int first_tracknr, last_tracknr;
int error, anch, ok, first_anchor;
/* search the first and last track of the specified session */
error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
if (!error) {
first_track.tracknr = first_tracknr;
error = udf_update_trackinfo(ump, &first_track);
}
if (!error) {
last_track.tracknr = last_tracknr;
error = udf_update_trackinfo(ump, &last_track);
}
if ((!error) && (first_tracknr != last_tracknr)) {
second_track.tracknr = first_tracknr+1;
error = udf_update_trackinfo(ump, &second_track);
}
if (error) {
printf("UDF mount: reading disc geometry failed\n");
return 0;
}
track_start = first_track.track_start;
/* `end' is not as straitforward as start. */
track_end = last_track.track_start
+ last_track.track_size - last_track.free_blocks - 1;
if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
/* end of track is not straitforward here */
if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
track_end = last_track.last_recorded;
else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
track_end = last_track.next_writable
- ump->discinfo.link_block_penalty;
}
/* its no use reading a blank track */
first_anchor = 0;
if (first_track.flags & MMC_TRACKINFO_BLANK)
first_anchor = 1;
/* get our packet size */
ump->packet_size = first_track.packet_size;
if (first_track.flags & MMC_TRACKINFO_BLANK)
ump->packet_size = second_track.packet_size;
if (ump->packet_size <= 1) {
/* take max, but not bigger than 64 */
ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
ump->packet_size = MIN(ump->packet_size, 64);
}
KASSERT(ump->packet_size >= 1);
/* read anchors start+256, start+512, end-256, end */
positions[0] = track_start+256;
positions[1] = track_end-256;
positions[2] = track_end;
positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
ok = 0;
anchorsp = ump->anchors;
for (anch = first_anchor; anch < 4; anch++) {
DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
positions[anch]));
error = udf_read_anchor(ump, positions[anch], anchorsp);
if (!error) {
anchorsp++;
ok++;
}
}
/* VATs are only recorded on sequential media, but initialise */
ump->first_possible_vat_location = track_start + 2;
ump->last_possible_vat_location = track_end + last_track.packet_size;
return ok;
}
/* --------------------------------------------------------------------- */
/* we dont try to be smart; we just record the parts */
#define UDF_UPDATE_DSCR(name, dscr) \
if (name) \
free(name, M_UDFVOLD); \
name = dscr;
static int
udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
{
struct part_desc *part;
uint16_t phys_part, raw_phys_part;
DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
udf_rw16(dscr->tag.id)));
switch (udf_rw16(dscr->tag.id)) {
case TAGID_PRI_VOL : /* primary partition */
UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
break;
case TAGID_LOGVOL : /* logical volume */
UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
break;
case TAGID_UNALLOC_SPACE : /* unallocated space */
UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
break;
case TAGID_IMP_VOL : /* implementation */
/* XXX do we care about multiple impl. descr ? */
UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
break;
case TAGID_PARTITION : /* physical partition */
/* not much use if its not allocated */
if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
free(dscr, M_UDFVOLD);
break;
}
/*
* BUGALERT: some rogue implementations use random physical
* partion numbers to break other implementations so lookup
* the number.
*/
raw_phys_part = udf_rw16(dscr->pd.part_num);
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
part = ump->partitions[phys_part];
if (part == NULL)
break;
if (udf_rw16(part->part_num) == raw_phys_part)
break;
}
if (phys_part == UDF_PARTITIONS) {
free(dscr, M_UDFVOLD);
return EINVAL;
}
UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
break;
case TAGID_VOL : /* volume space extender; rare */
DPRINTF(VOLUMES, ("VDS extender ignored\n"));
free(dscr, M_UDFVOLD);
break;
default :
DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
udf_rw16(dscr->tag.id)));
free(dscr, M_UDFVOLD);
}
return 0;
}
#undef UDF_UPDATE_DSCR
/* --------------------------------------------------------------------- */
static int
udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
{
union dscrptr *dscr;
uint32_t sector_size, dscr_size;
int error;
sector_size = ump->discinfo.sector_size;
/* loc is sectornr, len is in bytes */
error = EIO;
while (len) {
error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
if (error)
return error;
/* blank block is a terminator */
if (dscr == NULL)
return 0;
/* TERM descriptor is a terminator */
if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
free(dscr, M_UDFVOLD);
return 0;
}
/* process all others */
dscr_size = udf_tagsize(dscr, sector_size);
error = udf_process_vds_descriptor(ump, dscr);
if (error) {
free(dscr, M_UDFVOLD);
break;
}
assert((dscr_size % sector_size) == 0);
len -= dscr_size;
loc += dscr_size / sector_size;
}
return error;
}
int
udf_read_vds_space(struct udf_mount *ump)
{
/* struct udf_args *args = &ump->mount_args; */
struct anchor_vdp *anchor, *anchor2;
size_t size;
uint32_t main_loc, main_len;
uint32_t reserve_loc, reserve_len;
int error;
/*
* read in VDS space provided by the anchors; if one descriptor read
* fails, try the mirror sector.
*
* check if 2nd anchor is different from 1st; if so, go for 2nd. This
* avoids the `compatibility features' of DirectCD that may confuse
* stuff completely.
*/
anchor = ump->anchors[0];
anchor2 = ump->anchors[1];
assert(anchor);
if (anchor2) {
size = sizeof(struct extent_ad);
if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
anchor = anchor2;
/* reserve is specified to be a literal copy of main */
}
main_loc = udf_rw32(anchor->main_vds_ex.loc);
main_len = udf_rw32(anchor->main_vds_ex.len);
reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
error = udf_read_vds_extent(ump, main_loc, main_len);
if (error) {
printf("UDF mount: reading in reserve VDS extent\n");
error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
}
return error;
}
/* --------------------------------------------------------------------- */
/*
* Read in the logical volume integrity sequence pointed to by our logical
* volume descriptor. Its a sequence that can be extended using fields in the
* integrity descriptor itself. On sequential media only one is found, on
* rewritable media a sequence of descriptors can be found as a form of
* history keeping and on non sequential write-once media the chain is vital
* to allow more and more descriptors to be written. The last descriptor
* written in an extent needs to claim space for a new extent.
*/
static int
udf_retrieve_lvint(struct udf_mount *ump)
{
union dscrptr *dscr;
struct logvol_int_desc *lvint;
struct udf_lvintq *trace;
uint32_t lb_size, lbnum, len;
int dscr_type, error, trace_len;
lb_size = udf_rw32(ump->logical_vol->lb_size);
len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
/* clean trace */
memset(ump->lvint_trace, 0,
UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
trace_len = 0;
trace = ump->lvint_trace;
trace->start = lbnum;
trace->end = lbnum + len/lb_size;
trace->pos = 0;
trace->wpos = 0;
lvint = NULL;
dscr = NULL;
error = 0;
while (len) {
trace->pos = lbnum - trace->start;
trace->wpos = trace->pos + 1;
/* read in our integrity descriptor */
error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
if (!error) {
if (dscr == NULL) {
trace->wpos = trace->pos;
break; /* empty terminates */
}
dscr_type = udf_rw16(dscr->tag.id);
if (dscr_type == TAGID_TERM) {
trace->wpos = trace->pos;
break; /* clean terminator */
}
if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
/* fatal... corrupt disc */
error = ENOENT;
break;
}
if (lvint)
free(lvint, M_UDFVOLD);
lvint = &dscr->lvid;
dscr = NULL;
} /* else hope for the best... maybe the next is ok */
DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
/* proceed sequential */
lbnum += 1;
len -= lb_size;
/* are we linking to a new piece? */
if (dscr && lvint->next_extent.len) {
len = udf_rw32(lvint->next_extent.len);
lbnum = udf_rw32(lvint->next_extent.loc);
if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
/* IEK! segment link full... */
DPRINTF(VOLUMES, ("lvdint segments full\n"));
error = EINVAL;
} else {
trace++;
trace_len++;
trace->start = lbnum;
trace->end = lbnum + len/lb_size;
trace->pos = 0;
trace->wpos = 0;
}
}
}
/* clean up the mess, esp. when there is an error */
if (dscr)
free(dscr, M_UDFVOLD);
if (error && lvint) {
free(lvint, M_UDFVOLD);
lvint = NULL;
}
if (!lvint)
error = ENOENT;
ump->logvol_integrity = lvint;
return error;
}
static int
udf_loose_lvint_history(struct udf_mount *ump)
{
union dscrptr **bufs, *dscr, *last_dscr;
struct udf_lvintq *trace, *in_trace, *out_trace;
struct logvol_int_desc *lvint;
uint32_t in_ext, in_pos, in_len;
uint32_t out_ext, out_wpos, out_len;
uint32_t lb_size, packet_size, lb_num;
uint32_t len, start;
int ext, minext, extlen, cnt, cpy_len, dscr_type;
int losing;
int error;
DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
lb_size = udf_rw32(ump->logical_vol->lb_size);
packet_size = ump->data_track.packet_size; /* XXX data track */
/* search smallest extent */
trace = &ump->lvint_trace[0];
minext = trace->end - trace->start;
for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
trace = &ump->lvint_trace[ext];
extlen = trace->end - trace->start;
if (extlen == 0)
break;
minext = MIN(minext, extlen);
}
losing = MIN(minext, UDF_LVINT_LOSSAGE);
/* no sense wiping all */
if (losing == minext)
losing--;
DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
/* get buffer for pieces */
bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
in_ext = 0;
in_pos = losing;
in_trace = &ump->lvint_trace[in_ext];
in_len = in_trace->end - in_trace->start;
out_ext = 0;
out_wpos = 0;
out_trace = &ump->lvint_trace[out_ext];
out_len = out_trace->end - out_trace->start;
last_dscr = NULL;
for(;;) {
out_trace->pos = out_wpos;
out_trace->wpos = out_trace->pos;
if (in_pos >= in_len) {
in_ext++;
in_pos = 0;
in_trace = &ump->lvint_trace[in_ext];
in_len = in_trace->end - in_trace->start;
}
if (out_wpos >= out_len) {
out_ext++;
out_wpos = 0;
out_trace = &ump->lvint_trace[out_ext];
out_len = out_trace->end - out_trace->start;
}
/* copy overlap contents */
cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
cpy_len = MIN(cpy_len, in_len - in_trace->pos);
if (cpy_len == 0)
break;
/* copy */
DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
for (cnt = 0; cnt < cpy_len; cnt++) {
/* read in our integrity descriptor */
lb_num = in_trace->start + in_pos + cnt;
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
&dscr);
if (error) {
/* copy last one */
dscr = last_dscr;
}
bufs[cnt] = dscr;
if (!error) {
if (dscr == NULL) {
out_trace->pos = out_wpos + cnt;
out_trace->wpos = out_trace->pos;
break; /* empty terminates */
}
dscr_type = udf_rw16(dscr->tag.id);
if (dscr_type == TAGID_TERM) {
out_trace->pos = out_wpos + cnt;
out_trace->wpos = out_trace->pos;
break; /* clean terminator */
}
if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
panic( "UDF integrity sequence "
"corrupted while mounted!\n");
}
last_dscr = dscr;
}
}
/* patch up if first entry was on error */
if (bufs[0] == NULL) {
for (cnt = 0; cnt < cpy_len; cnt++)
if (bufs[cnt] != NULL)
break;
last_dscr = bufs[cnt];
for (; cnt > 0; cnt--) {
bufs[cnt] = last_dscr;
}
}
/* glue + write out */
DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
for (cnt = 0; cnt < cpy_len; cnt++) {
lb_num = out_trace->start + out_wpos + cnt;
lvint = &bufs[cnt]->lvid;
/* set continuation */
len = 0;
start = 0;
if (out_wpos + cnt == out_len) {
/* get continuation */
trace = &ump->lvint_trace[out_ext+1];
len = trace->end - trace->start;
start = trace->start;
}
lvint->next_extent.len = udf_rw32(len);
lvint->next_extent.loc = udf_rw32(start);
lb_num = trace->start + trace->wpos;
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
bufs[cnt], lb_num, lb_num);
DPRINTFIF(VOLUMES, error,
("error writing lvint lb_num\n"));
}
/* free non repeating descriptors */
last_dscr = NULL;
for (cnt = 0; cnt < cpy_len; cnt++) {
if (bufs[cnt] != last_dscr)
free(bufs[cnt], M_UDFVOLD);
last_dscr = bufs[cnt];
}
/* advance */
in_pos += cpy_len;
out_wpos += cpy_len;
}
free(bufs, M_TEMP);
return 0;
}
static int
udf_writeout_lvint(struct udf_mount *ump, int lvflag)
{
struct udf_lvintq *trace;
struct timeval now_v;
struct timespec now_s;
uint32_t sector;
int logvol_integrity;
int space, error;
DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
again:
/* get free space in last chunk */
trace = ump->lvint_trace;
while (trace->wpos > (trace->end - trace->start)) {
DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
"wpos = %d\n", trace->start, trace->end,
trace->pos, trace->wpos));
trace++;
}
/* check if there is space to append */
space = (trace->end - trace->start) - trace->wpos;
DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
"space = %d\n", trace->start, trace->end, trace->pos,
trace->wpos, space));
/* get state */
logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
/* don't allow this logvol to be opened */
/* TODO extent LVINT space if possible */
return EROFS;
}
}
if (space < 1) {
if (lvflag & UDF_APPENDONLY_LVINT)
return EROFS;
/* loose history by re-writing extents */
error = udf_loose_lvint_history(ump);
if (error)
return error;
goto again;
}
/* update our integrity descriptor to identify us and timestamp it */
DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
microtime(&now_v);
TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
/* writeout integrity descriptor */
sector = trace->start + trace->wpos;
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
(union dscrptr *) ump->logvol_integrity,
sector, sector);
DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
if (error)
return error;
/* advance write position */
trace->wpos++; space--;
if (space >= 1) {
/* append terminator */
sector = trace->start + trace->wpos;
error = udf_write_terminator(ump, sector);
DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
}
space = (trace->end - trace->start) - trace->wpos;
DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
"space = %d\n", trace->start, trace->end, trace->pos,
trace->wpos, space));
DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
"successfull\n"));
return error;
}
/* --------------------------------------------------------------------- */
static int
udf_read_physical_partition_spacetables(struct udf_mount *ump)
{
union dscrptr *dscr;
/* struct udf_args *args = &ump->mount_args; */
struct part_desc *partd;
struct part_hdr_desc *parthdr;
struct udf_bitmap *bitmap;
uint32_t phys_part;
uint32_t lb_num, len;
int error, dscr_type;
/* unallocated space map */
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
partd = ump->partitions[phys_part];
if (partd == NULL)
continue;
parthdr = &partd->_impl_use.part_hdr;
lb_num = udf_rw32(partd->start_loc);
lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
len = udf_rw32(parthdr->unalloc_space_bitmap.len);
if (len == 0)
continue;
DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
if (!error && dscr) {
/* analyse */
dscr_type = udf_rw16(dscr->tag.id);
if (dscr_type == TAGID_SPACE_BITMAP) {
DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
/* fill in ump->part_unalloc_bits */
bitmap = &ump->part_unalloc_bits[phys_part];
bitmap->blob = (uint8_t *) dscr;
bitmap->bits = dscr->sbd.data;
bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
bitmap->pages = NULL; /* TODO */
bitmap->data_pos = 0;
bitmap->metadata_pos = 0;
} else {
free(dscr, M_UDFVOLD);
printf( "UDF mount: error reading unallocated "
"space bitmap\n");
return EROFS;
}
} else {
/* blank not allowed */
printf("UDF mount: blank unallocated space bitmap\n");
return EROFS;
}
}
/* unallocated space table (not supported) */
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
partd = ump->partitions[phys_part];
if (partd == NULL)
continue;
parthdr = &partd->_impl_use.part_hdr;
len = udf_rw32(parthdr->unalloc_space_table.len);
if (len) {
printf("UDF mount: space tables not supported\n");
return EROFS;
}
}
/* freed space map */
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
partd = ump->partitions[phys_part];
if (partd == NULL)
continue;
parthdr = &partd->_impl_use.part_hdr;
/* freed space map */
lb_num = udf_rw32(partd->start_loc);
lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
len = udf_rw32(parthdr->freed_space_bitmap.len);
if (len == 0)
continue;
DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
if (!error && dscr) {
/* analyse */
dscr_type = udf_rw16(dscr->tag.id);
if (dscr_type == TAGID_SPACE_BITMAP) {
DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
ump->part_freed_dscr[phys_part] = &dscr->sbd;
/* fill in ump->part_freed_bits */
bitmap = &ump->part_unalloc_bits[phys_part];
bitmap->blob = (uint8_t *) dscr;
bitmap->bits = dscr->sbd.data;
bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
bitmap->pages = NULL; /* TODO */
bitmap->data_pos = 0;
bitmap->metadata_pos = 0;
} else {
free(dscr, M_UDFVOLD);
printf( "UDF mount: error reading freed "
"space bitmap\n");
return EROFS;
}
} else {
/* blank not allowed */
printf("UDF mount: blank freed space bitmap\n");
return EROFS;
}
}
/* freed space table (not supported) */
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
partd = ump->partitions[phys_part];
if (partd == NULL)
continue;
parthdr = &partd->_impl_use.part_hdr;
len = udf_rw32(parthdr->freed_space_table.len);
if (len) {
printf("UDF mount: space tables not supported\n");
return EROFS;
}
}
return 0;
}
/* TODO implement async writeout */
int
udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
{
union dscrptr *dscr;
/* struct udf_args *args = &ump->mount_args; */
struct part_desc *partd;
struct part_hdr_desc *parthdr;
uint32_t phys_part;
uint32_t lb_num, len, ptov;
int error_all, error;
error_all = 0;
/* unallocated space map */
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
partd = ump->partitions[phys_part];
if (partd == NULL)
continue;
parthdr = &partd->_impl_use.part_hdr;
ptov = udf_rw32(partd->start_loc);
lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
len = udf_rw32(parthdr->unalloc_space_bitmap.len);
if (len == 0)
continue;
DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
lb_num + ptov));
dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
(union dscrptr *) dscr,
ptov + lb_num, lb_num);
if (error) {
DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
error_all = error;
}
}
/* freed space map */
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
partd = ump->partitions[phys_part];
if (partd == NULL)
continue;
parthdr = &partd->_impl_use.part_hdr;
/* freed space map */
ptov = udf_rw32(partd->start_loc);
lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
len = udf_rw32(parthdr->freed_space_bitmap.len);
if (len == 0)
continue;
DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
lb_num + ptov));
dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
(union dscrptr *) dscr,
ptov + lb_num, lb_num);
if (error) {
DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
error_all = error;
}
}
return error_all;
}
static int
udf_read_metadata_partition_spacetable(struct udf_mount *ump)
{
struct udf_node *bitmap_node;
union dscrptr *dscr;
struct udf_bitmap *bitmap;
uint64_t inflen;
int error, dscr_type;
bitmap_node = ump->metadatabitmap_node;
/* only read in when metadata bitmap node is read in */
if (bitmap_node == NULL)
return 0;
if (bitmap_node->fe) {
inflen = udf_rw64(bitmap_node->fe->inf_len);
} else {
KASSERT(bitmap_node->efe);
inflen = udf_rw64(bitmap_node->efe->inf_len);
}
DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
"%"PRIu64" bytes\n", inflen));
/* allocate space for bitmap */
dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
if (!dscr)
return ENOMEM;
/* set vnode type to regular file or we can't read from it! */
bitmap_node->vnode->v_type = VREG;
/* read in complete metadata bitmap file */
error = vn_rdwr(UIO_READ, bitmap_node->vnode,
dscr,
inflen, 0,
UIO_SYSSPACE,
IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
NULL, NULL);
if (error) {
DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
goto errorout;
}
/* analyse */
dscr_type = udf_rw16(dscr->tag.id);
if (dscr_type == TAGID_SPACE_BITMAP) {
DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
ump->metadata_unalloc_dscr = &dscr->sbd;
/* fill in bitmap bits */
bitmap = &ump->metadata_unalloc_bits;
bitmap->blob = (uint8_t *) dscr;
bitmap->bits = dscr->sbd.data;
bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
bitmap->pages = NULL; /* TODO */
bitmap->data_pos = 0;
bitmap->metadata_pos = 0;
} else {
DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
goto errorout;
}
return 0;
errorout:
free(dscr, M_UDFVOLD);
printf( "UDF mount: error reading unallocated "
"space bitmap for metadata partition\n");
return EROFS;
}
int
udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
{
struct udf_node *bitmap_node;
union dscrptr *dscr;
uint64_t inflen, new_inflen;
int dummy, error;
bitmap_node = ump->metadatabitmap_node;
/* only write out when metadata bitmap node is known */
if (bitmap_node == NULL)
return 0;
if (bitmap_node->fe) {
inflen = udf_rw64(bitmap_node->fe->inf_len);
} else {
KASSERT(bitmap_node->efe);
inflen = udf_rw64(bitmap_node->efe->inf_len);
}
/* reduce length to zero */
dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
new_inflen = udf_tagsize(dscr, 1);
DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
error = udf_resize_node(bitmap_node, 0, &dummy);
if (error)
printf("Error resizing metadata space bitmap\n");
error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
dscr,
new_inflen, 0,
UIO_SYSSPACE,
IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
NULL, NULL);
bitmap_node->i_flags |= IN_MODIFIED;
vflushbuf(bitmap_node->vnode, 1 /* sync */);
error = VOP_FSYNC(bitmap_node->vnode,
FSCRED, FSYNC_WAIT, 0, 0);
if (error)
printf( "Error writing out metadata partition unalloced "
"space bitmap!\n");
return error;
}
/* --------------------------------------------------------------------- */
/*
* Checks if ump's vds information is correct and complete
*/
int
udf_process_vds(struct udf_mount *ump) {
union udf_pmap *mapping;
/* struct udf_args *args = &ump->mount_args; */
struct logvol_int_desc *lvint;
struct udf_logvol_info *lvinfo;
struct part_desc *part;
uint32_t n_pm, mt_l;
uint8_t *pmap_pos;
char *domain_name, *map_name;
const char *check_name;
char bits[128];
int pmap_stype, pmap_size;
int pmap_type, log_part, phys_part, raw_phys_part;
int n_phys, n_virt, n_spar, n_meta;
int len, error;
if (ump == NULL)
return ENOENT;
/* we need at least an anchor (trivial, but for safety) */
if (ump->anchors[0] == NULL)
return EINVAL;
/* we need at least one primary and one logical volume descriptor */
if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
return EINVAL;
/* we need at least one partition descriptor */
if (ump->partitions[0] == NULL)
return EINVAL;
/* check logical volume sector size verses device sector size */
if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
printf("UDF mount: format violation, lb_size != sector size\n");
return EINVAL;
}
/* check domain name */
domain_name = ump->logical_vol->domain_id.id;
if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
return EINVAL;
}
/* retrieve logical volume integrity sequence */
error = udf_retrieve_lvint(ump);
/*
* We need at least one logvol integrity descriptor recorded. Note
* that its OK to have an open logical volume integrity here. The VAT
* will close/update the integrity.
