NetBSD/sys/ufs/ffs/ffs_alloc.c
bouyer 063f96f3c2 merge the bouyer-quota2 branch. This adds a new on-disk format
to store disk quota usage and limits, integrated with ffs
metadata. Usage is checked by fsck_ffs (no more quotacheck)
and is covered by the WAPBL journal. Enabled with kernel
option QUOTA2 (added where QUOTA was enabled in kernel config files),
turned on with tunefs(8) on a per-filesystem
basis. mount_mfs(8) can also turn quotas on.

See http://mail-index.netbsd.org/tech-kern/2011/02/19/msg010025.html
for details.
2011-03-06 17:08:10 +00:00

1994 lines
56 KiB
C

/* $NetBSD: ffs_alloc.c,v 1.127 2011/03/06 17:08:38 bouyer Exp $ */
/*-
* Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.127 2011/03/06 17:08:38 bouyer Exp $");
#if defined(_KERNEL_OPT)
#include "opt_ffs.h"
#include "opt_quota.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/fstrans.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/syslog.h>
#include <sys/vnode.h>
#include <sys/wapbl.h>
#include <miscfs/specfs/specdev.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufs_bswap.h>
#include <ufs/ufs/ufs_wapbl.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
static ino_t ffs_dirpref(struct inode *);
static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
static void ffs_fserr(struct fs *, u_int, const char *);
static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
daddr_t (*)(struct inode *, int, daddr_t, int, int));
static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
static int32_t ffs_mapsearch(struct fs *, struct cg *,
daddr_t, int);
static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
daddr_t, long, bool);
static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
int, bool);
/* if 1, changes in optimalization strategy are logged */
int ffs_log_changeopt = 0;
/* in ffs_tables.c */
extern const int inside[], around[];
extern const u_char * const fragtbl[];
/* Basic consistency check for block allocations */
static int
ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
long size, dev_t dev, ino_t inum)
{
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
"size = %ld, fs = %s\n",
(long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
panic("%s: bad size", func);
}
if (bno >= fs->fs_size) {
printf("bad block %" PRId64 ", ino %llu\n", bno,
(unsigned long long)inum);
ffs_fserr(fs, inum, "bad block");
return EINVAL;
}
return 0;
}
/*
* Allocate a block in the file system.
*
* The size of the requested block is given, which must be some
* multiple of fs_fsize and <= fs_bsize.
* A preference may be optionally specified. If a preference is given
* the following hierarchy is used to allocate a block:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate a block in the same cylinder group.
* 4) quadradically rehash into other cylinder groups, until an
* available block is located.
* If no block preference is given the following hierarchy is used
* to allocate a block:
* 1) allocate a block in the cylinder group that contains the
* inode for the file.
* 2) quadradically rehash into other cylinder groups, until an
* available block is located.
*
* => called with um_lock held
* => releases um_lock before returning
*/
int
ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
kauth_cred_t cred, daddr_t *bnp)
{
struct ufsmount *ump;
struct fs *fs;
daddr_t bno;
int cg;
#if defined(QUOTA) || defined(QUOTA2)
int error;
#endif
fs = ip->i_fs;
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
#ifdef UVM_PAGE_TRKOWN
if (ITOV(ip)->v_type == VREG &&
lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
struct vm_page *pg;
struct uvm_object *uobj = &ITOV(ip)->v_uobj;
voff_t off = trunc_page(lblktosize(fs, lbn));
voff_t endoff = round_page(lblktosize(fs, lbn) + size);
mutex_enter(&uobj->vmobjlock);
while (off < endoff) {
pg = uvm_pagelookup(uobj, off);
KASSERT(pg == NULL || pg->owner == curproc->p_pid);
off += PAGE_SIZE;
}
mutex_exit(&uobj->vmobjlock);
}
#endif
*bnp = 0;
#ifdef DIAGNOSTIC
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
(unsigned long long)ip->i_dev, fs->fs_bsize, size,
fs->fs_fsmnt);
panic("ffs_alloc: bad size");
}
if (cred == NOCRED)
panic("ffs_alloc: missing credential");
#endif /* DIAGNOSTIC */
if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
goto nospace;
if (freespace(fs, fs->fs_minfree) <= 0 &&
kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
NULL, NULL) != 0)
goto nospace;
#if defined(QUOTA) || defined(QUOTA2)
mutex_exit(&ump->um_lock);
if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
return (error);
mutex_enter(&ump->um_lock);
#endif
if (bpref >= fs->fs_size)
bpref = 0;
if (bpref == 0)
cg = ino_to_cg(fs, ip->i_number);
else
cg = dtog(fs, bpref);
bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
if (bno > 0) {
DIP_ADD(ip, blocks, btodb(size));
ip->i_flag |= IN_CHANGE | IN_UPDATE;
*bnp = bno;
return (0);
}
#if defined(QUOTA) || defined(QUOTA2)
/*
* Restore user's disk quota because allocation failed.
