4312beab4f
Early ELF binaries defined dlopen and friends in crt0.o by using function pointers in the object handle passed from rtld. This contract wastes space when many shared objects are allocated and ties dynamic linker and rest of the system tightly together. Fake the entry points in a static object and restrict them to the platforms that had working ELF support at the time. Keep the magic and version field used by modern crt0.o for all architectures. The checks will be removed from crt0.o in a follow-up step. |
||
---|---|---|
.. | ||
arch | ||
compat.c | ||
debug.c | ||
debug.h | ||
diagassert.c | ||
expand.c | ||
headers.c | ||
ld.elf_so.1 | ||
load.c | ||
Makefile | ||
map_object.c | ||
paths.c | ||
README.TLS | ||
reloc.c | ||
rtld.c | ||
rtld.h | ||
rtldenv.h | ||
search.c | ||
symbol.c | ||
symbols.map | ||
symver.c | ||
sysident.h | ||
tls.c | ||
TODO | ||
xmalloc.c | ||
xprintf.c |
Steps for adding TLS support for a new platform: (1) Declare TLS variant in machine/types.h by defining either __HAVE_TLS_VARIANT_I or __HAVE_TLS_VARIANT_II. (2) _lwp_makecontext has to set the reserved register or kernel transfer variable in uc_mcontext to the provided value of 'private'. See src/lib/libc/arch/$PLATFORM/gen/_lwp.c. This is not possible on the VAX as there is no free space in ucontext_t. This requires either a special version of _lwp_create or versioning everything using ucontext_t. Debug support depends on getting the data from ucontext_t, so the second option is possibly required. (3) _lwp_setprivate(2) has to update the same register as _lwp_makecontext uses for the private area pointer. Normally cpu_lwp_setprivate is provided by MD to reflect the kernel view and enabled by defining __HAVE_CPU_LWP_SETPRIVATE in machine/types.h. cpu_setmcontext is responsible for keeping the MI l_private field synchronised by calling lwp_setprivate as needed. cpu_switchto has to update the mapping. _lwp_setprivate is used for the initial thread, all other threads created by libpthread use _lwp_makecontext for this purpose. (4) Provide __tls_get_addr and possible other MD functions for dynamic TLS offset computation. If such alternative entry points exist (currently only i386), also add a weak reference to 0 in src/lib/libc/tls/tls.c. The generic implementation can be found in tls.c and is used with __HAVE_COMMON___TLS_GET_ADDR. It depends on ___lwp_getprivate_fast (see below). (5) Implement the necessary relocation records in mdreloc.c. There are typically three relocation types found in dynamic binaries: (a) R_TYPE(TLS_DTPOFF): Offset inside the module. The common TLS code ensures that the DTV vector points to offset 0 inside the module TLS block. This is normally def->st_value + rela->r_addend. (b) R_TYPE(TLS_DTPMOD): Module index. (c) R_TYPE(TLS_TPOFF): Static TLS offset. The code has to check whether the static TLS offset for this module has been allocated (defobj->tls_done) and otherwise call _rtld_tls_offset_allocate(). This may fail if no static space is available and the object has been pulled in via dlopen(3). For TLS Variant I, this is typically: def->st_value + rela->r_addend + defobj->tlsoffset + sizeof(struct tls_tcb) e.g. the relocation doesn't include the fixed TCB. For TLS Variant II, this is typically: def->st_value - defobj->tlsoffset + rela->r_addend e.g. starting offset is counting down from the TCB. (6) Implement _lwp_getprivate_fast() in machine/mcontext.h and set __HAVE___LWP_GETPRIVATE_FAST in machine/types.h. (7) Test using src/tests/lib/libc/tls. Make sure with "objdump -R" that t_tls_dynamic has two TPOFF relocations and h_tls_dlopen.so.1 and libh_tls_dynamic.so.1 have both two DTPMOD and DTPOFF relocations.