*/
if (ump->logvol_integrity == NULL)
return EINVAL;
/* process derived structures */
n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
lvint = ump->logvol_integrity;
lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
ump->logvol_info = lvinfo;
/* TODO check udf versions? */
/*
* check logvol mappings: effective virt->log partmap translation
* check and recording of the mapping results. Saves expensive
* strncmp() in tight places.
*/
DPRINTF(VOLUMES, ("checking logvol mappings\n"));
n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
pmap_pos = ump->logical_vol->maps;
if (n_pm > UDF_PMAPS) {
printf("UDF mount: too many mappings\n");
return EINVAL;
}
ump->data_part = ump->metadata_part = 0;
n_phys = n_virt = n_spar = n_meta = 0;
for (log_part = 0; log_part < n_pm; log_part++) {
mapping = (union udf_pmap *) pmap_pos;
pmap_stype = pmap_pos[0];
pmap_size = pmap_pos[1];
switch (pmap_stype) {
case 1: /* physical mapping */
/* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
raw_phys_part = udf_rw16(mapping->pm1.part_num);
pmap_type = UDF_VTOP_TYPE_PHYS;
n_phys++;
ump->data_part = log_part;
ump->metadata_part = log_part;
break;
case 2: /* virtual/sparable/meta mapping */
map_name = mapping->pm2.part_id.id;
/* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
raw_phys_part = udf_rw16(mapping->pm2.part_num);
pmap_type = UDF_VTOP_TYPE_UNKNOWN;
len = UDF_REGID_ID_SIZE;
check_name = "*UDF Virtual Partition";
if (strncmp(map_name, check_name, len) == 0) {
pmap_type = UDF_VTOP_TYPE_VIRT;
n_virt++;
ump->metadata_part = log_part;
break;
}
check_name = "*UDF Sparable Partition";
if (strncmp(map_name, check_name, len) == 0) {
pmap_type = UDF_VTOP_TYPE_SPARABLE;
n_spar++;
ump->data_part = log_part;
ump->metadata_part = log_part;
break;
}
check_name = "*UDF Metadata Partition";
if (strncmp(map_name, check_name, len) == 0) {
pmap_type = UDF_VTOP_TYPE_META;
n_meta++;
ump->metadata_part = log_part;
break;
}
break;
default:
return EINVAL;
}
/*
* BUGALERT: some rogue implementations use random physical
* partion numbers to break other implementations so lookup
* the number.
*/
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
part = ump->partitions[phys_part];
if (part == NULL)
continue;
if (udf_rw16(part->part_num) == raw_phys_part)
break;
}
DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
raw_phys_part, phys_part, pmap_type));
if (phys_part == UDF_PARTITIONS)
return EINVAL;
if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
return EINVAL;
ump->vtop [log_part] = phys_part;
ump->vtop_tp[log_part] = pmap_type;
pmap_pos += pmap_size;
}
/* not winning the beauty contest */
ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
/* test some basic UDF assertions/requirements */
if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
return EINVAL;
if (n_virt) {
if ((n_phys == 0) || n_spar || n_meta)
return EINVAL;
}
if (n_spar + n_phys == 0)
return EINVAL;
/* determine allocation scheme's based on disc format */
/* VAT's can only be on a sequential media */
ump->data_alloc = UDF_ALLOC_SPACEMAP;
if (n_virt)
ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
ump->meta_alloc = UDF_ALLOC_SPACEMAP;
if (n_virt)
ump->meta_alloc = UDF_ALLOC_VAT;
if (n_meta)
ump->meta_alloc = UDF_ALLOC_METABITMAP;
/* special cases for pseudo-overwrite */
if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
if (n_meta) {
ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
} else {
ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
}
}
/* determine default allocation descriptors to use */
ump->data_allocdscr = UDF_ICB_SHORT_ALLOC;
ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
if (n_pm > 1) {
ump->data_allocdscr = UDF_ICB_LONG_ALLOC;
ump->meta_allocdscr = UDF_ICB_LONG_ALLOC;
/* metadata partitions are forced to have short */
if (n_meta)
ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
}
/* determine logical volume open/closure actions */
if (n_virt) {
ump->lvopen = 0;
if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
ump->lvopen |= UDF_OPEN_SESSION ;
ump->lvclose = UDF_WRITE_VAT;
if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
ump->lvclose |= UDF_CLOSE_SESSION;
} else {
/* `normal' rewritable or non sequential media */
ump->lvopen = UDF_WRITE_LVINT;
ump->lvclose = UDF_WRITE_LVINT;
if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
ump->lvopen |= UDF_APPENDONLY_LVINT;
}
/*
* Determine sheduler error behaviour. For virtual partions, update
* the trackinfo; for sparable partitions replace a whole block on the
* sparable table. Allways requeue.
*/
ump->lvreadwrite = 0;
if (n_virt)
ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
if (n_spar)
ump->lvreadwrite = UDF_REMAP_BLOCK;
/*
* Select our sheduler
*/
ump->strategy = &udf_strat_rmw;
if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
ump->strategy = &udf_strat_sequential;
if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
ump->strategy = &udf_strat_direct;
if (n_spar)
ump->strategy = &udf_strat_rmw;
/* print results */
DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
ump->data_alloc, ump->meta_alloc));
DPRINTF(VOLUMES, ("\tdata partition %d, metadata partition %d\n",
ump->data_part, ump->metadata_part));
bitmask_snprintf(ump->lvopen, UDFLOGVOL_BITS, bits, sizeof(bits));
DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
(ump->strategy == &udf_strat_direct) ? "Direct" :
(ump->strategy == &udf_strat_sequential) ? "Sequential" :
(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
/* signal its OK for now */
return 0;
}
/* --------------------------------------------------------------------- */
/*
* Update logical volume name in all structures that keep a record of it. We
* use memmove since each of them might be specified as a source.
*
* Note that it doesn't update the VAT structure!
*/
static void
udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
{
struct logvol_desc *lvd = NULL;
struct fileset_desc *fsd = NULL;
struct udf_lv_info *lvi = NULL;
DPRINTF(VOLUMES, ("Updating logical volume name\n"));
lvd = ump->logical_vol;
fsd = ump->fileset_desc;
if (ump->implementation)
lvi = &ump->implementation->_impl_use.lv_info;
/* logvol's id might be specified as origional so use memmove here */
memmove(lvd->logvol_id, logvol_id, 128);
if (fsd)
memmove(fsd->logvol_id, logvol_id, 128);
if (lvi)
memmove(lvi->logvol_id, logvol_id, 128);
}
/* --------------------------------------------------------------------- */
void
udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
uint32_t sector)
{
assert(ump->logical_vol);
tag->id = udf_rw16(tagid);
tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
tag->cksum = 0;
tag->reserved = 0;
tag->serial_num = ump->logical_vol->tag.serial_num;
tag->tag_loc = udf_rw32(sector);
}
uint64_t
udf_advance_uniqueid(struct udf_mount *ump)
{
uint64_t unique_id;
mutex_enter(&ump->logvol_mutex);
unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
if (unique_id < 0x10)
unique_id = 0x10;
ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
mutex_exit(&ump->logvol_mutex);
return unique_id;
}
static void
udf_adjust_filecount(struct udf_node *udf_node, int sign)
{
struct udf_mount *ump = udf_node->ump;
uint32_t num_dirs, num_files;
int udf_file_type;
/* get file type */
if (udf_node->fe) {
udf_file_type = udf_node->fe->icbtag.file_type;
} else {
udf_file_type = udf_node->efe->icbtag.file_type;
}
/* adjust file count */
mutex_enter(&ump->allocate_mutex);
if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
num_dirs = udf_rw32(ump->logvol_info->num_directories);
ump->logvol_info->num_directories =
udf_rw32((num_dirs + sign));
} else {
num_files = udf_rw32(ump->logvol_info->num_files);
ump->logvol_info->num_files =
udf_rw32((num_files + sign));
}
mutex_exit(&ump->allocate_mutex);
}
void
udf_osta_charset(struct charspec *charspec)
{
bzero(charspec, sizeof(struct charspec));
charspec->type = 0;
strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
}
/* first call udf_set_regid and then the suffix */
void
udf_set_regid(struct regid *regid, char const *name)
{
bzero(regid, sizeof(struct regid));
regid->flags = 0; /* not dirty and not protected */
strcpy((char *) regid->id, name);
}
void
udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
{
uint16_t *ver;
ver = (uint16_t *) regid->id_suffix;
*ver = ump->logvol_info->min_udf_readver;
}
void
udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
{
uint16_t *ver;
ver = (uint16_t *) regid->id_suffix;
*ver = ump->logvol_info->min_udf_readver;
regid->id_suffix[2] = 4; /* unix */
regid->id_suffix[3] = 8; /* NetBSD */
}
void
udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
{
regid->id_suffix[0] = 4; /* unix */
regid->id_suffix[1] = 8; /* NetBSD */
}
void
udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
{
regid->id_suffix[0] = APP_VERSION_MAIN;
regid->id_suffix[1] = APP_VERSION_SUB;
}
static int
udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
struct long_ad *parent, uint64_t unique_id)
{
/* the size of an empty FID is 38 but needs to be a multiple of 4 */
int fidsize = 40;
udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
fid->icb = *parent;
fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
return fidsize;
}
/* --------------------------------------------------------------------- */
/*
* Extended attribute support. UDF knows of 3 places for extended attributes:
*
* (a) inside the file's (e)fe in the length of the extended attribute area
* before the allocation descriptors/filedata
*
* (b) in a file referenced by (e)fe->ext_attr_icb and
*
* (c) in the e(fe)'s associated stream directory that can hold various
* sub-files. In the stream directory a few fixed named subfiles are reserved
* for NT/Unix ACL's and OS/2 attributes.
*
* NOTE: Extended attributes are read randomly but allways written
* *atomicaly*. For ACL's this interface is propably different but not known
* to me yet.
*
* Order of extended attributes in a space :
* ECMA 167 EAs
* Non block aligned Implementation Use EAs
* Block aligned Implementation Use EAs
* Application Use EAs
*/
static int
udf_impl_extattr_check(struct impl_extattr_entry *implext)
{
uint16_t *spos;
if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
/* checksum valid? */
DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
spos = (uint16_t *) implext->data;
if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
return EINVAL;
}
return 0;
}
static void
udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
{
uint16_t *spos;
if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
/* set checksum */
spos = (uint16_t *) implext->data;
*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
}
}
int
udf_extattr_search_intern(struct udf_node *node,
uint32_t sattr, char const *sattrname,
uint32_t *offsetp, uint32_t *lengthp)
{
struct extattrhdr_desc *eahdr;
struct extattr_entry *attrhdr;
struct impl_extattr_entry *implext;
uint32_t offset, a_l, sector_size;
int32_t l_ea;
uint8_t *pos;
int error;
/* get mountpoint */
sector_size = node->ump->discinfo.sector_size;
/* get information from fe/efe */
if (node->fe) {
l_ea = udf_rw32(node->fe->l_ea);
eahdr = (struct extattrhdr_desc *) node->fe->data;
} else {
assert(node->efe);
l_ea = udf_rw32(node->efe->l_ea);
eahdr = (struct extattrhdr_desc *) node->efe->data;
}
/* something recorded here? */
if (l_ea == 0)
return ENOENT;
/* check extended attribute tag; what to do if it fails? */
error = udf_check_tag(eahdr);
if (error)
return EINVAL;
if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
return EINVAL;
error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
if (error)
return EINVAL;
DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
/* looking for Ecma-167 attributes? */
offset = sizeof(struct extattrhdr_desc);
/* looking for either implemenation use or application use */
if (sattr == 2048) { /* [4/48.10.8] */
offset = udf_rw32(eahdr->impl_attr_loc);
if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
return ENOENT;
}
if (sattr == 65536) { /* [4/48.10.9] */
offset = udf_rw32(eahdr->appl_attr_loc);
if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
return ENOENT;
}
/* paranoia check offset and l_ea */
if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
return EINVAL;
DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
/* find our extended attribute */
l_ea -= offset;
pos = (uint8_t *) eahdr + offset;
while (l_ea >= sizeof(struct extattr_entry)) {
DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
attrhdr = (struct extattr_entry *) pos;
implext = (struct impl_extattr_entry *) pos;
/* get complete attribute length and check for roque values */
a_l = udf_rw32(attrhdr->a_l);
DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
udf_rw32(attrhdr->type),
attrhdr->subtype, a_l, l_ea));
if ((a_l == 0) || (a_l > l_ea))
return EINVAL;
if (attrhdr->type != sattr)
goto next_attribute;
/* we might have found it! */
if (attrhdr->type < 2048) { /* Ecma-167 attribute */
*offsetp = offset;
*lengthp = a_l;
return 0; /* success */
}
/*
* Implementation use and application use extended attributes
* have a name to identify. They share the same structure only
* UDF implementation use extended attributes have a checksum
* we need to check
*/
DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
if (strcmp(implext->imp_id.id, sattrname) == 0) {
/* we have found our appl/implementation attribute */
*offsetp = offset;
*lengthp = a_l;
return 0; /* success */
}
next_attribute:
/* next attribute */
pos += a_l;
l_ea -= a_l;
offset += a_l;
}
/* not found */
return ENOENT;
}
static void
udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
struct extattr_entry *extattr)
{
struct file_entry *fe;
struct extfile_entry *efe;
struct extattrhdr_desc *extattrhdr;
struct impl_extattr_entry *implext;
uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
uint32_t *l_eap, l_ad;
uint16_t *spos;
uint8_t *bpos, *data;
if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
fe = &dscr->fe;
data = fe->data;
l_eap = &fe->l_ea;
l_ad = udf_rw32(fe->l_ad);
} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
efe = &dscr->efe;
data = efe->data;
l_eap = &efe->l_ea;
l_ad = udf_rw32(efe->l_ad);
} else {
panic("Bad tag passed to udf_extattr_insert_internal");
}
/* can't append already written to file descriptors yet */
assert(l_ad == 0);
/* should have a header! */
extattrhdr = (struct extattrhdr_desc *) data;
l_ea = udf_rw32(*l_eap);
if (l_ea == 0) {
/* create empty extended attribute header */
exthdr_len = sizeof(struct extattrhdr_desc);
udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
/* loc */ 0);
extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
extattrhdr->tag.desc_crc_len = udf_rw16(8);
/* record extended attribute header length */
l_ea = exthdr_len;
*l_eap = udf_rw32(l_ea);
}
/* extract locations */
impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
impl_attr_loc = l_ea;
if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
appl_attr_loc = l_ea;
/* Ecma 167 EAs */
if (udf_rw32(extattr->type) < 2048) {
assert(impl_attr_loc == l_ea);
assert(appl_attr_loc == l_ea);
}
/* implementation use extended attributes */
if (udf_rw32(extattr->type) == 2048) {
assert(appl_attr_loc == l_ea);
/* calculate and write extended attribute header checksum */
implext = (struct impl_extattr_entry *) extattr;
assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
spos = (uint16_t *) implext->data;
*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
}
/* application use extended attributes */
assert(udf_rw32(extattr->type) != 65536);
assert(appl_attr_loc == l_ea);
/* append the attribute at the end of the current space */
bpos = data + udf_rw32(*l_eap);
a_l = udf_rw32(extattr->a_l);
/* update impl. attribute locations */
if (udf_rw32(extattr->type) < 2048) {
impl_attr_loc = l_ea + a_l;
appl_attr_loc = l_ea + a_l;
}
if (udf_rw32(extattr->type) == 2048) {
appl_attr_loc = l_ea + a_l;
}
/* copy and advance */
memcpy(bpos, extattr, a_l);
l_ea += a_l;
*l_eap = udf_rw32(l_ea);
/* do the `dance` again backwards */
if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
if (impl_attr_loc == l_ea)
impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
if (appl_attr_loc == l_ea)
appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
}
/* store offsets */
extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
}
/* --------------------------------------------------------------------- */
static int
udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
{
struct udf_mount *ump;
struct udf_logvol_info *lvinfo;
struct impl_extattr_entry *implext;
struct vatlvext_extattr_entry lvext;
const char *extstr = "*UDF VAT LVExtension";
uint64_t vat_uniqueid;
uint32_t offset, a_l;
uint8_t *ea_start, *lvextpos;
int error;
/* get mountpoint and lvinfo */
ump = vat_node->ump;
lvinfo = ump->logvol_info;
/* get information from fe/efe */
if (vat_node->fe) {
vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
ea_start = vat_node->fe->data;
} else {
vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
ea_start = vat_node->efe->data;
}
error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
if (error)
return error;
implext = (struct impl_extattr_entry *) (ea_start + offset);
error = udf_impl_extattr_check(implext);
if (error)
return error;
/* paranoia */
if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
return EINVAL;
}
/*
* we have found our "VAT LVExtension attribute. BUT due to a
* bug in the specification it might not be word aligned so
* copy first to avoid panics on some machines (!!)