*/
(void) chkdq(ip, -btodb(size), cred, FORCE);
#endif
if (flags & B_CONTIG) {
/*
* XXX ump->um_lock handling is "suspect" at best.
* For the case where ffs_hashalloc() fails early
* in the B_CONTIG case we reach here with um_lock
* already unlocked, so we can't release it again
* like in the normal error path. See kern/39206.
*
*
* Fail silently - it's up to our caller to report
* errors.
*/
return (ENOSPC);
}
nospace:
mutex_exit(&ump->um_lock);
ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
return (ENOSPC);
}
/*
* Reallocate a fragment to a bigger size
*
* The number and size of the old block is given, and a preference
* and new size is also specified. The allocator attempts to extend
* the original block. Failing that, the regular block allocator is
* invoked to get an appropriate block.
*
* => called with um_lock held
* => return with um_lock released
*/
int
ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
{
struct ufsmount *ump;
struct fs *fs;
struct buf *bp;
int cg, request, error;
daddr_t bprev, bno;
fs = ip->i_fs;
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
#ifdef UVM_PAGE_TRKOWN
if (ITOV(ip)->v_type == VREG) {
struct vm_page *pg;
struct uvm_object *uobj = &ITOV(ip)->v_uobj;
voff_t off = trunc_page(lblktosize(fs, lbprev));
voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
mutex_enter(&uobj->vmobjlock);
while (off < endoff) {
pg = uvm_pagelookup(uobj, off);
KASSERT(pg == NULL || pg->owner == curproc->p_pid);
KASSERT((pg->flags & PG_CLEAN) == 0);
off += PAGE_SIZE;
}
mutex_exit(&uobj->vmobjlock);
}
#endif
#ifdef DIAGNOSTIC
if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
(u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
printf(
"dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
(unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
fs->fs_fsmnt);
panic("ffs_realloccg: bad size");
}
if (cred == NOCRED)
panic("ffs_realloccg: missing credential");
#endif /* DIAGNOSTIC */
if (freespace(fs, fs->fs_minfree) <= 0 &&
kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
NULL, NULL) != 0) {
mutex_exit(&ump->um_lock);
goto nospace;
}
if (fs->fs_magic == FS_UFS2_MAGIC)
bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
else
bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
if (bprev == 0) {
printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
(unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
fs->fs_fsmnt);
panic("ffs_realloccg: bad bprev");
}
mutex_exit(&ump->um_lock);
/*
* Allocate the extra space in the buffer.
*/
if (bpp != NULL &&
(error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
brelse(bp, 0);
return (error);
}
#if defined(QUOTA) || defined(QUOTA2)
if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
if (bpp != NULL) {
brelse(bp, 0);
}
return (error);
}
#endif
/*
* Check for extension in the existing location.
*/
cg = dtog(fs, bprev);
mutex_enter(&ump->um_lock);
if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
DIP_ADD(ip, blocks, btodb(nsize - osize));
ip->i_flag |= IN_CHANGE | IN_UPDATE;
if (bpp != NULL) {
if (bp->b_blkno != fsbtodb(fs, bno))
panic("bad blockno");
allocbuf(bp, nsize, 1);
memset((char *)bp->b_data + osize, 0, nsize - osize);
mutex_enter(bp->b_objlock);
KASSERT(!cv_has_waiters(&bp->b_done));
bp->b_oflags |= BO_DONE;
mutex_exit(bp->b_objlock);
*bpp = bp;
}
if (blknop != NULL) {
*blknop = bno;
}
return (0);
}
/*
* Allocate a new disk location.
*/
if (bpref >= fs->fs_size)
bpref = 0;
switch ((int)fs->fs_optim) {
case FS_OPTSPACE:
/*
* Allocate an exact sized fragment. Although this makes
* best use of space, we will waste time relocating it if
* the file continues to grow. If the fragmentation is
* less than half of the minimum free reserve, we choose
* to begin optimizing for time.
*/
request = nsize;
if (fs->fs_minfree < 5 ||
fs->fs_cstotal.cs_nffree >
fs->fs_dsize * fs->fs_minfree / (2 * 100))
break;
if (ffs_log_changeopt) {
log(LOG_NOTICE,
"%s: optimization changed from SPACE to TIME\n",
fs->fs_fsmnt);
}
fs->fs_optim = FS_OPTTIME;
break;
case FS_OPTTIME:
/*
* At this point we have discovered a file that is trying to
* grow a small fragment to a larger fragment. To save time,
* we allocate a full sized block, then free the unused portion.
* If the file continues to grow, the `ffs_fragextend' call
* above will be able to grow it in place without further
* copying. If aberrant programs cause disk fragmentation to
* grow within 2% of the free reserve, we choose to begin
* optimizing for space.
*/
request = fs->fs_bsize;
if (fs->fs_cstotal.cs_nffree <
fs->fs_dsize * (fs->fs_minfree - 2) / 100)
break;
if (ffs_log_changeopt) {
log(LOG_NOTICE,
"%s: optimization changed from TIME to SPACE\n",
fs->fs_fsmnt);
}
fs->fs_optim = FS_OPTSPACE;
break;
default:
printf("dev = 0x%llx, optim = %d, fs = %s\n",
(unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
panic("ffs_realloccg: bad optim");
/* NOTREACHED */
}
bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
if (bno > 0) {
if ((ip->i_ump->um_mountp->mnt_wapbl) &&
(ITOV(ip)->v_type != VREG)) {
UFS_WAPBL_REGISTER_DEALLOCATION(
ip->i_ump->um_mountp, fsbtodb(fs, bprev),
osize);
} else {
ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
ip->i_number);
}
if (nsize < request) {
if ((ip->i_ump->um_mountp->mnt_wapbl) &&
(ITOV(ip)->v_type != VREG)) {
UFS_WAPBL_REGISTER_DEALLOCATION(
ip->i_ump->um_mountp,
fsbtodb(fs, (bno + numfrags(fs, nsize))),
request - nsize);
} else
ffs_blkfree(fs, ip->i_devvp,
bno + numfrags(fs, nsize),
(long)(request - nsize), ip->i_number);
}
DIP_ADD(ip, blocks, btodb(nsize - osize));
ip->i_flag |= IN_CHANGE | IN_UPDATE;
if (bpp != NULL) {
bp->b_blkno = fsbtodb(fs, bno);
allocbuf(bp, nsize, 1);
memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
mutex_enter(bp->b_objlock);
KASSERT(!cv_has_waiters(&bp->b_done));
bp->b_oflags |= BO_DONE;
mutex_exit(bp->b_objlock);
*bpp = bp;
}
if (blknop != NULL) {
*blknop = bno;
}
return (0);
}
mutex_exit(&ump->um_lock);
#if defined(QUOTA) || defined(QUOTA2)
/*
* Restore user's disk quota because allocation failed.