*/
DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
lvextpos = implext->data + udf_rw32(implext->iu_l);
memcpy(&lvext, lvextpos, sizeof(lvext));
/* check if it was updated the last time */
if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
lvinfo->num_files = lvext.num_files;
lvinfo->num_directories = lvext.num_directories;
udf_update_logvolname(ump, lvext.logvol_id);
} else {
DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
/* replace VAT LVExt by free space EA */
memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
strcpy(implext->imp_id.id, "*UDF FreeEASpace");
udf_calc_impl_extattr_checksum(implext);
}
return 0;
}
static int
udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
{
struct udf_mount *ump;
struct udf_logvol_info *lvinfo;
struct impl_extattr_entry *implext;
struct vatlvext_extattr_entry lvext;
const char *extstr = "*UDF VAT LVExtension";
uint64_t vat_uniqueid;
uint32_t offset, a_l;
uint8_t *ea_start, *lvextpos;
int error;
/* get mountpoint and lvinfo */
ump = vat_node->ump;
lvinfo = ump->logvol_info;
/* get information from fe/efe */
if (vat_node->fe) {
vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
ea_start = vat_node->fe->data;
} else {
vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
ea_start = vat_node->efe->data;
}
error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
if (error)
return error;
/* found, it existed */
/* paranoia */
implext = (struct impl_extattr_entry *) (ea_start + offset);
error = udf_impl_extattr_check(implext);
if (error) {
DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
return error;
}
/* it is correct */
/*
* we have found our "VAT LVExtension attribute. BUT due to a
* bug in the specification it might not be word aligned so
* copy first to avoid panics on some machines (!!)
*/
DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
lvextpos = implext->data + udf_rw32(implext->iu_l);
lvext.unique_id_chk = vat_uniqueid;
lvext.num_files = lvinfo->num_files;
lvext.num_directories = lvinfo->num_directories;
memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
memcpy(lvextpos, &lvext, sizeof(lvext));
return 0;
}
/* --------------------------------------------------------------------- */
int
udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
{
struct udf_mount *ump = vat_node->ump;
if (offset + size > ump->vat_offset + ump->vat_entries * 4)
return EINVAL;
memcpy(blob, ump->vat_table + offset, size);
return 0;
}
int
udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
{
struct udf_mount *ump = vat_node->ump;
uint32_t offset_high;
uint8_t *new_vat_table;
/* extent VAT allocation if needed */
offset_high = offset + size;
if (offset_high >= ump->vat_table_alloc_len) {
/* realloc */
new_vat_table = realloc(ump->vat_table,
ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
M_UDFVOLD, M_WAITOK | M_CANFAIL);
if (!new_vat_table) {
printf("udf_vat_write: can't extent VAT, out of mem\n");
return ENOMEM;
}
ump->vat_table = new_vat_table;
ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
}
ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
memcpy(ump->vat_table + offset, blob, size);
return 0;
}
/* --------------------------------------------------------------------- */
/* TODO support previous VAT location writeout */
static int
udf_update_vat_descriptor(struct udf_mount *ump)
{
struct udf_node *vat_node = ump->vat_node;
struct udf_logvol_info *lvinfo = ump->logvol_info;
struct icb_tag *icbtag;
struct udf_oldvat_tail *oldvat_tl;
struct udf_vat *vat;
uint64_t unique_id;
uint32_t lb_size;
uint8_t *raw_vat;
int filetype, error;
KASSERT(vat_node);
KASSERT(lvinfo);
lb_size = udf_rw32(ump->logical_vol->lb_size);
/* get our new unique_id */
unique_id = udf_advance_uniqueid(ump);
/* get information from fe/efe */
if (vat_node->fe) {
icbtag = &vat_node->fe->icbtag;
vat_node->fe->unique_id = udf_rw64(unique_id);
} else {
icbtag = &vat_node->efe->icbtag;
vat_node->efe->unique_id = udf_rw64(unique_id);
}
/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
filetype = icbtag->file_type;
KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
/* allocate piece to process head or tail of VAT file */
raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
if (filetype == 0) {
/*
* Update "*UDF VAT LVExtension" extended attribute from the
* lvint if present.
*/
udf_update_vat_extattr_from_lvid(vat_node);
/* setup identifying regid */
oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
udf_add_udf_regid(ump, &oldvat_tl->id);
oldvat_tl->prev_vat = udf_rw32(0xffffffff);
/* write out new tail of virtual allocation table file */
error = udf_vat_write(vat_node, raw_vat,
sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
} else {
/* compose the VAT2 header */
vat = (struct udf_vat *) raw_vat;
memset(vat, 0, sizeof(struct udf_vat));
vat->header_len = udf_rw16(152); /* as per spec */
vat->impl_use_len = udf_rw16(0);
memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
vat->prev_vat = udf_rw32(0xffffffff);
vat->num_files = lvinfo->num_files;
vat->num_directories = lvinfo->num_directories;
vat->min_udf_readver = lvinfo->min_udf_readver;
vat->min_udf_writever = lvinfo->min_udf_writever;
vat->max_udf_writever = lvinfo->max_udf_writever;
error = udf_vat_write(vat_node, raw_vat,
sizeof(struct udf_vat), 0);
}
free(raw_vat, M_TEMP);
return error; /* success! */
}
int
udf_writeout_vat(struct udf_mount *ump)
{
struct udf_node *vat_node = ump->vat_node;
uint32_t vat_length;
int error;
KASSERT(vat_node);
DPRINTF(CALL, ("udf_writeout_vat\n"));
mutex_enter(&ump->allocate_mutex);
udf_update_vat_descriptor(ump);
/* write out the VAT contents ; TODO intelligent writing */
vat_length = ump->vat_table_len;
error = vn_rdwr(UIO_WRITE, vat_node->vnode,
ump->vat_table, ump->vat_table_len, 0,
UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
if (error) {
printf("udf_writeout_vat: failed to write out VAT contents\n");
goto out;
}
mutex_exit(&ump->allocate_mutex);
vflushbuf(ump->vat_node->vnode, 1 /* sync */);
error = VOP_FSYNC(ump->vat_node->vnode,
FSCRED, FSYNC_WAIT, 0, 0);
if (error)
printf("udf_writeout_vat: error writing VAT node!\n");
out:
return error;
}
/* --------------------------------------------------------------------- */
/*
* Read in relevant pieces of VAT file and check if its indeed a VAT file
* descriptor. If OK, read in complete VAT file.
*/
static int
udf_check_for_vat(struct udf_node *vat_node)
{
struct udf_mount *ump;
struct icb_tag *icbtag;
struct timestamp *mtime;
struct udf_vat *vat;
struct udf_oldvat_tail *oldvat_tl;
struct udf_logvol_info *lvinfo;
uint64_t unique_id;
uint32_t vat_length;
uint32_t vat_offset, vat_entries, vat_table_alloc_len;
uint32_t sector_size;
uint32_t *raw_vat;
uint8_t *vat_table;
char *regid_name;
int filetype;
int error;
/* vat_length is really 64 bits though impossible */
DPRINTF(VOLUMES, ("Checking for VAT\n"));
if (!vat_node)
return ENOENT;
/* get mount info */
ump = vat_node->ump;
sector_size = udf_rw32(ump->logical_vol->lb_size);
/* check assertions */
assert(vat_node->fe || vat_node->efe);
assert(ump->logvol_integrity);
/* set vnode type to regular file or we can't read from it! */
vat_node->vnode->v_type = VREG;
/* get information from fe/efe */
if (vat_node->fe) {
vat_length = udf_rw64(vat_node->fe->inf_len);
icbtag = &vat_node->fe->icbtag;
mtime = &vat_node->fe->mtime;
unique_id = udf_rw64(vat_node->fe->unique_id);
} else {
vat_length = udf_rw64(vat_node->efe->inf_len);
icbtag = &vat_node->efe->icbtag;
mtime = &vat_node->efe->mtime;
unique_id = udf_rw64(vat_node->efe->unique_id);
}
/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
filetype = icbtag->file_type;
if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
return ENOENT;
DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
vat_table_alloc_len =
((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
* UDF_VAT_CHUNKSIZE;
vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
M_CANFAIL | M_WAITOK);
if (vat_table == NULL) {
printf("allocation of %d bytes failed for VAT\n",
vat_table_alloc_len);
return ENOMEM;
}
/* allocate piece to read in head or tail of VAT file */
raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
/*
* check contents of the file if its the old 1.50 VAT table format.
* Its notoriously broken and allthough some implementations support an
* extention as defined in the UDF 1.50 errata document, its doubtfull
* to be useable since a lot of implementations don't maintain it.
*/
lvinfo = ump->logvol_info;
if (filetype == 0) {
/* definition */
vat_offset = 0;
vat_entries = (vat_length-36)/4;
/* read in tail of virtual allocation table file */
error = vn_rdwr(UIO_READ, vat_node->vnode,
(uint8_t *) raw_vat,
sizeof(struct udf_oldvat_tail),
vat_entries * 4,
UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
NULL, NULL);
if (error)
goto out;
/* check 1.50 VAT */
oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
regid_name = (char *) oldvat_tl->id.id;
error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
if (error) {
DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
error = ENOENT;
goto out;
}
/*
* update LVID from "*UDF VAT LVExtension" extended attribute
* if present.
*/
udf_update_lvid_from_vat_extattr(vat_node);
} else {
/* read in head of virtual allocation table file */
error = vn_rdwr(UIO_READ, vat_node->vnode,
(uint8_t *) raw_vat,
sizeof(struct udf_vat), 0,
UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
NULL, NULL);
if (error)
goto out;
/* definition */
vat = (struct udf_vat *) raw_vat;
vat_offset = vat->header_len;
vat_entries = (vat_length - vat_offset)/4;
assert(lvinfo);
lvinfo->num_files = vat->num_files;
lvinfo->num_directories = vat->num_directories;
lvinfo->min_udf_readver = vat->min_udf_readver;
lvinfo->min_udf_writever = vat->min_udf_writever;
lvinfo->max_udf_writever = vat->max_udf_writever;
udf_update_logvolname(ump, vat->logvol_id);
}
/* read in complete VAT file */
error = vn_rdwr(UIO_READ, vat_node->vnode,
vat_table,
vat_length, 0,
UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
NULL, NULL);
if (error)
printf("read in of complete VAT file failed (error %d)\n",
error);
if (error)
goto out;
DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
ump->logvol_integrity->lvint_next_unique_id = unique_id;
ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
ump->logvol_integrity->time = *mtime;
ump->vat_table_len = vat_length;
ump->vat_table_alloc_len = vat_table_alloc_len;
ump->vat_table = vat_table;
ump->vat_offset = vat_offset;
ump->vat_entries = vat_entries;
ump->vat_last_free_lb = 0; /* start at beginning */
out:
if (error) {
if (vat_table)
free(vat_table, M_UDFVOLD);
}
free(raw_vat, M_TEMP);
return error;
}
/* --------------------------------------------------------------------- */
static int
udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
{
struct udf_node *vat_node;
struct long_ad icb_loc;
uint32_t early_vat_loc, late_vat_loc, vat_loc;
int error;
/* mapping info not needed */
mapping = mapping;
vat_loc = ump->last_possible_vat_location;
early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
vat_loc, early_vat_loc));
early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
late_vat_loc = vat_loc + 1024;
DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
vat_loc, early_vat_loc));
/* start looking from the end of the range */
do {
DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
icb_loc.loc.lb_num = udf_rw32(vat_loc);
error = udf_get_node(ump, &icb_loc, &vat_node);
if (!error) {
error = udf_check_for_vat(vat_node);
DPRINTFIF(VOLUMES, !error,
("VAT accepted at %d\n", vat_loc));
if (!error)
break;
}
if (vat_node) {
vput(vat_node->vnode);
vat_node = NULL;
}
vat_loc--; /* walk backwards */
} while (vat_loc >= early_vat_loc);
/* keep our VAT node around */
if (vat_node) {
UDF_SET_SYSTEMFILE(vat_node->vnode);
ump->vat_node = vat_node;
}
return error;
}
/* --------------------------------------------------------------------- */
static int
udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
{
union dscrptr *dscr;
struct part_map_spare *pms = &mapping->pms;
uint32_t lb_num;
int spar, error;
/*
* The partition mapping passed on to us specifies the information we
* need to locate and initialise the sparable partition mapping
* information we need.