*/
(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
#endif
if (bpp != NULL) {
brelse(bp, 0);
}
nospace:
/*
* no space available
*/
ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
return (ENOSPC);
}
/*
* Allocate an inode in the file system.
*
* If allocating a directory, use ffs_dirpref to select the inode.
* If allocating in a directory, the following hierarchy is followed:
* 1) allocate the preferred inode.
* 2) allocate an inode in the same cylinder group.
* 3) quadradically rehash into other cylinder groups, until an
* available inode is located.
* If no inode preference is given the following hierarchy is used
* to allocate an inode:
* 1) allocate an inode in cylinder group 0.
* 2) quadradically rehash into other cylinder groups, until an
* available inode is located.
*
* => um_lock not held upon entry or return
*/
int
ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
struct vnode **vpp)
{
struct ufsmount *ump;
struct inode *pip;
struct fs *fs;
struct inode *ip;
struct timespec ts;
ino_t ino, ipref;
int cg, error;
UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
*vpp = NULL;
pip = VTOI(pvp);
fs = pip->i_fs;
ump = pip->i_ump;
error = UFS_WAPBL_BEGIN(pvp->v_mount);
if (error) {
return error;
}
mutex_enter(&ump->um_lock);
if (fs->fs_cstotal.cs_nifree == 0)
goto noinodes;
if ((mode & IFMT) == IFDIR)
ipref = ffs_dirpref(pip);
else
ipref = pip->i_number;
if (ipref >= fs->fs_ncg * fs->fs_ipg)
ipref = 0;
cg = ino_to_cg(fs, ipref);
/*
* Track number of dirs created one after another
* in a same cg without intervening by files.
*/
if ((mode & IFMT) == IFDIR) {
if (fs->fs_contigdirs[cg] < 255)
fs->fs_contigdirs[cg]++;
} else {
if (fs->fs_contigdirs[cg] > 0)
fs->fs_contigdirs[cg]--;
}
ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
if (ino == 0)
goto noinodes;
UFS_WAPBL_END(pvp->v_mount);
error = VFS_VGET(pvp->v_mount, ino, vpp);
if (error) {
int err;
err = UFS_WAPBL_BEGIN(pvp->v_mount);
if (err == 0)
ffs_vfree(pvp, ino, mode);
if (err == 0)
UFS_WAPBL_END(pvp->v_mount);
return (error);
}
KASSERT((*vpp)->v_type == VNON);
ip = VTOI(*vpp);
if (ip->i_mode) {
#if 0
printf("mode = 0%o, inum = %d, fs = %s\n",
ip->i_mode, ip->i_number, fs->fs_fsmnt);
#else
printf("dmode %x mode %x dgen %x gen %x\n",
DIP(ip, mode), ip->i_mode,
DIP(ip, gen), ip->i_gen);
printf("size %llx blocks %llx\n",
(long long)DIP(ip, size), (long long)DIP(ip, blocks));
printf("ino %llu ipref %llu\n", (unsigned long long)ino,
(unsigned long long)ipref);
#if 0
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
(int)fs->fs_bsize, NOCRED, 0, &bp);
#endif
#endif
panic("ffs_valloc: dup alloc");
}
if (DIP(ip, blocks)) { /* XXX */
printf("free inode %s/%llu had %" PRId64 " blocks\n",
fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
DIP_ASSIGN(ip, blocks, 0);
}
ip->i_flag &= ~IN_SPACECOUNTED;
ip->i_flags = 0;
DIP_ASSIGN(ip, flags, 0);
/*
* Set up a new generation number for this inode.