*/
DPRINTF(VOLUMES, ("Read sparable table\n"));
ump->sparable_packet_size = udf_rw16(pms->packet_len);
KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
for (spar = 0; spar < pms->n_st; spar++) {
lb_num = pms->st_loc[spar];
DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
if (!error && dscr) {
if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
if (ump->sparing_table)
free(ump->sparing_table, M_UDFVOLD);
ump->sparing_table = &dscr->spt;
dscr = NULL;
DPRINTF(VOLUMES,
("Sparing table accepted (%d entries)\n",
udf_rw16(ump->sparing_table->rt_l)));
break; /* we're done */
}
}
if (dscr)
free(dscr, M_UDFVOLD);
}
if (ump->sparing_table)
return 0;
return ENOENT;
}
/* --------------------------------------------------------------------- */
static int
udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
{
struct part_map_meta *pmm = &mapping->pmm;
struct long_ad icb_loc;
struct vnode *vp;
int error;
DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
icb_loc.loc.part_num = pmm->part_num;
icb_loc.loc.lb_num = pmm->meta_file_lbn;
DPRINTF(VOLUMES, ("Metadata file\n"));
error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
if (ump->metadata_node) {
vp = ump->metadata_node->vnode;
UDF_SET_SYSTEMFILE(vp);
}
icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
if (icb_loc.loc.lb_num != -1) {
DPRINTF(VOLUMES, ("Metadata copy file\n"));
error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
if (ump->metadatamirror_node) {
vp = ump->metadatamirror_node->vnode;
UDF_SET_SYSTEMFILE(vp);
}
}
icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
if (icb_loc.loc.lb_num != -1) {
DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
if (ump->metadatabitmap_node) {
vp = ump->metadatabitmap_node->vnode;
UDF_SET_SYSTEMFILE(vp);
}
}
/* if we're mounting read-only we relax the requirements */
if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
error = EFAULT;
if (ump->metadata_node)
error = 0;
if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
printf( "udf mount: Metadata file not readable, "
"substituting Metadata copy file\n");
ump->metadata_node = ump->metadatamirror_node;
ump->metadatamirror_node = NULL;
error = 0;
}
} else {
/* mounting read/write */
/* XXX DISABLED! metadata writing is not working yet XXX */
/* if (error) */
error = EROFS;
}
DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
"metadata files\n"));
return error;
}
/* --------------------------------------------------------------------- */
int
udf_read_vds_tables(struct udf_mount *ump)
{
union udf_pmap *mapping;
/* struct udf_args *args = &ump->mount_args; */
uint32_t n_pm, mt_l;
uint32_t log_part;
uint8_t *pmap_pos;
int pmap_size;
int error;
/* Iterate (again) over the part mappings for locations */
n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
pmap_pos = ump->logical_vol->maps;
for (log_part = 0; log_part < n_pm; log_part++) {
mapping = (union udf_pmap *) pmap_pos;
switch (ump->vtop_tp[log_part]) {
case UDF_VTOP_TYPE_PHYS :
/* nothing */
break;
case UDF_VTOP_TYPE_VIRT :
/* search and load VAT */
error = udf_search_vat(ump, mapping);
if (error)
return ENOENT;
break;
case UDF_VTOP_TYPE_SPARABLE :
/* load one of the sparable tables */
error = udf_read_sparables(ump, mapping);
if (error)
return ENOENT;
break;
case UDF_VTOP_TYPE_META :
/* load the associated file descriptors */
error = udf_read_metadata_nodes(ump, mapping);
if (error)
return ENOENT;
break;
default:
break;
}
pmap_size = pmap_pos[1];
pmap_pos += pmap_size;
}
/* read in and check unallocated and free space info if writing */
if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
error = udf_read_physical_partition_spacetables(ump);
if (error)
return error;
/* also read in metadata partion spacebitmap if defined */
error = udf_read_metadata_partition_spacetable(ump);
return error;
}
return 0;
}
/* --------------------------------------------------------------------- */
int
udf_read_rootdirs(struct udf_mount *ump)
{
union dscrptr *dscr;
/* struct udf_args *args = &ump->mount_args; */
struct udf_node *rootdir_node, *streamdir_node;
struct long_ad fsd_loc, *dir_loc;
uint32_t lb_num, dummy;
uint32_t fsd_len;
int dscr_type;
int error;
/* TODO implement FSD reading in separate function like integrity? */
/* get fileset descriptor sequence */
fsd_loc = ump->logical_vol->lv_fsd_loc;
fsd_len = udf_rw32(fsd_loc.len);
dscr = NULL;
error = 0;
while (fsd_len || error) {
DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
/* translate fsd_loc to lb_num */
error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
if (error)
break;
DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
/* end markers */
if (error || (dscr == NULL))
break;
/* analyse */
dscr_type = udf_rw16(dscr->tag.id);
if (dscr_type == TAGID_TERM)
break;
if (dscr_type != TAGID_FSD) {
free(dscr, M_UDFVOLD);
return ENOENT;
}
/*
* TODO check for multiple fileset descriptors; its only
* picking the last now. Also check for FSD
* correctness/interpretability
*/
/* update */
if (ump->fileset_desc) {
free(ump->fileset_desc, M_UDFVOLD);
}
ump->fileset_desc = &dscr->fsd;
dscr = NULL;
/* continue to the next fsd */
fsd_len -= ump->discinfo.sector_size;
fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
/* follow up to fsd->next_ex (long_ad) if its not null */
if (udf_rw32(ump->fileset_desc->next_ex.len)) {
DPRINTF(VOLUMES, ("follow up FSD extent\n"));
fsd_loc = ump->fileset_desc->next_ex;
fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
}
}
if (dscr)
free(dscr, M_UDFVOLD);
/* there has to be one */
if (ump->fileset_desc == NULL)
return ENOENT;
DPRINTF(VOLUMES, ("FSD read in fine\n"));
DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
udf_update_logvolname(ump, ump->logical_vol->logvol_id);
/*
* Now the FSD is known, read in the rootdirectory and if one exists,
* the system stream dir. Some files in the system streamdir are not
* wanted in this implementation since they are not maintained. If
* writing is enabled we'll delete these files if they exist.
*/
rootdir_node = streamdir_node = NULL;
dir_loc = NULL;
/* try to read in the rootdir */
dir_loc = &ump->fileset_desc->rootdir_icb;
error = udf_get_node(ump, dir_loc, &rootdir_node);
if (error)
return ENOENT;
/* aparently it read in fine */
/*
* Try the system stream directory; not very likely in the ones we
* test, but for completeness.
*/
dir_loc = &ump->fileset_desc->streamdir_icb;
if (udf_rw32(dir_loc->len)) {
printf("udf_read_rootdirs: streamdir defined ");
error = udf_get_node(ump, dir_loc, &streamdir_node);
if (error) {
printf("but error in streamdir reading\n");
} else {
printf("but ignored\n");
/*
* TODO process streamdir `baddies' i.e. files we dont
* want if R/W
*/
}
}
DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
/* release the vnodes again; they'll be auto-recycled later */
if (streamdir_node) {
vput(streamdir_node->vnode);
}
if (rootdir_node) {
vput(rootdir_node->vnode);
}
return 0;
}
/* --------------------------------------------------------------------- */
/* To make absolutely sure we are NOT returning zero, add one :) */
long
udf_calchash(struct long_ad *icbptr)
{
/* ought to be enough since each mountpoint has its own chain */
return udf_rw32(icbptr->loc.lb_num) + 1;
}
static struct udf_node *
udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
{
struct udf_node *node;
struct vnode *vp;
uint32_t hashline;
loop:
mutex_enter(&ump->ihash_lock);
hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
assert(node);
if (node->loc.loc.lb_num == icbptr->loc.lb_num &&
node->loc.loc.part_num == icbptr->loc.part_num) {
vp = node->vnode;
assert(vp);
mutex_enter(&vp->v_interlock);
mutex_exit(&ump->ihash_lock);
if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
goto loop;
return node;
}
}
mutex_exit(&ump->ihash_lock);
return NULL;
}
static void
udf_sorted_list_insert(struct udf_node *node)
{
struct udf_mount *ump;
struct udf_node *s_node, *last_node;
uint32_t loc, s_loc;
ump = node->ump;
last_node = NULL; /* XXX gcc */
if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
return;
}
/*
* We sort on logical block number here and not on physical block
* number here. Ideally we should go for the physical block nr to get
* better sync performance though this sort will ensure that packets
* won't get spit up unnessisarily.
*/
loc = udf_rw32(node->loc.loc.lb_num);
LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
s_loc = udf_rw32(s_node->loc.loc.lb_num);
if (s_loc > loc) {
LIST_INSERT_BEFORE(s_node, node, sortchain);
return;
}
last_node = s_node;
}
LIST_INSERT_AFTER(last_node, node, sortchain);
}
static void
udf_register_node(struct udf_node *node)
{
struct udf_mount *ump;
struct udf_node *chk;
uint32_t hashline;
ump = node->ump;
mutex_enter(&ump->ihash_lock);
/* add to our hash table */
hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
#ifdef DEBUG
LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
assert(chk);
if (chk->loc.loc.lb_num == node->loc.loc.lb_num &&
chk->loc.loc.part_num == node->loc.loc.part_num)
panic("Double node entered\n");
}
#else
chk = NULL;
#endif
LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
/* add to our sorted list */
udf_sorted_list_insert(node);
mutex_exit(&ump->ihash_lock);
}
static void
udf_deregister_node(struct udf_node *node)
{
struct udf_mount *ump;
ump = node->ump;
mutex_enter(&ump->ihash_lock);
/* from hash and sorted list */
LIST_REMOVE(node, hashchain);
LIST_REMOVE(node, sortchain);
mutex_exit(&ump->ihash_lock);
}
/* --------------------------------------------------------------------- */
int
udf_open_logvol(struct udf_mount *ump)
{
int logvol_integrity;
int error;
/* already/still open? */
logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
if (logvol_integrity == UDF_INTEGRITY_OPEN)
return 0;
/* can we open it ? */
if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
return EROFS;
/* setup write parameters */
DPRINTF(VOLUMES, ("Setting up write parameters\n"));
if ((error = udf_setup_writeparams(ump)) != 0)
return error;
/* determine data and metadata tracks (most likely same) */
error = udf_search_writing_tracks(ump);
if (error) {
/* most likely lack of space */
printf("udf_open_logvol: error searching writing tracks\n");
return EROFS;
}
/* writeout/update lvint on disc or only in memory */
DPRINTF(VOLUMES, ("Opening logical volume\n"));
if (ump->lvopen & UDF_OPEN_SESSION) {
/* TODO implement writeout of VRS + VDS */
printf( "udf_open_logvol:Opening a closed session not yet "
"implemented\n");
return EROFS;
/* determine data and metadata tracks again */
error = udf_search_writing_tracks(ump);
}
/* mark it open */
ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
/* do we need to write it out? */
if (ump->lvopen & UDF_WRITE_LVINT) {
error = udf_writeout_lvint(ump, ump->lvopen);
/* if we couldn't write it mark it closed again */
if (error) {
ump->logvol_integrity->integrity_type =
udf_rw32(UDF_INTEGRITY_CLOSED);
return error;
}
}
return 0;
}
int
udf_close_logvol(struct udf_mount *ump, int mntflags)
{
int logvol_integrity;
int error = 0, error1 = 0, error2 = 0;
int n;
/* already/still closed? */
logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
if (logvol_integrity == UDF_INTEGRITY_CLOSED)
return 0;
/* writeout/update lvint or write out VAT */
DPRINTF(VOLUMES, ("Closing logical volume\n"));
if (ump->lvclose & UDF_WRITE_VAT) {
DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
/* preprocess the VAT node; its modified on every writeout */
DPRINTF(VOLUMES, ("writeout vat_node\n"));
udf_update_vat_descriptor(ump->vat_node->ump);
/* write out the VAT node */
vflushbuf(ump->vat_node->vnode, 1 /* sync */);
for (n = 0; n < 16; n++) {
ump->vat_node->i_flags |= IN_MODIFIED;
error = VOP_FSYNC(ump->vat_node->vnode,
FSCRED, FSYNC_WAIT, 0, 0);
}
if (error) {
printf("udf_close_logvol: writeout of VAT failed\n");
return error;
}
}
if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
/* sync writeout metadata spacetable if existing */
error1 = udf_write_metadata_partition_spacetable(ump, true);
if (error1)
printf( "udf_close_logvol: writeout of metadata space "
"bitmap failed\n");
/* sync writeout partition spacetables */
error2 = udf_write_physical_partition_spacetables(ump, true);
if (error2)
printf( "udf_close_logvol: writeout of space tables "
"failed\n");
if (error1 || error2)
return (error1 | error2);
ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
}
if (ump->lvclose & UDF_CLOSE_SESSION) {
printf("TODO: Closing a session is not yet implemented\n");
return EROFS;
ump->lvopen |= UDF_OPEN_SESSION;
}
/* mark it closed */
ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
/* do we need to write out the logical volume integrity */
if (ump->lvclose & UDF_WRITE_LVINT)
error = udf_writeout_lvint(ump, ump->lvopen);
if (error) {
/* HELP now what? mark it open again for now */
ump->logvol_integrity->integrity_type =
udf_rw32(UDF_INTEGRITY_OPEN);
return error;
}
(void) udf_synchronise_caches(ump);
return 0;
}
/* --------------------------------------------------------------------- */
/*
* Genfs interfacing
*
* static const struct genfs_ops udf_genfsops = {
* .gop_size = genfs_size,
* size of transfers
* .gop_alloc = udf_gop_alloc,
* allocate len bytes at offset
* .gop_write = genfs_gop_write,
* putpages interface code
* .gop_markupdate = udf_gop_markupdate,
* set update/modify flags etc.
* }
*/
/*
* Genfs interface. These four functions are the only ones defined though not
* documented... great....
*/
/*
* Callback from genfs to allocate len bytes at offset off; only called when
* filling up gaps in the allocation.
*/
/* XXX should we check if there is space enough in udf_gop_alloc? */
static int
udf_gop_alloc(struct vnode *vp, off_t off,
off_t len, int flags, kauth_cred_t cred)
{
#if 0
struct udf_node *udf_node = VTOI(vp);
struct udf_mount *ump = udf_node->ump;
uint32_t lb_size, num_lb;
#endif
DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
return 0;
}
/*
* callback from genfs to update our flags
*/
static void
udf_gop_markupdate(struct vnode *vp, int flags)
{
struct udf_node *udf_node = VTOI(vp);
u_long mask = 0;
if ((flags & GOP_UPDATE_ACCESSED) != 0) {
mask = IN_ACCESS;
}
if ((flags & GOP_UPDATE_MODIFIED) != 0) {
if (vp->v_type == VREG) {
mask |= IN_CHANGE | IN_UPDATE;
} else {
mask |= IN_MODIFY;
}
}
if (mask) {
udf_node->i_flags |= mask;
}
}
static const struct genfs_ops udf_genfsops = {
.gop_size = genfs_size,
.gop_alloc = udf_gop_alloc,
.gop_write = genfs_gop_write_rwmap,
.gop_markupdate = udf_gop_markupdate,
};
/* --------------------------------------------------------------------- */
int
udf_write_terminator(struct udf_mount *ump, uint32_t sector)
{
union dscrptr *dscr;
int error;
dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
bzero(dscr, ump->discinfo.sector_size);
udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
(void) udf_validate_tag_and_crc_sums(dscr);
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
dscr, sector, sector);
free(dscr, M_TEMP);
return error;
}
/* --------------------------------------------------------------------- */
/* UDF<->unix converters */
/* --------------------------------------------------------------------- */
static mode_t
udf_perm_to_unix_mode(uint32_t perm)
{
mode_t mode;
mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
return mode;
}
/* --------------------------------------------------------------------- */
static uint32_t
unix_mode_to_udf_perm(mode_t mode)
{
uint32_t perm;
perm = ((mode & S_IRWXO) );
perm |= ((mode & S_IRWXG) << 2);
perm |= ((mode & S_IRWXU) << 4);
perm |= ((mode & S_IWOTH) << 3);
perm |= ((mode & S_IWGRP) << 5);
perm |= ((mode & S_IWUSR) << 7);
return perm;
}
/* --------------------------------------------------------------------- */
static uint32_t
udf_icb_to_unix_filetype(uint32_t icbftype)
{
switch (icbftype) {
case UDF_ICB_FILETYPE_DIRECTORY :
case UDF_ICB_FILETYPE_STREAMDIR :
return S_IFDIR;
case UDF_ICB_FILETYPE_FIFO :
return S_IFIFO;
case UDF_ICB_FILETYPE_CHARDEVICE :
return S_IFCHR;
case UDF_ICB_FILETYPE_BLOCKDEVICE :
return S_IFBLK;
case UDF_ICB_FILETYPE_RANDOMACCESS :
case UDF_ICB_FILETYPE_REALTIME :
return S_IFREG;
case UDF_ICB_FILETYPE_SYMLINK :
return S_IFLNK;
case UDF_ICB_FILETYPE_SOCKET :
return S_IFSOCK;
}
/* no idea what this is */
return 0;
}
/* --------------------------------------------------------------------- */
void
udf_to_unix_name(char *result, int result_len, char *id, int len,
struct charspec *chsp)
{
uint16_t *raw_name, *unix_name;
uint16_t *inchp, ch;
uint8_t *outchp;
const char *osta_id = "OSTA Compressed Unicode";
int ucode_chars, nice_uchars, is_osta_typ0, nout;
raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
unix_name = raw_name + 1024; /* split space in half */
assert(sizeof(char) == sizeof(uint8_t));
outchp = (uint8_t *) result;
is_osta_typ0 = (chsp->type == 0);
is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
if (is_osta_typ0) {
/* TODO clean up */
*raw_name = *unix_name = 0;
ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
/* output UTF8 */
for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
ch = *inchp;
nout = wput_utf8(outchp, result_len, ch);
outchp += nout; result_len -= nout;
if (!ch) break;
}
*outchp++ = 0;
} else {
/* assume 8bit char length byte latin-1 */
assert(*id == 8);
assert(strlen((char *) (id+1)) <= MAXNAMLEN);
strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
}
free(raw_name, M_UDFTEMP);
}
/* --------------------------------------------------------------------- */
void
unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
struct charspec *chsp)
{
uint16_t *raw_name;
uint16_t *outchp;
const char *inchp;
const char *osta_id = "OSTA Compressed Unicode";
int udf_chars, is_osta_typ0, bits;
size_t cnt;
/* allocate temporary unicode-16 buffer */
raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
/* convert utf8 to unicode-16 */
*raw_name = 0;
inchp = name;
outchp = raw_name;
bits = 8;
for (cnt = name_len, udf_chars = 0; cnt;) {
/*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
*outchp = wget_utf8(&inchp, &cnt);
if (*outchp > 0xff)
bits=16;
outchp++;
udf_chars++;
}
/* null terminate just in case */
*outchp++ = 0;
is_osta_typ0 = (chsp->type == 0);
is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
if (is_osta_typ0) {
udf_chars = udf_CompressUnicode(udf_chars, bits,
(unicode_t *) raw_name,
(byte *) result);
} else {
printf("unix to udf name: no CHSP0 ?\n");
/* XXX assume 8bit char length byte latin-1 */
*result++ = 8; udf_chars = 1;
strncpy(result, name + 1, name_len);
udf_chars += name_len;
}
*result_len = udf_chars;
free(raw_name, M_UDFTEMP);
}
/* --------------------------------------------------------------------- */
void
udf_timestamp_to_timespec(struct udf_mount *ump,
struct timestamp *timestamp,
struct timespec *timespec)
{
struct clock_ymdhms ymdhms;
uint32_t usecs, secs, nsecs;
uint16_t tz;
/* fill in ymdhms structure from timestamp */
memset(&ymdhms, 0, sizeof(ymdhms));
ymdhms.dt_year = udf_rw16(timestamp->year);
ymdhms.dt_mon = timestamp->month;
ymdhms.dt_day = timestamp->day;
ymdhms.dt_wday = 0; /* ? */
ymdhms.dt_hour = timestamp->hour;
ymdhms.dt_min = timestamp->minute;
ymdhms.dt_sec = timestamp->second;
secs = clock_ymdhms_to_secs(&ymdhms);
usecs = timestamp->usec +
100*timestamp->hund_usec + 10000*timestamp->centisec;
nsecs = usecs * 1000;
/*
* Calculate the time zone. The timezone is 12 bit signed 2's
* compliment, so we gotta do some extra magic to handle it right.
*/
tz = udf_rw16(timestamp->type_tz);
tz &= 0x0fff; /* only lower 12 bits are significant */
if (tz & 0x0800) /* sign extention */
tz |= 0xf000;
/* TODO check timezone conversion */
/* check if we are specified a timezone to convert */
if (udf_rw16(timestamp->type_tz) & 0x1000) {
if ((int16_t) tz != -2047)
secs -= (int16_t) tz * 60;
} else {
secs -= ump->mount_args.gmtoff;
}
timespec->tv_sec = secs;
timespec->tv_nsec = nsecs;
}
void
udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
{
struct clock_ymdhms ymdhms;
uint32_t husec, usec, csec;
(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
usec = timespec->tv_nsec / 1000;
husec = usec / 100;
usec -= husec * 100; /* only 0-99 in usec */
csec = husec / 100; /* only 0-99 in csec */
husec -= csec * 100; /* only 0-99 in husec */
/* set method 1 for CUT/GMT */
timestamp->type_tz = udf_rw16((1<<12) + 0);
timestamp->year = udf_rw16(ymdhms.dt_year);
timestamp->month = ymdhms.dt_mon;
timestamp->day = ymdhms.dt_day;
timestamp->hour = ymdhms.dt_hour;
timestamp->minute = ymdhms.dt_min;
timestamp->second = ymdhms.dt_sec;
timestamp->centisec = csec;
timestamp->hund_usec = husec;
timestamp->usec = usec;
}
/* --------------------------------------------------------------------- */
/*
* Attribute and filetypes converters with get/set pairs
*/
uint32_t
udf_getaccessmode(struct udf_node *udf_node)
{
struct file_entry *fe = udf_node->fe;;
struct extfile_entry *efe = udf_node->efe;
uint32_t udf_perm, icbftype;
uint32_t mode, ftype;
uint16_t icbflags;
UDF_LOCK_NODE(udf_node, 0);
if (fe) {
udf_perm = udf_rw32(fe->perm);
icbftype = fe->icbtag.file_type;
icbflags = udf_rw16(fe->icbtag.flags);
} else {
assert(udf_node->efe);
udf_perm = udf_rw32(efe->perm);
icbftype = efe->icbtag.file_type;
icbflags = udf_rw16(efe->icbtag.flags);
}
mode = udf_perm_to_unix_mode(udf_perm);
ftype = udf_icb_to_unix_filetype(icbftype);
/* set suid, sgid, sticky from flags in fe/efe */
if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
mode |= S_ISUID;
if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
mode |= S_ISGID;
if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
mode |= S_ISVTX;
UDF_UNLOCK_NODE(udf_node, 0);
return mode | ftype;
}
void
udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
{
struct file_entry *fe = udf_node->fe;
struct extfile_entry *efe = udf_node->efe;
uint32_t udf_perm;
uint16_t icbflags;
UDF_LOCK_NODE(udf_node, 0);
udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
if (fe) {
icbflags = udf_rw16(fe->icbtag.flags);
} else {
icbflags = udf_rw16(efe->icbtag.flags);
}
icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
if (mode & S_ISUID)
icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
if (mode & S_ISGID)
icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
if (mode & S_ISVTX)
icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
if (fe) {
fe->perm = udf_rw32(udf_perm);
fe->icbtag.flags = udf_rw16(icbflags);
} else {
efe->perm = udf_rw32(udf_perm);
efe->icbtag.flags = udf_rw16(icbflags);
}
UDF_UNLOCK_NODE(udf_node, 0);
}
void
udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
{
struct udf_mount *ump = udf_node->ump;
struct file_entry *fe = udf_node->fe;
struct extfile_entry *efe = udf_node->efe;
uid_t uid;
gid_t gid;
UDF_LOCK_NODE(udf_node, 0);
if (fe) {
uid = (uid_t)udf_rw32(fe->uid);
gid = (gid_t)udf_rw32(fe->gid);
} else {
assert(udf_node->efe);
uid = (uid_t)udf_rw32(efe->uid);
gid = (gid_t)udf_rw32(efe->gid);
}
/* do the uid/gid translation game */
if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) {
uid = ump->mount_args.anon_uid;
gid = ump->mount_args.anon_gid;
}
*uidp = uid;
*gidp = gid;
UDF_UNLOCK_NODE(udf_node, 0);
}
void
udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
{
struct udf_mount *ump = udf_node->ump;
struct file_entry *fe = udf_node->fe;
struct extfile_entry *efe = udf_node->efe;
uid_t nobody_uid;
gid_t nobody_gid;
UDF_LOCK_NODE(udf_node, 0);
/* do the uid/gid translation game */
nobody_uid = ump->mount_args.nobody_uid;
nobody_gid = ump->mount_args.nobody_gid;
if ((uid == nobody_uid) && (gid == nobody_gid)) {
uid = (uid_t) -1;
gid = (gid_t) -1;
}
if (fe) {
fe->uid = udf_rw32((uint32_t) uid);
fe->gid = udf_rw32((uint32_t) gid);
} else {
efe->uid = udf_rw32((uint32_t) uid);
efe->gid = udf_rw32((uint32_t) gid);
}
UDF_UNLOCK_NODE(udf_node, 0);
}
/* --------------------------------------------------------------------- */
/*
* UDF dirhash implementation
*/
static uint32_t
udf_dirhash_hash(const char *str, int namelen)
{
uint32_t hash = 5381;
int i, c;
for (i = 0; i < namelen; i++) {
c = *str++;
hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
}
return hash;
}
static void
udf_dirhash_purge(struct udf_dirhash *dirh)
{
struct udf_dirhash_entry *dirh_e;
uint32_t hashline;
if (dirh == NULL)
return;
if (dirh->size == 0)
return;
for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) {
dirh_e = LIST_FIRST(&dirh->entries[hashline]);
while (dirh_e) {
LIST_REMOVE(dirh_e, next);
pool_put(&udf_dirhash_entry_pool, dirh_e);
dirh_e = LIST_FIRST(&dirh->entries[hashline]);
}
}
dirh_e = LIST_FIRST(&dirh->free_entries);
while (dirh_e) {
LIST_REMOVE(dirh_e, next);
pool_put(&udf_dirhash_entry_pool, dirh_e);
dirh_e = LIST_FIRST(&dirh->entries[hashline]);
}
dirh->flags &= ~UDF_DIRH_COMPLETE;
dirh->flags |= UDF_DIRH_PURGED;
udf_dirhashsize -= dirh->size;
dirh->size = 0;
}
static void
udf_dirhash_destroy(struct udf_dirhash **dirhp)
{
struct udf_dirhash *dirh = *dirhp;
if (dirh == NULL)
return;
mutex_enter(&udf_dirhashmutex);
udf_dirhash_purge(dirh);
TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
pool_put(&udf_dirhash_pool, dirh);
*dirhp = NULL;
mutex_exit(&udf_dirhashmutex);
}
static void
udf_dirhash_get(struct udf_dirhash **dirhp)
{
struct udf_dirhash *dirh;
uint32_t hashline;
mutex_enter(&udf_dirhashmutex);
dirh = *dirhp;
if (*dirhp == NULL) {
dirh = pool_get(&udf_dirhash_pool, PR_WAITOK);
*dirhp = dirh;
memset(dirh, 0, sizeof(struct udf_dirhash));
for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++)
LIST_INIT(&dirh->entries[hashline]);
dirh->size = 0;
dirh->refcnt = 0;
dirh->flags = 0;
} else {
TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
}
dirh->refcnt++;
TAILQ_INSERT_HEAD(&udf_dirhash_queue, dirh, next);
mutex_exit(&udf_dirhashmutex);
}
static void
udf_dirhash_put(struct udf_dirhash *dirh)
{
mutex_enter(&udf_dirhashmutex);
dirh->refcnt--;
mutex_exit(&udf_dirhashmutex);
}
static void
udf_dirhash_enter(struct udf_node *dir_node, struct fileid_desc *fid,
struct dirent *dirent, uint64_t offset, uint32_t fid_size, int new)
{
struct udf_dirhash *dirh, *del_dirh, *prev_dirh;
struct udf_dirhash_entry *dirh_e;
uint32_t hashvalue, hashline;
int entrysize;
/* make sure we have a dirhash to work on */
dirh = dir_node->dir_hash;
KASSERT(dirh);
KASSERT(dirh->refcnt > 0);
/* are we trying to re-enter an entry? */
if (!new && (dirh->flags & UDF_DIRH_COMPLETE))
return;
/* calculate our hash */
hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
hashline = hashvalue & UDF_DIRHASH_HASHMASK;
/* lookup and insert entry if not there yet */
LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
/* check for hash collision */
if (dirh_e->hashvalue != hashvalue)
continue;
if (dirh_e->offset != offset)
continue;
/* got it already */
KASSERT(dirh_e->d_namlen == dirent->d_namlen);
KASSERT(dirh_e->fid_size == fid_size);
return;
}
DPRINTF(DIRHASH, ("dirhash enter %"PRIu64", %d, %d for `%*.*s`\n",
offset, fid_size, dirent->d_namlen,
dirent->d_namlen, dirent->d_namlen, dirent->d_name));
/* check if entry is in free space list */
LIST_FOREACH(dirh_e, &dirh->free_entries, next) {
if (dirh_e->offset == offset) {
DPRINTF(DIRHASH, ("\tremoving free entry\n"));
LIST_REMOVE(dirh_e, next);
break;
}
}
/* ensure we are not passing the dirhash limit */
entrysize = sizeof(struct udf_dirhash_entry);
if (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
del_dirh = TAILQ_LAST(&udf_dirhash_queue, _udf_dirhash);
KASSERT(del_dirh);
while (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
/* no use trying to delete myself */
if (del_dirh == dirh)
break;
prev_dirh = TAILQ_PREV(del_dirh, _udf_dirhash, next);
if (del_dirh->refcnt == 0)
udf_dirhash_purge(del_dirh);
del_dirh = prev_dirh;
}
}
/* add to the hashline */
dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
dirh_e->hashvalue = hashvalue;
dirh_e->offset = offset;
dirh_e->d_namlen = dirent->d_namlen;
dirh_e->fid_size = fid_size;
dirh->size += sizeof(struct udf_dirhash_entry);
udf_dirhashsize += sizeof(struct udf_dirhash_entry);
LIST_INSERT_HEAD(&dirh->entries[hashline], dirh_e, next);
}
static void
udf_dirhash_enter_freed(struct udf_node *dir_node, uint64_t offset,
uint32_t fid_size)
{
struct udf_dirhash *dirh;
struct udf_dirhash_entry *dirh_e;
/* make sure we have a dirhash to work on */
dirh = dir_node->dir_hash;
KASSERT(dirh);
KASSERT(dirh->refcnt > 0);
#ifdef DEBUG
/* check for double entry of free space */
LIST_FOREACH(dirh_e, &dirh->free_entries, next)
KASSERT(dirh_e->offset != offset);
#endif
DPRINTF(DIRHASH, ("dirhash enter FREED %"PRIu64", %d\n",
offset, fid_size));
dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
dirh_e->hashvalue = 0; /* not relevant */
dirh_e->offset = offset;
dirh_e->d_namlen = 0; /* not relevant */
dirh_e->fid_size = fid_size;
/* XXX it might be preferable to append them at the tail */
LIST_INSERT_HEAD(&dirh->free_entries, dirh_e, next);
dirh->size += sizeof(struct udf_dirhash_entry);
udf_dirhashsize += sizeof(struct udf_dirhash_entry);
}
static void
udf_dirhash_remove(struct udf_node *dir_node, struct dirent *dirent,
uint64_t offset, uint32_t fid_size)
{
struct udf_dirhash *dirh;
struct udf_dirhash_entry *dirh_e;
uint32_t hashvalue, hashline;
DPRINTF(DIRHASH, ("dirhash remove %"PRIu64", %d for `%*.*s`\n",
offset, fid_size,
dirent->d_namlen, dirent->d_namlen, dirent->d_name));
/* make sure we have a dirhash to work on */
dirh = dir_node->dir_hash;
KASSERT(dirh);
KASSERT(dirh->refcnt > 0);
/* calculate our hash */
hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
hashline = hashvalue & UDF_DIRHASH_HASHMASK;
/* lookup entry */
LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
/* check for hash collision */
if (dirh_e->hashvalue != hashvalue)
continue;
if (dirh_e->offset != offset)
continue;
/* got it! */
KASSERT(dirh_e->d_namlen == dirent->d_namlen);
KASSERT(dirh_e->fid_size == fid_size);
LIST_REMOVE(dirh_e, next);
dirh->size -= sizeof(struct udf_dirhash_entry);
udf_dirhashsize -= sizeof(struct udf_dirhash_entry);
udf_dirhash_enter_freed(dir_node, offset, fid_size);
return;
}
/* not found! */
panic("dirhash_remove couldn't find entry in hash table\n");
}
/* BUGALERT: don't use result longer than needed, never past the node lock */
/* call with NULL *result initially and it will return nonzero if again */
static int
udf_dirhash_lookup(struct udf_node *dir_node, const char *d_name, int d_namlen,
struct udf_dirhash_entry **result)
{
struct udf_dirhash *dirh;
struct udf_dirhash_entry *dirh_e;
uint32_t hashvalue, hashline;
KASSERT(VOP_ISLOCKED(dir_node->vnode));
/* make sure we have a dirhash to work on */
dirh = dir_node->dir_hash;
KASSERT(dirh);
KASSERT(dirh->refcnt > 0);
/* start where we were */
if (*result) {
KASSERT(dir_node->dir_hash);
dirh_e = *result;
/* retrieve information to avoid recalculation and advance */
hashvalue = dirh_e->hashvalue;
dirh_e = LIST_NEXT(*result, next);
} else {
/* calculate our hash and lookup all entries in hashline */
hashvalue = udf_dirhash_hash(d_name, d_namlen);
hashline = hashvalue & UDF_DIRHASH_HASHMASK;
dirh_e = LIST_FIRST(&dirh->entries[hashline]);
}
for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
/* check for hash collision */
if (dirh_e->hashvalue != hashvalue)
continue;
if (dirh_e->d_namlen != d_namlen)
continue;
/* might have an entry in the cache */
*result = dirh_e;
return 1;
}
*result = NULL;
return 0;
}
/* BUGALERT: don't use result longer than needed, never past the node lock */
/* call with NULL *result initially and it will return nonzero if again */
static int
udf_dirhash_lookup_freed(struct udf_node *dir_node, uint32_t min_fidsize,
struct udf_dirhash_entry **result)
{
struct udf_dirhash *dirh;
struct udf_dirhash_entry *dirh_e;
KASSERT(VOP_ISLOCKED(dir_node->vnode));
/* make sure we have a dirhash to work on */
dirh = dir_node->dir_hash;
KASSERT(dirh);
KASSERT(dirh->refcnt > 0);
/* start where we were */
if (*result) {
KASSERT(dir_node->dir_hash);
dirh_e = LIST_NEXT(*result, next);
} else {
/* lookup all entries that match */
dirh_e = LIST_FIRST(&dirh->free_entries);
}
for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
/* check for minimum size */
if (dirh_e->fid_size < min_fidsize)
continue;
/* might be a candidate */
*result = dirh_e;
return 1;
}
*result = NULL;
return 0;
}
static int
udf_dirhash_fill(struct udf_node *dir_node)
{
struct vnode *dvp = dir_node->vnode;
struct udf_dirhash *dirh;
struct file_entry *fe = dir_node->fe;
struct extfile_entry *efe = dir_node->efe;
struct fileid_desc *fid;
struct dirent *dirent;
uint64_t file_size, pre_diroffset, diroffset;
uint32_t lb_size;
int error;
/* make sure we have a dirhash to work on */
dirh = dir_node->dir_hash;
KASSERT(dirh);
KASSERT(dirh->refcnt > 0);
if (dirh->flags & UDF_DIRH_BROKEN)
return EIO;
if (dirh->flags & UDF_DIRH_COMPLETE)
return 0;
/* make sure we have a clean dirhash to add to */
udf_dirhash_purge(dirh);
/* get directory filesize */
if (fe) {
file_size = udf_rw64(fe->inf_len);
} else {
assert(efe);
file_size = udf_rw64(efe->inf_len);
}
/* allocate temporary space for fid */
lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
/* allocate temporary space for dirent */
dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
error = 0;
diroffset = 0;
while (diroffset < file_size) {
/* transfer a new fid/dirent */
pre_diroffset = diroffset;
error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
if (error) {
/* TODO what to do? continue but not add? */
dirh->flags |= UDF_DIRH_BROKEN;
udf_dirhash_purge(dirh);
break;
}
if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
/* register deleted extent for reuse */
udf_dirhash_enter_freed(dir_node, pre_diroffset,
udf_fidsize(fid));
} else {
/* append to the dirhash */
udf_dirhash_enter(dir_node, fid, dirent, pre_diroffset,
udf_fidsize(fid), 0);
}
}
dirh->flags |= UDF_DIRH_COMPLETE;
free(fid, M_UDFTEMP);
free(dirent, M_UDFTEMP);
return error;
}
/* --------------------------------------------------------------------- */
/*
* Directory read and manipulation functions.
*
* Note that if the file is found, the cached diroffset position *before* the
* advance is remembered. Thus if the same filename is lookup again just after
* this lookup its immediately found.
*/
int
udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
struct long_ad *icb_loc, int *found)
{
struct udf_node *dir_node = VTOI(vp);
struct udf_dirhash_entry *dirh_ep;
struct fileid_desc *fid;
struct dirent *dirent;
uint64_t diroffset;
uint32_t lb_size;
int hit, error;
/* set default return */
*found = 0;
/* get our dirhash and make sure its read in */
udf_dirhash_get(&dir_node->dir_hash);
error = udf_dirhash_fill(dir_node);
if (error) {
udf_dirhash_put(dir_node->dir_hash);
return error;
}
/* allocate temporary space for fid */
lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
namelen, namelen, name));
/* search our dirhash hits */
memset(icb_loc, 0, sizeof(*icb_loc));
dirh_ep = NULL;
for (;;) {
hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
/* if no hit, abort the search */
if (!hit)
break;
/* check this hit */
diroffset = dirh_ep->offset;
/* transfer a new fid/dirent */
error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
if (error)
break;
DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
dirent->d_namlen, dirent->d_namlen, dirent->d_name));
/* see if its our entry */
KASSERT(dirent->d_namlen == namelen);
if (strncmp(dirent->d_name, name, namelen) == 0) {
*found = 1;
*icb_loc = fid->icb;
break;
}
}
free(fid, M_UDFTEMP);
free(dirent, M_UDFTEMP);
udf_dirhash_put(dir_node->dir_hash);
return error;
}
/* --------------------------------------------------------------------- */
static int
udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
struct long_ad *node_icb, struct long_ad *parent_icb,
uint64_t parent_unique_id)
{
struct timespec now;
struct icb_tag *icb;
struct filetimes_extattr_entry *ft_extattr;
uint64_t unique_id;
uint32_t fidsize, lb_num;
uint8_t *bpos;
int crclen, attrlen;
lb_num = udf_rw32(node_icb->loc.lb_num);
udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
icb = &fe->icbtag;
/*
* Always use strategy type 4 unless on WORM wich we don't support
* (yet). Fill in defaults and set for internal allocation of data.