*/
ip->i_gen++;
DIP_ASSIGN(ip, gen, ip->i_gen);
if (fs->fs_magic == FS_UFS2_MAGIC) {
vfs_timestamp(&ts);
ip->i_ffs2_birthtime = ts.tv_sec;
ip->i_ffs2_birthnsec = ts.tv_nsec;
}
return (0);
noinodes:
mutex_exit(&ump->um_lock);
UFS_WAPBL_END(pvp->v_mount);
ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
return (ENOSPC);
}
/*
* Find a cylinder group in which to place a directory.
*
* The policy implemented by this algorithm is to allocate a
* directory inode in the same cylinder group as its parent
* directory, but also to reserve space for its files inodes
* and data. Restrict the number of directories which may be
* allocated one after another in the same cylinder group
* without intervening allocation of files.
*
* If we allocate a first level directory then force allocation
* in another cylinder group.
*/
static ino_t
ffs_dirpref(struct inode *pip)
{
register struct fs *fs;
int cg, prefcg;
int64_t dirsize, cgsize, curdsz;
int avgifree, avgbfree, avgndir;
int minifree, minbfree, maxndir;
int mincg, minndir;
int maxcontigdirs;
KASSERT(mutex_owned(&pip->i_ump->um_lock));
fs = pip->i_fs;
avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
/*
* Force allocation in another cg if creating a first level dir.
*/
if (ITOV(pip)->v_vflag & VV_ROOT) {
prefcg = random() % fs->fs_ncg;
mincg = prefcg;
minndir = fs->fs_ipg;
for (cg = prefcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
mincg = cg;
minndir = fs->fs_cs(fs, cg).cs_ndir;
}
for (cg = 0; cg < prefcg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
mincg = cg;
minndir = fs->fs_cs(fs, cg).cs_ndir;
}
return ((ino_t)(fs->fs_ipg * mincg));
}
/*
* Count various limits which used for
* optimal allocation of a directory inode.
*/
maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
minifree = avgifree - fs->fs_ipg / 4;
if (minifree < 0)
minifree = 0;
minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
if (minbfree < 0)
minbfree = 0;
cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
if (avgndir != 0) {
curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
if (dirsize < curdsz)
dirsize = curdsz;
}
if (cgsize < dirsize * 255)
maxcontigdirs = cgsize / dirsize;
else
maxcontigdirs = 255;
if (fs->fs_avgfpdir > 0)
maxcontigdirs = min(maxcontigdirs,
fs->fs_ipg / fs->fs_avgfpdir);
if (maxcontigdirs == 0)
maxcontigdirs = 1;
/*
* Limit number of dirs in one cg and reserve space for
* regular files, but only if we have no deficit in
* inodes or space.
*/
prefcg = ino_to_cg(fs, pip->i_number);
for (cg = prefcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
fs->fs_cs(fs, cg).cs_nifree >= minifree &&
fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
if (fs->fs_contigdirs[cg] < maxcontigdirs)
return ((ino_t)(fs->fs_ipg * cg));
}
for (cg = 0; cg < prefcg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
fs->fs_cs(fs, cg).cs_nifree >= minifree &&
fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
if (fs->fs_contigdirs[cg] < maxcontigdirs)
return ((ino_t)(fs->fs_ipg * cg));
}
/*
* This is a backstop when we are deficient in space.
*/
for (cg = prefcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
return ((ino_t)(fs->fs_ipg * cg));
for (cg = 0; cg < prefcg; cg++)
if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
break;
return ((ino_t)(fs->fs_ipg * cg));
}
/*
* Select the desired position for the next block in a file. The file is
* logically divided into sections. The first section is composed of the
* direct blocks. Each additional section contains fs_maxbpg blocks.
*
* If no blocks have been allocated in the first section, the policy is to
* request a block in the same cylinder group as the inode that describes
* the file. If no blocks have been allocated in any other section, the
* policy is to place the section in a cylinder group with a greater than
* average number of free blocks. An appropriate cylinder group is found
* by using a rotor that sweeps the cylinder groups. When a new group of
* blocks is needed, the sweep begins in the cylinder group following the
* cylinder group from which the previous allocation was made. The sweep
* continues until a cylinder group with greater than the average number
* of free blocks is found. If the allocation is for the first block in an
* indirect block, the information on the previous allocation is unavailable;
* here a best guess is made based upon the logical block number being
* allocated.