*/
icb->strat_type = udf_rw16(4);
icb->max_num_entries = udf_rw16(1);
icb->file_type = file_type; /* 8 bit */
icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
fe->perm = udf_rw32(0x7fff); /* all is allowed */
fe->link_cnt = udf_rw16(0); /* explicit setting */
fe->ckpoint = udf_rw32(1); /* user supplied file version */
vfs_timestamp(&now);
udf_timespec_to_timestamp(&now, &fe->atime);
udf_timespec_to_timestamp(&now, &fe->attrtime);
udf_timespec_to_timestamp(&now, &fe->mtime);
udf_set_regid(&fe->imp_id, IMPL_NAME);
udf_add_impl_regid(ump, &fe->imp_id);
unique_id = udf_advance_uniqueid(ump);
fe->unique_id = udf_rw64(unique_id);
fe->l_ea = udf_rw32(0);
/* create extended attribute to record our creation time */
attrlen = UDF_FILETIMES_ATTR_SIZE(1);
ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
memset(ft_extattr, 0, attrlen);
ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
udf_extattr_insert_internal(ump, (union dscrptr *) fe,
(struct extattr_entry *) ft_extattr);
free(ft_extattr, M_UDFTEMP);
/* if its a directory, create '..' */
bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
fidsize = 0;
if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
fidsize = udf_create_parentfid(ump,
(struct fileid_desc *) bpos, parent_icb,
parent_unique_id);
}
/* record fidlength information */
fe->inf_len = udf_rw64(fidsize);
fe->l_ad = udf_rw32(fidsize);
fe->logblks_rec = udf_rw64(0); /* intern */
crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
crclen += udf_rw32(fe->l_ea) + fidsize;
fe->tag.desc_crc_len = udf_rw16(crclen);
(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
return fidsize;
}
/* --------------------------------------------------------------------- */
static int
udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
uint64_t parent_unique_id)
{
struct timespec now;
struct icb_tag *icb;
uint64_t unique_id;
uint32_t fidsize, lb_num;
uint8_t *bpos;
int crclen;
lb_num = udf_rw32(node_icb->loc.lb_num);
udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
icb = &efe->icbtag;
/*
* Always use strategy type 4 unless on WORM wich we don't support
* (yet). Fill in defaults and set for internal allocation of data.
*/
icb->strat_type = udf_rw16(4);
icb->max_num_entries = udf_rw16(1);
icb->file_type = file_type; /* 8 bit */
icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
efe->perm = udf_rw32(0x7fff); /* all is allowed */
efe->link_cnt = udf_rw16(0); /* explicit setting */
efe->ckpoint = udf_rw32(1); /* user supplied file version */
vfs_timestamp(&now);
udf_timespec_to_timestamp(&now, &efe->ctime);
udf_timespec_to_timestamp(&now, &efe->atime);
udf_timespec_to_timestamp(&now, &efe->attrtime);
udf_timespec_to_timestamp(&now, &efe->mtime);
udf_set_regid(&efe->imp_id, IMPL_NAME);
udf_add_impl_regid(ump, &efe->imp_id);
unique_id = udf_advance_uniqueid(ump);
efe->unique_id = udf_rw64(unique_id);
efe->l_ea = udf_rw32(0);
/* if its a directory, create '..' */
bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
fidsize = 0;
if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
fidsize = udf_create_parentfid(ump,
(struct fileid_desc *) bpos, parent_icb,
parent_unique_id);
}
/* record fidlength information */
efe->obj_size = udf_rw64(fidsize);
efe->inf_len = udf_rw64(fidsize);
efe->l_ad = udf_rw32(fidsize);
efe->logblks_rec = udf_rw64(0); /* intern */
crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
crclen += udf_rw32(efe->l_ea) + fidsize;
efe->tag.desc_crc_len = udf_rw16(crclen);
(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
return fidsize;
}
/* --------------------------------------------------------------------- */
int
udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
struct udf_node *udf_node, struct componentname *cnp)
{
struct vnode *dvp = dir_node->vnode;
struct udf_dirhash_entry *dirh_ep;
struct file_entry *fe = dir_node->fe;
struct extfile_entry *efe = dir_node->efe;
struct fileid_desc *fid;
struct dirent *dirent;
uint64_t file_size, diroffset;
uint32_t lb_size, fidsize;
int found, error;
char const *name = cnp->cn_nameptr;
int namelen = cnp->cn_namelen;
int hit, refcnt;
/* get our dirhash and make sure its read in */
udf_dirhash_get(&dir_node->dir_hash);
error = udf_dirhash_fill(dir_node);
if (error) {
udf_dirhash_put(dir_node->dir_hash);
return error;
}
/* get directory filesize */
if (fe) {
file_size = udf_rw64(fe->inf_len);
} else {
assert(efe);
file_size = udf_rw64(efe->inf_len);
}
/* allocate temporary space for fid */
lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
/* search our dirhash hits */
found = 0;
dirh_ep = NULL;
for (;;) {
hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
/* if no hit, abort the search */
if (!hit)
break;
/* check this hit */
diroffset = dirh_ep->offset;
/* transfer a new fid/dirent */
error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
if (error)
break;
/* see if its our entry */
KASSERT(dirent->d_namlen == namelen);
if (strncmp(dirent->d_name, name, namelen) == 0) {
found = 1;
break;
}
}
if (!found)
error = ENOENT;
if (error)
goto error_out;
/* mark deleted */
fid->file_char |= UDF_FILE_CHAR_DEL;
#ifdef UDF_COMPLETE_DELETE
memset(&fid->icb, 0, sizeof(fid->icb));
#endif
(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
/* get size of fid and compensate for the read_fid_stream advance */
fidsize = udf_fidsize(fid);
diroffset -= fidsize;
/* write out */
error = vn_rdwr(UIO_WRITE, dir_node->vnode,
fid, fidsize, diroffset,
UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
FSCRED, NULL, NULL);
if (error)
goto error_out;
/* get reference count of attached node */
if (udf_node->fe) {
refcnt = udf_rw16(udf_node->fe->link_cnt);
} else {
KASSERT(udf_node->efe);
refcnt = udf_rw16(udf_node->efe->link_cnt);
}
#ifdef UDF_COMPLETE_DELETE
/* substract reference counter in attached node */
refcnt -= 1;
if (udf_node->fe) {
udf_node->fe->link_cnt = udf_rw16(refcnt);
} else {
udf_node->efe->link_cnt = udf_rw16(refcnt);
}
/* prevent writeout when refcnt == 0 */
if (refcnt == 0)
udf_node->i_flags |= IN_DELETED;
if (fid->file_char & UDF_FILE_CHAR_DIR) {
int drefcnt;
/* substract reference counter in directory node */
/* note subtract 2 (?) for its was also backreferenced */
if (dir_node->fe) {
drefcnt = udf_rw16(dir_node->fe->link_cnt);
drefcnt -= 1;
dir_node->fe->link_cnt = udf_rw16(drefcnt);
} else {
KASSERT(dir_node->efe);
drefcnt = udf_rw16(dir_node->efe->link_cnt);
drefcnt -= 1;
dir_node->efe->link_cnt = udf_rw16(drefcnt);
}
}
udf_node->i_flags |= IN_MODIFIED;
dir_node->i_flags |= IN_MODIFIED;
#endif
/* if it is/was a hardlink adjust the file count */
if (refcnt > 0)
udf_adjust_filecount(udf_node, -1);
/* remove from the dirhash */
udf_dirhash_remove(dir_node, dirent, diroffset,
udf_fidsize(fid));
error_out:
free(fid, M_UDFTEMP);
free(dirent, M_UDFTEMP);
udf_dirhash_put(dir_node->dir_hash);
return error;
}
/* --------------------------------------------------------------------- */
/*
* We are not allowed to split the fid tag itself over an logical block so
* check the space remaining in the logical block.
*
* We try to select the smallest candidate for recycling or when none is
* found, append a new one at the end of the directory.
*/
int
udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
{
struct vnode *dvp = dir_node->vnode;
struct udf_dirhash_entry *dirh_ep;
struct fileid_desc *fid;
struct icb_tag *icbtag;
struct charspec osta_charspec;
struct dirent dirent;
uint64_t unique_id, dir_size, diroffset;
uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
uint32_t chosen_size, chosen_size_diff;
int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
int file_char, refcnt, icbflags, addr_type, hit, error;
/* get our dirhash and make sure its read in */
udf_dirhash_get(&dir_node->dir_hash);
error = udf_dirhash_fill(dir_node);
if (error) {
udf_dirhash_put(dir_node->dir_hash);
return error;
}
/* get info */
lb_size = udf_rw32(ump->logical_vol->lb_size);
udf_osta_charset(&osta_charspec);
if (dir_node->fe) {
dir_size = udf_rw64(dir_node->fe->inf_len);
icbtag = &dir_node->fe->icbtag;
} else {
dir_size = udf_rw64(dir_node->efe->inf_len);
icbtag = &dir_node->efe->icbtag;
}
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
if (udf_node->fe) {
unique_id = udf_rw64(udf_node->fe->unique_id);
refcnt = udf_rw16(udf_node->fe->link_cnt);
} else {
unique_id = udf_rw64(udf_node->efe->unique_id);
refcnt = udf_rw16(udf_node->efe->link_cnt);
}
if (refcnt > 0) {
unique_id = udf_advance_uniqueid(ump);
udf_adjust_filecount(udf_node, 1);
}
/* determine file characteristics */
file_char = 0; /* visible non deleted file and not stream metadata */
if (vap->va_type == VDIR)
file_char = UDF_FILE_CHAR_DIR;
/* malloc scrap buffer */
fid = malloc(lb_size, M_TEMP, M_WAITOK);
bzero(fid, lb_size);
/* calculate _minimum_ fid size */
unix_to_udf_name((char *) fid->data, &fid->l_fi,
cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
fidsize = UDF_FID_SIZE + fid->l_fi;
fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
/* find position that will fit the FID */
chosen_fid_pos = dir_size;
chosen_size = 0;
chosen_size_diff = UINT_MAX;
/* shut up gcc */
dirent.d_namlen = 0;
/* search our dirhash hits */
error = 0;
dirh_ep = NULL;
for (;;) {
hit = udf_dirhash_lookup_freed(dir_node, fidsize, &dirh_ep);
/* if no hit, abort the search */
if (!hit)
break;
/* check this hit for size */
this_fidsize = dirh_ep->fid_size;
/* check this hit */
fid_pos = dirh_ep->offset;
end_fid_pos = fid_pos + this_fidsize;
size_diff = this_fidsize - fidsize;
lb_rest = lb_size - (end_fid_pos % lb_size);
#ifndef UDF_COMPLETE_DELETE
/* transfer a new fid/dirent */
error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
if (error)
goto error_out;
/* only reuse entries that are wiped */
/* check if the len + loc are marked zero */
if (udf_rw32(fid->icb.len != 0))
continue;
if (udf_rw32(fid->icb.loc.lb_num) != 0)
continue;
if (udf_rw16(fid->icb.loc.part_num != 0))
continue;
#endif /* UDF_COMPLETE_DELETE */
/* select if not splitting the tag and its smaller */
if ((size_diff >= 0) &&
(size_diff < chosen_size_diff) &&
(lb_rest >= sizeof(struct desc_tag)))
{
/* UDF 2.3.4.2+3 specifies rules for iu size */
if ((size_diff == 0) || (size_diff >= 32)) {
chosen_fid_pos = fid_pos;
chosen_size = this_fidsize;
chosen_size_diff = size_diff;
}
}
}
/* extend directory if no other candidate found */
if (chosen_size == 0) {
chosen_fid_pos = dir_size;
chosen_size = fidsize;
chosen_size_diff = 0;
/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
if (addr_type == UDF_ICB_INTERN_ALLOC) {
/* pre-grow directory to see if we're to switch */
udf_grow_node(dir_node, dir_size + chosen_size);
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
}
/* make sure the next fid desc_tag won't be splitted */
if (addr_type != UDF_ICB_INTERN_ALLOC) {
end_fid_pos = chosen_fid_pos + chosen_size;
lb_rest = lb_size - (end_fid_pos % lb_size);
/* pad with implementation use regid if needed */
if (lb_rest < sizeof(struct desc_tag))
chosen_size += 32;
}
}
chosen_size_diff = chosen_size - fidsize;
diroffset = chosen_fid_pos + chosen_size;
/* populate the FID */
memset(fid, 0, lb_size);
udf_inittag(ump, &fid->tag, TAGID_FID, 0);
fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
fid->file_char = file_char;
fid->icb = udf_node->loc;
fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
fid->l_iu = udf_rw16(0);
if (chosen_size > fidsize) {
/* insert implementation-use regid to space it correctly */
fid->l_iu = udf_rw16(chosen_size_diff);
/* set implementation use */
udf_set_regid((struct regid *) fid->data, IMPL_NAME);
udf_add_impl_regid(ump, (struct regid *) fid->data);
}
/* fill in name */
unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
/* writeout FID/update parent directory */
error = vn_rdwr(UIO_WRITE, dvp,
fid, chosen_size, chosen_fid_pos,
UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
FSCRED, NULL, NULL);
if (error)
goto error_out;
/* add reference counter in attached node */
if (udf_node->fe) {
refcnt = udf_rw16(udf_node->fe->link_cnt);
udf_node->fe->link_cnt = udf_rw16(refcnt+1);
} else {
KASSERT(udf_node->efe);
refcnt = udf_rw16(udf_node->efe->link_cnt);
udf_node->efe->link_cnt = udf_rw16(refcnt+1);
}
/* mark not deleted if it was... just in case, but do warn */
if (udf_node->i_flags & IN_DELETED) {
printf("udf: warning, marking a file undeleted\n");
udf_node->i_flags &= ~IN_DELETED;
}
if (file_char & UDF_FILE_CHAR_DIR) {
/* add reference counter in directory node for '..' */
if (dir_node->fe) {
refcnt = udf_rw16(dir_node->fe->link_cnt);
refcnt++;
dir_node->fe->link_cnt = udf_rw16(refcnt);
} else {
KASSERT(dir_node->efe);
refcnt = udf_rw16(dir_node->efe->link_cnt);
refcnt++;
dir_node->efe->link_cnt = udf_rw16(refcnt);
}
}
/* append to the dirhash */
dirent.d_namlen = cnp->cn_namelen;
memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
udf_dirhash_enter(dir_node, fid, &dirent, chosen_fid_pos,
udf_fidsize(fid), 1);
/* note updates */
udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
/* VN_KNOTE(udf_node, ...) */
udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
error_out:
free(fid, M_TEMP);
udf_dirhash_put(dir_node->dir_hash);
return error;
}
/* --------------------------------------------------------------------- */
/*
* Each node can have an attached streamdir node though not recursively. These
* are otherwise known as named substreams/named extended attributes that have
* no size limitations.
*
* `Normal' extended attributes are indicated with a number and are recorded
* in either the fe/efe descriptor itself for small descriptors or recorded in
* the attached extended attribute file. Since these spaces can get
* fragmented, care ought to be taken.
*
* Since the size of the space reserved for allocation descriptors is limited,
* there is a mechanim provided for extending this space; this is done by a
* special extent to allow schrinking of the allocations without breaking the
* linkage to the allocation extent descriptor.
*/
int
udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
struct udf_node **udf_noderes)
{
union dscrptr *dscr;
struct udf_node *udf_node;
struct vnode *nvp;
struct long_ad icb_loc, last_fe_icb_loc;
uint64_t file_size;
uint32_t lb_size, sector, dummy;
uint8_t *file_data;
int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
int slot, eof, error;
DPRINTF(NODE, ("udf_get_node called\n"));
*udf_noderes = udf_node = NULL;
/* lock to disallow simultanious creation of same udf_node */
mutex_enter(&ump->get_node_lock);
DPRINTF(NODE, ("\tlookup in hash table\n"));
/* lookup in hash table */
assert(ump);
assert(node_icb_loc);
udf_node = udf_hash_lookup(ump, node_icb_loc);
if (udf_node) {
DPRINTF(NODE, ("\tgot it from the hash!\n"));
/* vnode is returned locked */
*udf_noderes = udf_node;
mutex_exit(&ump->get_node_lock);
return 0;
}
/* garbage check: translate udf_node_icb_loc to sectornr */
error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
if (error) {
/* no use, this will fail anyway */
mutex_exit(&ump->get_node_lock);
return EINVAL;
}
/* build udf_node (do initialise!) */
udf_node = pool_get(&udf_node_pool, PR_WAITOK);
memset(udf_node, 0, sizeof(struct udf_node));
DPRINTF(NODE, ("\tget new vnode\n"));
/* give it a vnode */
error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
if (error) {
pool_put(&udf_node_pool, udf_node);
mutex_exit(&ump->get_node_lock);
return error;
}
/* always return locked vnode */
if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
/* recycle vnode and unlock; simultanious will fail too */
ungetnewvnode(nvp);
mutex_exit(&ump->get_node_lock);
return error;
}
/* initialise crosslinks, note location of fe/efe for hashing */
udf_node->ump = ump;
udf_node->vnode = nvp;
nvp->v_data = udf_node;
udf_node->loc = *node_icb_loc;
udf_node->lockf = 0;
mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
cv_init(&udf_node->node_lock, "udf_nlk");
genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
udf_node->outstanding_bufs = 0;
udf_node->outstanding_nodedscr = 0;
/* insert into the hash lookup */
udf_register_node(udf_node);
/* safe to unlock, the entry is in the hash table, vnode is locked */
mutex_exit(&ump->get_node_lock);
icb_loc = *node_icb_loc;
needs_indirect = 0;
strat4096 = 0;
udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
file_size = 0;
file_data = NULL;
lb_size = udf_rw32(ump->logical_vol->lb_size);
DPRINTF(NODE, ("\tstart reading descriptors\n"));
do {
/* try to read in fe/efe */
error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
/* blank sector marks end of sequence, check this */
if ((dscr == NULL) && (!strat4096))
error = ENOENT;
/* break if read error or blank sector */
if (error || (dscr == NULL))
break;
/* process descriptor based on the descriptor type */
dscr_type = udf_rw16(dscr->tag.id);
DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
/* if dealing with an indirect entry, follow the link */
if (dscr_type == TAGID_INDIRECTENTRY) {
needs_indirect = 0;
udf_free_logvol_dscr(ump, &icb_loc, dscr);
icb_loc = dscr->inde.indirect_icb;
continue;
}
/* only file entries and extended file entries allowed here */
if ((dscr_type != TAGID_FENTRY) &&
(dscr_type != TAGID_EXTFENTRY)) {
udf_free_logvol_dscr(ump, &icb_loc, dscr);
error = ENOENT;
break;
}
KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
/* choose this one */
last_fe_icb_loc = icb_loc;
/* record and process/update (ext)fentry */
file_data = NULL;
if (dscr_type == TAGID_FENTRY) {
if (udf_node->fe)
udf_free_logvol_dscr(ump, &last_fe_icb_loc,
udf_node->fe);
udf_node->fe = &dscr->fe;
strat = udf_rw16(udf_node->fe->icbtag.strat_type);
udf_file_type = udf_node->fe->icbtag.file_type;
file_size = udf_rw64(udf_node->fe->inf_len);
file_data = udf_node->fe->data;
} else {
if (udf_node->efe)
udf_free_logvol_dscr(ump, &last_fe_icb_loc,
udf_node->efe);
udf_node->efe = &dscr->efe;
strat = udf_rw16(udf_node->efe->icbtag.strat_type);
udf_file_type = udf_node->efe->icbtag.file_type;
file_size = udf_rw64(udf_node->efe->inf_len);
file_data = udf_node->efe->data;
}
/* check recording strategy (structure) */
/*
* Strategy 4096 is a daisy linked chain terminating with an
* unrecorded sector or a TERM descriptor. The next
* descriptor is to be found in the sector that follows the
* current sector.
*/
if (strat == 4096) {
strat4096 = 1;
needs_indirect = 1;
icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
}
/*
* Strategy 4 is the normal strategy and terminates, but if
* we're in strategy 4096, we can't have strategy 4 mixed in
*/
if (strat == 4) {
if (strat4096) {
error = EINVAL;
break;
}
break; /* done */
}
} while (!error);
/* first round of cleanup code */
if (error) {
DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
/* recycle udf_node */
udf_dispose_node(udf_node);
vlockmgr(nvp->v_vnlock, LK_RELEASE);
nvp->v_data = NULL;
ungetnewvnode(nvp);
return EINVAL; /* error code ok? */
}
DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
/* assert no references to dscr anymore beyong this point */
assert((udf_node->fe) || (udf_node->efe));
dscr = NULL;
/*
* Remember where to record an updated version of the descriptor. If
* there is a sequence of indirect entries, icb_loc will have been
* updated. Its the write disipline to allocate new space and to make
* sure the chain is maintained.
*
* `needs_indirect' flags if the next location is to be filled with
* with an indirect entry.
*/
udf_node->write_loc = icb_loc;
udf_node->needs_indirect = needs_indirect;
/*
* Go trough all allocations extents of this descriptor and when
* encountering a redirect read in the allocation extension. These are
* daisy-chained.
*/
UDF_LOCK_NODE(udf_node, 0);
udf_node->num_extensions = 0;
error = 0;
slot = 0;
for (;;) {
udf_get_adslot(udf_node, slot, &icb_loc, &eof);
DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
"lb_num = %d, part = %d\n", slot, eof,
UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
UDF_EXT_LEN(udf_rw32(icb_loc.len)),
udf_rw32(icb_loc.loc.lb_num),
udf_rw16(icb_loc.loc.part_num)));
if (eof)
break;
slot++;
if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
continue;
DPRINTF(NODE, ("\tgot redirect extent\n"));
if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
"too many allocation extensions on "
"udf_node\n"));
error = EINVAL;
break;
}
/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
DPRINTF(ALLOC, ("udf_get_node: bad allocation "
"extension size in udf_node\n"));
error = EINVAL;
break;
}
DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
/* load in allocation extent */
error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
if (error || (dscr == NULL))
break;
/* process read-in descriptor */
dscr_type = udf_rw16(dscr->tag.id);
if (dscr_type != TAGID_ALLOCEXTENT) {
udf_free_logvol_dscr(ump, &icb_loc, dscr);
error = ENOENT;
break;
}
DPRINTF(NODE, ("\trecording redirect extent\n"));
udf_node->ext[udf_node->num_extensions] = &dscr->aee;
udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
udf_node->num_extensions++;
} /* while */
UDF_UNLOCK_NODE(udf_node, 0);
/* second round of cleanup code */
if (error) {
/* recycle udf_node */
udf_dispose_node(udf_node);
vlockmgr(nvp->v_vnlock, LK_RELEASE);
nvp->v_data = NULL;
ungetnewvnode(nvp);
return EINVAL; /* error code ok? */
}
DPRINTF(NODE, ("\tnode read in fine\n"));
/*
* Translate UDF filetypes into vnode types.
*
* Systemfiles like the meta main and mirror files are not treated as
* normal files, so we type them as having no type. UDF dictates that
* they are not allowed to be visible.
*/
switch (udf_file_type) {
case UDF_ICB_FILETYPE_DIRECTORY :
case UDF_ICB_FILETYPE_STREAMDIR :
nvp->v_type = VDIR;
break;
case UDF_ICB_FILETYPE_BLOCKDEVICE :
nvp->v_type = VBLK;
break;
case UDF_ICB_FILETYPE_CHARDEVICE :
nvp->v_type = VCHR;
break;
case UDF_ICB_FILETYPE_SOCKET :
nvp->v_type = VSOCK;
break;
case UDF_ICB_FILETYPE_FIFO :
nvp->v_type = VFIFO;
break;
case UDF_ICB_FILETYPE_SYMLINK :
nvp->v_type = VLNK;
break;
case UDF_ICB_FILETYPE_VAT :
case UDF_ICB_FILETYPE_META_MAIN :
case UDF_ICB_FILETYPE_META_MIRROR :
nvp->v_type = VNON;
break;
case UDF_ICB_FILETYPE_RANDOMACCESS :
case UDF_ICB_FILETYPE_REALTIME :
nvp->v_type = VREG;
break;
default:
/* YIKES, something else */
nvp->v_type = VNON;
}
/* TODO specfs, fifofs etc etc. vnops setting */
/* don't forget to set vnode's v_size */
uvm_vnp_setsize(nvp, file_size);
/* TODO ext attr and streamdir udf_nodes */
*udf_noderes = udf_node;
return 0;
}
/* --------------------------------------------------------------------- */
int
udf_writeout_node(struct udf_node *udf_node, int waitfor)
{
union dscrptr *dscr;
struct long_ad *loc;
int extnr, flags, error;
DPRINTF(NODE, ("udf_writeout_node called\n"));
KASSERT(udf_node->outstanding_bufs == 0);
KASSERT(udf_node->outstanding_nodedscr == 0);
KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
if (udf_node->i_flags & IN_DELETED) {
DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
return 0;
}
/* lock node */
flags = waitfor ? 0 : IN_CALLBACK_ULK;
UDF_LOCK_NODE(udf_node, flags);
/* at least one descriptor writeout */
udf_node->outstanding_nodedscr = 1;
/* we're going to write out the descriptor so clear the flags */
udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
/* if we were rebuild, write out the allocation extents */
if (udf_node->i_flags & IN_NODE_REBUILD) {
/* mark outstanding node dscriptors and issue them */
udf_node->outstanding_nodedscr += udf_node->num_extensions;
for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
loc = &udf_node->ext_loc[extnr];
dscr = (union dscrptr *) udf_node->ext[extnr];
error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
if (error)
return error;
}
/* mark allocation extents written out */
udf_node->i_flags &= ~(IN_NODE_REBUILD);
}
if (udf_node->fe) {
dscr = (union dscrptr *) udf_node->fe;
} else {
KASSERT(udf_node->efe);
dscr = (union dscrptr *) udf_node->efe;
}
KASSERT(dscr);
loc = &udf_node->write_loc;
error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
return error;
}
/* --------------------------------------------------------------------- */
int
udf_dispose_node(struct udf_node *udf_node)
{
struct vnode *vp;
int extnr;
DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
if (!udf_node) {
DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
return 0;
}
vp = udf_node->vnode;
#ifdef DIAGNOSTIC
if (vp->v_numoutput)
panic("disposing UDF node with pending I/O's, udf_node = %p, "
"v_numoutput = %d", udf_node, vp->v_numoutput);
#endif
/* wait until out of sync (just in case we happen to stumble over one */
KASSERT(!mutex_owned(&mntvnode_lock));
mutex_enter(&mntvnode_lock);
while (udf_node->i_flags & IN_SYNCED) {
cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
hz/16);
}
mutex_exit(&mntvnode_lock);
/* TODO extended attributes and streamdir */
/* remove dirhash if present */
udf_dirhash_destroy(&udf_node->dir_hash);
/* remove from our hash lookup table */
udf_deregister_node(udf_node);
/* destroy our lock */
mutex_destroy(&udf_node->node_mutex);
cv_destroy(&udf_node->node_lock);
/* dissociate our udf_node from the vnode */
genfs_node_destroy(udf_node->vnode);
vp->v_data = NULL;
/* free associated memory and the node itself */
for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
udf_node->ext[extnr]);
udf_node->ext[extnr] = (void *) 0xdeadcccc;
}
if (udf_node->fe)
udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
udf_node->fe);
if (udf_node->efe)
udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
udf_node->efe);
udf_node->fe = (void *) 0xdeadaaaa;
udf_node->efe = (void *) 0xdeadbbbb;
udf_node->ump = (void *) 0xdeadbeef;
pool_put(&udf_node_pool, udf_node);
return 0;
}
/*
* create a new node using the specified vnodeops, vap and cnp but with the
* udf_file_type. This allows special files to be created. Use with care.
*/
static int
udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
{
union dscrptr *dscr;
struct udf_node *dir_node = VTOI(dvp);;
struct udf_node *udf_node;
struct udf_mount *ump = dir_node->ump;
struct vnode *nvp;
struct long_ad node_icb_loc;
uint64_t parent_unique_id;
uint64_t lmapping;
uint32_t lb_size, lb_num;
uint16_t vpart_num;
uid_t uid;
gid_t gid, parent_gid;
int fid_size, error;
lb_size = udf_rw32(ump->logical_vol->lb_size);
*vpp = NULL;
/* allocate vnode */
error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
if (error)
return error;
/* lock node */
error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
if (error) {
nvp->v_data = NULL;
ungetnewvnode(nvp);
return error;
}
/* get disc allocation for one logical block */
error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
&vpart_num, &lmapping);
lb_num = lmapping;
if (error) {
vlockmgr(nvp->v_vnlock, LK_RELEASE);
ungetnewvnode(nvp);
return error;
}
/* initialise pointer to location */
memset(&node_icb_loc, 0, sizeof(struct long_ad));
node_icb_loc.len = lb_size;
node_icb_loc.loc.lb_num = udf_rw32(lb_num);
node_icb_loc.loc.part_num = udf_rw16(vpart_num);
/* build udf_node (do initialise!) */
udf_node = pool_get(&udf_node_pool, PR_WAITOK);
memset(udf_node, 0, sizeof(struct udf_node));
/* initialise crosslinks, note location of fe/efe for hashing */
/* bugalert: synchronise with udf_get_node() */
udf_node->ump = ump;
udf_node->vnode = nvp;
nvp->v_data = udf_node;
udf_node->loc = node_icb_loc;
udf_node->write_loc = node_icb_loc;
udf_node->lockf = 0;
mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
cv_init(&udf_node->node_lock, "udf_nlk");
udf_node->outstanding_bufs = 0;
udf_node->outstanding_nodedscr = 0;
/* initialise genfs */
genfs_node_init(nvp, &udf_genfsops);
/* insert into the hash lookup */
udf_register_node(udf_node);
/* get parent's unique ID for refering '..' if its a directory */
if (dir_node->fe) {
parent_unique_id = udf_rw64(dir_node->fe->unique_id);
parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
} else {
parent_unique_id = udf_rw64(dir_node->efe->unique_id);
parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
}
/* get descriptor */
udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
/* choose a fe or an efe for it */
if (ump->logical_vol->tag.descriptor_ver == 2) {
udf_node->fe = &dscr->fe;
fid_size = udf_create_new_fe(ump, udf_node->fe,
udf_file_type, &udf_node->loc,
&dir_node->loc, parent_unique_id);
/* TODO add extended attribute for creation time */
} else {
udf_node->efe = &dscr->efe;
fid_size = udf_create_new_efe(ump, udf_node->efe,
udf_file_type, &udf_node->loc,
&dir_node->loc, parent_unique_id);
}
KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
/* update vnode's size and type */
nvp->v_type = vap->va_type;
uvm_vnp_setsize(nvp, fid_size);
/* set access mode */
udf_setaccessmode(udf_node, vap->va_mode);
/* set ownership */
uid = kauth_cred_geteuid(cnp->cn_cred);
gid = parent_gid;
udf_setownership(udf_node, uid, gid);
error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
if (error) {
/* free disc allocation for node */
udf_free_allocated_space(ump, lb_num, vpart_num, 1);
/* recycle udf_node */
udf_dispose_node(udf_node);
vput(nvp);
*vpp = NULL;
return error;
}
/* adjust file count */
udf_adjust_filecount(udf_node, 1);
/* return result */
*vpp = nvp;
return 0;
}
int
udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
struct componentname *cnp)
{
int (**vnodeops)(void *);
int udf_file_type;
DPRINTF(NODE, ("udf_create_node called\n"));
/* what type are we creating ? */
vnodeops = udf_vnodeop_p;
/* start with a default */
udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
*vpp = NULL;
switch (vap->va_type) {
case VREG :
udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
break;
case VDIR :
udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
break;
case VLNK :
udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
break;
case VBLK :
udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
/* specfs */
return ENOTSUP;
break;
case VCHR :
udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
/* specfs */
return ENOTSUP;
break;
case VFIFO :
udf_file_type = UDF_ICB_FILETYPE_FIFO;
/* specfs */
return ENOTSUP;
break;
case VSOCK :
udf_file_type = UDF_ICB_FILETYPE_SOCKET;
/* specfs */
return ENOTSUP;
break;
case VNON :
case VBAD :
default :
/* nothing; can we even create these? */
return EINVAL;
}
return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
}
/* --------------------------------------------------------------------- */
static void
udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
{
struct udf_mount *ump = udf_node->ump;
uint32_t lb_size, lb_num, len, num_lb;
uint16_t vpart_num;
/* is there really one? */
if (mem == NULL)
return;
/* got a descriptor here */
len = UDF_EXT_LEN(udf_rw32(loc->len));
lb_num = udf_rw32(loc->loc.lb_num);
vpart_num = udf_rw16(loc->loc.part_num);
lb_size = udf_rw32(ump->logical_vol->lb_size);
num_lb = (len + lb_size -1) / lb_size;
udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
}
void
udf_delete_node(struct udf_node *udf_node)
{
void *dscr;
struct udf_mount *ump;
struct long_ad *loc;
int extnr, lvint, dummy;
ump = udf_node->ump;
/* paranoia check on integrity; should be open!; we could panic */
lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
if (lvint == UDF_INTEGRITY_CLOSED)
printf("\tIntegrity was CLOSED!\n");
/* whatever the node type, change its size to zero */
(void) udf_resize_node(udf_node, 0, &dummy);
/* force it to be `clean'; no use writing it out */
udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
IN_CHANGE | IN_UPDATE | IN_MODIFY);
/* adjust file count */
udf_adjust_filecount(udf_node, -1);
/*
* Free its allocated descriptors; memory will be released when
* vop_reclaim() is called.
*/
loc = &udf_node->loc;
dscr = udf_node->fe;
udf_free_descriptor_space(udf_node, loc, dscr);
dscr = udf_node->efe;
udf_free_descriptor_space(udf_node, loc, dscr);
for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
dscr = udf_node->ext[extnr];
loc = &udf_node->ext_loc[extnr];
udf_free_descriptor_space(udf_node, loc, dscr);
}
}
/* --------------------------------------------------------------------- */
/* set new filesize; node but be LOCKED on entry and is locked on exit */
int
udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
{
struct file_entry *fe = udf_node->fe;
struct extfile_entry *efe = udf_node->efe;
uint64_t file_size;
int error;
if (fe) {
file_size = udf_rw64(fe->inf_len);
} else {
assert(udf_node->efe);
file_size = udf_rw64(efe->inf_len);
}
DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
file_size, new_size));
/* if not changing, we're done */
if (file_size == new_size)
return 0;
*extended = (new_size > file_size);
if (*extended) {
error = udf_grow_node(udf_node, new_size);
} else {
error = udf_shrink_node(udf_node, new_size);
}
return error;
}
/* --------------------------------------------------------------------- */
void
udf_itimes(struct udf_node *udf_node, struct timespec *acc,
struct timespec *mod, struct timespec *birth)
{
struct timespec now;
struct file_entry *fe;
struct extfile_entry *efe;
struct filetimes_extattr_entry *ft_extattr;
struct timestamp *atime, *mtime, *attrtime, *ctime;
struct timestamp fe_ctime;
struct timespec cur_birth;
uint32_t offset, a_l;
uint8_t *filedata;
int error;
/* protect against rogue values */
if (!udf_node)
return;
fe = udf_node->fe;
efe = udf_node->efe;
if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
return;
/* get descriptor information */
if (fe) {
atime = &fe->atime;
mtime = &fe->mtime;
attrtime = &fe->attrtime;
filedata = fe->data;
/* initial save dummy setting */
ctime = &fe_ctime;
/* check our extended attribute if present */
error = udf_extattr_search_intern(udf_node,
UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
if (!error) {
ft_extattr = (struct filetimes_extattr_entry *)
(filedata + offset);
if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
ctime = &ft_extattr->times[0];
}
/* TODO create the extended attribute if not found ? */
} else {
assert(udf_node->efe);
atime = &efe->atime;
mtime = &efe->mtime;
attrtime = &efe->attrtime;
ctime = &efe->ctime;
}
vfs_timestamp(&now);
/* set access time */
if (udf_node->i_flags & IN_ACCESS) {
if (acc == NULL)
acc = &now;
udf_timespec_to_timestamp(acc, atime);
}
/* set modification time */
if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
if (mod == NULL)
mod = &now;
udf_timespec_to_timestamp(mod, mtime);
/* ensure birthtime is older than set modification! */
udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
if ((cur_birth.tv_sec > mod->tv_sec) ||
((cur_birth.tv_sec == mod->tv_sec) &&
(cur_birth.tv_nsec > mod->tv_nsec))) {
udf_timespec_to_timestamp(mod, ctime);
}
}
/* update birthtime if specified */
/* XXX we asume here that given birthtime is older than mod */
if (birth && (birth->tv_sec != VNOVAL)) {
udf_timespec_to_timestamp(birth, ctime);
}
/* set change time */
if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
udf_timespec_to_timestamp(&now, attrtime);
/* notify updates to the node itself */
if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
udf_node->i_flags |= IN_ACCESSED;
if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
udf_node->i_flags |= IN_MODIFIED;
/* clear modification flags */
udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
}
/* --------------------------------------------------------------------- */
int
udf_update(struct vnode *vp, struct timespec *acc,
struct timespec *mod, struct timespec *birth, int updflags)
{
struct udf_node *udf_node = VTOI(vp);
struct udf_mount *ump = udf_node->ump;
struct regid *impl_id;
int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
int waitfor, flags;
#ifdef DEBUG
char bits[128];
DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
updflags));
bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
DPRINTF(CALL, ("\tnode flags %s\n", bits));
DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
#endif
/* set our times */
udf_itimes(udf_node, acc, mod, birth);
/* set our implementation id */
if (udf_node->fe) {
impl_id = &udf_node->fe->imp_id;
} else {
impl_id = &udf_node->efe->imp_id;
}
udf_set_regid(impl_id, IMPL_NAME);
udf_add_impl_regid(ump, impl_id);
/* if called when mounted readonly, never write back */
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return 0;
/* check if the node is dirty 'enough'*/
if (updflags & UPDATE_CLOSE) {
flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
} else {
flags = udf_node->i_flags & IN_MODIFIED;
}
if (flags == 0)
return 0;
/* determine if we need to write sync or async */
waitfor = 0;
if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
/* sync mounted */
waitfor = updflags & UPDATE_WAIT;
if (updflags & UPDATE_DIROP)
waitfor |= UPDATE_WAIT;
}
if (waitfor)
return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
return 0;
}
/* --------------------------------------------------------------------- */
/*
* Read one fid and process it into a dirent and advance to the next (*fid)
* has to be allocated a logical block in size, (*dirent) struct dirent length
*/
int
udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
struct fileid_desc *fid, struct dirent *dirent)
{
struct udf_node *dir_node = VTOI(vp);
struct udf_mount *ump = dir_node->ump;
struct file_entry *fe = dir_node->fe;
struct extfile_entry *efe = dir_node->efe;
uint32_t fid_size, lb_size;
uint64_t file_size;
char *fid_name;
int enough, error;
assert(fid);
assert(dirent);
assert(dir_node);
assert(offset);
assert(*offset != 1);
DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
/* check if we're past the end of the directory */
if (fe) {
file_size = udf_rw64(fe->inf_len);
} else {
assert(dir_node->efe);
file_size = udf_rw64(efe->inf_len);
}
if (*offset >= file_size)
return EINVAL;
/* get maximum length of FID descriptor */
lb_size = udf_rw32(ump->logical_vol->lb_size);
/* initialise return values */
fid_size = 0;
memset(dirent, 0, sizeof(struct dirent));
memset(fid, 0, lb_size);
enough = (file_size - (*offset) >= UDF_FID_SIZE);
if (!enough) {
/* short dir ... */
return EIO;
}
error = vn_rdwr(UIO_READ, vp,
fid, MIN(file_size - (*offset), lb_size), *offset,
UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
NULL, NULL);
if (error)
return error;
DPRINTF(FIDS, ("\tfid piece read in fine\n"));
/*
* Check if we got a whole descriptor.
* TODO Try to `resync' directory stream when something is very wrong.
*/
/* check if our FID header is OK */
error = udf_check_tag(fid);
if (error) {
goto brokendir;
}
DPRINTF(FIDS, ("\ttag check ok\n"));
if (udf_rw16(fid->tag.id) != TAGID_FID) {
error = EIO;
goto brokendir;
}
DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
/* check for length */
fid_size = udf_fidsize(fid);
enough = (file_size - (*offset) >= fid_size);
if (!enough) {
error = EIO;
goto brokendir;
}
DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
/* check FID contents */
error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
brokendir:
if (error) {
/* note that is sometimes a bit quick to report */
printf("BROKEN DIRECTORY ENTRY\n");
/* RESYNC? */
/* TODO: use udf_resync_fid_stream */
return EIO;
}
DPRINTF(FIDS, ("\tpayload checked ok\n"));
/* we got a whole and valid descriptor! */
DPRINTF(FIDS, ("\tinterpret FID\n"));
/* create resulting dirent structure */
fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
udf_to_unix_name(dirent->d_name, MAXNAMLEN,
fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
/* '..' has no name, so provide one */
if (fid->file_char & UDF_FILE_CHAR_PAR)
strcpy(dirent->d_name, "..");
dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
dirent->d_namlen = strlen(dirent->d_name);
dirent->d_reclen = _DIRENT_SIZE(dirent);
/*
* Note that its not worth trying to go for the filetypes now... its
* too expensive too
*/
dirent->d_type = DT_UNKNOWN;
/* initial guess for filetype we can make */
if (fid->file_char & UDF_FILE_CHAR_DIR)
dirent->d_type = DT_DIR;
/* advance */
*offset += fid_size;
return error;
}
/* --------------------------------------------------------------------- */
static void
udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
int pass, int *ndirty)
{
struct udf_node *udf_node, *n_udf_node;
struct vnode *vp;
int vdirty, error;
int on_type, on_flags, on_vnode;
derailed:
KASSERT(mutex_owned(&mntvnode_lock));
DPRINTF(SYNC, ("sync_pass %d\n", pass));
udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
for (;udf_node; udf_node = n_udf_node) {
DPRINTF(SYNC, ("."));
udf_node->i_flags &= ~IN_SYNCED;
vp = udf_node->vnode;
mutex_enter(&vp->v_interlock);
n_udf_node = LIST_NEXT(udf_node, sortchain);
if (n_udf_node)
n_udf_node->i_flags |= IN_SYNCED;
/* system nodes are not synced this way */
if (vp->v_vflag & VV_SYSTEM) {
mutex_exit(&vp->v_interlock);
continue;
}
/* check if its dirty enough to even try */
on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
on_flags = ((udf_node->i_flags &
(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
if (on_type || (on_flags || on_vnode)) { /* XXX */
/* not dirty (enough?) */
mutex_exit(&vp->v_interlock);
continue;
}
mutex_exit(&mntvnode_lock);
error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
if (error) {
mutex_enter(&mntvnode_lock);
if (error == ENOENT)
goto derailed;
*ndirty += 1;
continue;
}
switch (pass) {
case 1:
VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
break;
case 2:
vdirty = vp->v_numoutput;
if (vp->v_tag == VT_UDF)
vdirty += udf_node->outstanding_bufs +
udf_node->outstanding_nodedscr;
if (vdirty == 0)
VOP_FSYNC(vp, cred, 0,0,0);
*ndirty += vdirty;
break;
case 3:
vdirty = vp->v_numoutput;
if (vp->v_tag == VT_UDF)
vdirty += udf_node->outstanding_bufs +
udf_node->outstanding_nodedscr;
*ndirty += vdirty;
break;
}
vput(vp);
mutex_enter(&mntvnode_lock);
}
DPRINTF(SYNC, ("END sync_pass %d\n", pass));
}
void
udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
{
int dummy, ndirty;
mutex_enter(&mntvnode_lock);
recount:
dummy = 0;
DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
udf_sync_pass(ump, cred, waitfor, 1, &dummy);
DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
udf_sync_pass(ump, cred, waitfor, 2, &dummy);
if (waitfor == MNT_WAIT) {
ndirty = ump->devvp->v_numoutput;
DPRINTF(NODE, ("counting pending blocks: on devvp %d\n",
ndirty));
udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
DPRINTF(NODE, ("counted num dirty pending blocks %d\n",
ndirty));
if (ndirty) {
/* 1/4 second wait */
cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
hz/4);
goto recount;
}
}
mutex_exit(&mntvnode_lock);
}
/* --------------------------------------------------------------------- */
/*
* Read and write file extent in/from the buffer.
*
* The splitup of the extent into seperate request-buffers is to minimise
* copying around as much as possible.
*
* block based file reading and writing
*/
static int
udf_read_internal(struct udf_node *node, uint8_t *blob)
{
struct udf_mount *ump;
struct file_entry *fe = node->fe;
struct extfile_entry *efe = node->efe;
uint64_t inflen;
uint32_t sector_size;
uint8_t *pos;
int icbflags, addr_type;
/* get extent and do some paranoia checks */
ump = node->ump;
sector_size = ump->discinfo.sector_size;
if (fe) {
inflen = udf_rw64(fe->inf_len);
pos = &fe->data[0] + udf_rw32(fe->l_ea);
icbflags = udf_rw16(fe->icbtag.flags);
} else {
assert(node->efe);
inflen = udf_rw64(efe->inf_len);
pos = &efe->data[0] + udf_rw32(efe->l_ea);
icbflags = udf_rw16(efe->icbtag.flags);
}
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
assert(addr_type == UDF_ICB_INTERN_ALLOC);
assert(inflen < sector_size);
/* copy out info */
memset(blob, 0, sector_size);
memcpy(blob, pos, inflen);
return 0;
}
static int
udf_write_internal(struct udf_node *node, uint8_t *blob)
{
struct udf_mount *ump;
struct file_entry *fe = node->fe;
struct extfile_entry *efe = node->efe;
uint64_t inflen;
uint32_t sector_size;
uint8_t *pos;
int icbflags, addr_type;
/* get extent and do some paranoia checks */
ump = node->ump;
sector_size = ump->discinfo.sector_size;
if (fe) {
inflen = udf_rw64(fe->inf_len);
pos = &fe->data[0] + udf_rw32(fe->l_ea);
icbflags = udf_rw16(fe->icbtag.flags);
} else {
assert(node->efe);
inflen = udf_rw64(efe->inf_len);
pos = &efe->data[0] + udf_rw32(efe->l_ea);
icbflags = udf_rw16(efe->icbtag.flags);
}
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
assert(addr_type == UDF_ICB_INTERN_ALLOC);
assert(inflen < sector_size);
/* copy in blob */
/* memset(pos, 0, inflen); */
memcpy(pos, blob, inflen);
return 0;
}
void
udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
{
struct buf *nestbuf;
struct udf_mount *ump = udf_node->ump;
uint64_t *mapping;
uint64_t run_start;
uint32_t sector_size;
uint32_t buf_offset, sector, rbuflen, rblk;
uint32_t from, lblkno;
uint32_t sectors;
uint8_t *buf_pos;
int error, run_length, isdir, what;
sector_size = udf_node->ump->discinfo.sector_size;
from = buf->b_blkno;
sectors = buf->b_bcount / sector_size;
isdir = (udf_node->vnode->v_type == VDIR);
what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
/* assure we have enough translation slots */
KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
if (sectors > UDF_MAX_MAPPINGS) {
printf("udf_read_filebuf: implementation limit on bufsize\n");
buf->b_error = EIO;
biodone(buf);
return;
}
mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
error = 0;
DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
error = udf_translate_file_extent(udf_node, from, sectors, mapping);
if (error) {
buf->b_error = error;
biodone(buf);
goto out;
}
DPRINTF(READ, ("\ttranslate extent went OK\n"));
/* pre-check if its an internal */
if (*mapping == UDF_TRANS_INTERN) {
error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
if (error)
buf->b_error = error;
biodone(buf);
goto out;
}
DPRINTF(READ, ("\tnot intern\n"));
#ifdef DEBUG
if (udf_verbose & UDF_DEBUG_TRANSLATE) {
printf("Returned translation table:\n");
for (sector = 0; sector < sectors; sector++) {
printf("%d : %"PRIu64"\n", sector, mapping[sector]);
}
}
#endif
/* request read-in of data from disc sheduler */
buf->b_resid = buf->b_bcount;
for (sector = 0; sector < sectors; sector++) {
buf_offset = sector * sector_size;
buf_pos = (uint8_t *) buf->b_data + buf_offset;
DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
/* check if its zero or unmapped to stop reading */
switch (mapping[sector]) {
case UDF_TRANS_UNMAPPED:
case UDF_TRANS_ZERO:
/* copy zero sector TODO runlength like below */
memset(buf_pos, 0, sector_size);
DPRINTF(READ, ("\treturning zero sector\n"));
nestiobuf_done(buf, sector_size, 0);
break;
default :
DPRINTF(READ, ("\tread sector "
"%"PRIu64"\n", mapping[sector]));
lblkno = from + sector;
run_start = mapping[sector];
run_length = 1;
while (sector < sectors-1) {
if (mapping[sector+1] != mapping[sector]+1)
break;
run_length++;
sector++;
}
/*
* nest an iobuf and mark it for async reading. Since
* we're using nested buffers, they can't be cached by
* design.
*/
rbuflen = run_length * sector_size;
rblk = run_start * (sector_size/DEV_BSIZE);
nestbuf = getiobuf(NULL, true);
nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
/* nestbuf is B_ASYNC */
/* identify this nestbuf */
nestbuf->b_lblkno = lblkno;
assert(nestbuf->b_vp == udf_node->vnode);
/* CD shedules on raw blkno */
nestbuf->b_blkno = rblk;
nestbuf->b_proc = NULL;
nestbuf->b_rawblkno = rblk;
nestbuf->b_udf_c_type = what;
udf_discstrat_queuebuf(ump, nestbuf);
}
}
out:
/* if we're synchronously reading, wait for the completion */
if ((buf->b_flags & B_ASYNC) == 0)
biowait(buf);
DPRINTF(READ, ("\tend of read_filebuf\n"));
free(mapping, M_TEMP);
return;
}
void
udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
{
struct buf *nestbuf;
struct udf_mount *ump = udf_node->ump;
uint64_t *mapping;
uint64_t run_start;
uint32_t lb_size;
uint32_t buf_offset, lb_num, rbuflen, rblk;
uint32_t from, lblkno;
uint32_t num_lb;
uint8_t *buf_pos;
int error, run_length, isdir, what, s;
lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
from = buf->b_blkno;
num_lb = buf->b_bcount / lb_size;
isdir = (udf_node->vnode->v_type == VDIR);
what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
if (udf_node == ump->metadatabitmap_node)
what = UDF_C_METADATA_SBM;
/* assure we have enough translation slots */
KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
if (num_lb > UDF_MAX_MAPPINGS) {
printf("udf_write_filebuf: implementation limit on bufsize\n");
buf->b_error = EIO;
biodone(buf);
return;
}
mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
error = 0;
DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
if (error) {
buf->b_error = error;
biodone(buf);
goto out;
}
DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
/* if its internally mapped, we can write it in the descriptor itself */
if (*mapping == UDF_TRANS_INTERN) {
/* TODO paranoia check if we ARE going to have enough space */
error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
if (error)
buf->b_error = error;
biodone(buf);
goto out;
}
DPRINTF(WRITE, ("\tnot intern\n"));
/* request write out of data to disc sheduler */
buf->b_resid = buf->b_bcount;
for (lb_num = 0; lb_num < num_lb; lb_num++) {
buf_offset = lb_num * lb_size;
buf_pos = (uint8_t *) buf->b_data + buf_offset;
DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
/*
* Mappings are not that important here. Just before we write
* the lb_num we late-allocate them when needed and update the
* mapping in the udf_node.
*/
/* XXX why not ignore the mapping altogether ? */
/* TODO estimate here how much will be late-allocated */
DPRINTF(WRITE, ("\twrite lb_num "
"%"PRIu64, mapping[lb_num]));
lblkno = from + lb_num;
run_start = mapping[lb_num];
run_length = 1;
while (lb_num < num_lb-1) {
if (mapping[lb_num+1] != mapping[lb_num]+1)
if (mapping[lb_num+1] != mapping[lb_num])
break;
run_length++;
lb_num++;
}
DPRINTF(WRITE, ("+ %d\n", run_length));
/* nest an iobuf on the master buffer for the extent */
rbuflen = run_length * lb_size;
rblk = run_start * (lb_size/DEV_BSIZE);
#if 0
/* if its zero or unmapped, our blknr gets -1 for unmapped */
switch (mapping[lb_num]) {
case UDF_TRANS_UNMAPPED:
case UDF_TRANS_ZERO:
rblk = -1;
break;
default:
rblk = run_start * (lb_size/DEV_BSIZE);
break;
}
#endif
nestbuf = getiobuf(NULL, true);
nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
/* nestbuf is B_ASYNC */
/* identify this nestbuf */
nestbuf->b_lblkno = lblkno;
KASSERT(nestbuf->b_vp == udf_node->vnode);
/* CD shedules on raw blkno */
nestbuf->b_blkno = rblk;
nestbuf->b_proc = NULL;
nestbuf->b_rawblkno = rblk;
nestbuf->b_udf_c_type = what;
/* increment our outstanding bufs counter */
s = splbio();
udf_node->outstanding_bufs++;
splx(s);
udf_discstrat_queuebuf(ump, nestbuf);
}
out:
/* if we're synchronously writing, wait for the completion */
if ((buf->b_flags & B_ASYNC) == 0)
biowait(buf);
DPRINTF(WRITE, ("\tend of write_filebuf\n"));
free(mapping, M_TEMP);
return;
}
/* --------------------------------------------------------------------- */