*
* If a section is already partially allocated, the policy is to
* contiguously allocate fs_maxcontig blocks. The end of one of these
* contiguous blocks and the beginning of the next is laid out
* contigously if possible.
*
* => um_lock held on entry and exit
*/
daddr_t
ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
int32_t *bap /* XXX ondisk32 */)
{
struct fs *fs;
int cg;
int avgbfree, startcg;
KASSERT(mutex_owned(&ip->i_ump->um_lock));
fs = ip->i_fs;
/*
* If allocating a contiguous file with B_CONTIG, use the hints
* in the inode extentions to return the desired block.
*
* For metadata (indirect blocks) return the address of where
* the first indirect block resides - we'll scan for the next
* available slot if we need to allocate more than one indirect
* block. For data, return the address of the actual block
* relative to the address of the first data block.
*/
if (flags & B_CONTIG) {
KASSERT(ip->i_ffs_first_data_blk != 0);
KASSERT(ip->i_ffs_first_indir_blk != 0);
if (flags & B_METAONLY)
return ip->i_ffs_first_indir_blk;
else
return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
}
if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
if (lbn < NDADDR + NINDIR(fs)) {
cg = ino_to_cg(fs, ip->i_number);
return (cgbase(fs, cg) + fs->fs_frag);
}
/*
* Find a cylinder with greater than average number of
* unused data blocks.
*/
if (indx == 0 || bap[indx - 1] == 0)
startcg =
ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
else
startcg = dtog(fs,
ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
startcg %= fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
for (cg = startcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
return (cgbase(fs, cg) + fs->fs_frag);
}
for (cg = 0; cg < startcg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
return (cgbase(fs, cg) + fs->fs_frag);
}
return (0);
}
/*
* We just always try to lay things out contiguously.
*/
return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
}
daddr_t
ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
int64_t *bap)
{
struct fs *fs;
int cg;
int avgbfree, startcg;
KASSERT(mutex_owned(&ip->i_ump->um_lock));
fs = ip->i_fs;
/*
* If allocating a contiguous file with B_CONTIG, use the hints
* in the inode extentions to return the desired block.
*
* For metadata (indirect blocks) return the address of where
* the first indirect block resides - we'll scan for the next
* available slot if we need to allocate more than one indirect
* block. For data, return the address of the actual block
* relative to the address of the first data block.
*/
if (flags & B_CONTIG) {
KASSERT(ip->i_ffs_first_data_blk != 0);
KASSERT(ip->i_ffs_first_indir_blk != 0);
if (flags & B_METAONLY)
return ip->i_ffs_first_indir_blk;
else
return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
}
if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
if (lbn < NDADDR + NINDIR(fs)) {
cg = ino_to_cg(fs, ip->i_number);
return (cgbase(fs, cg) + fs->fs_frag);
}
/*
* Find a cylinder with greater than average number of
* unused data blocks.
*/
if (indx == 0 || bap[indx - 1] == 0)
startcg =
ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
else
startcg = dtog(fs,
ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
startcg %= fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
for (cg = startcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
return (cgbase(fs, cg) + fs->fs_frag);
}
for (cg = 0; cg < startcg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
return (cgbase(fs, cg) + fs->fs_frag);
}
return (0);
}
/*
* We just always try to lay things out contiguously.
*/
return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
}
/*
* Implement the cylinder overflow algorithm.
*
* The policy implemented by this algorithm is:
* 1) allocate the block in its requested cylinder group.
* 2) quadradically rehash on the cylinder group number.
* 3) brute force search for a free block.
*
* => called with um_lock held
* => returns with um_lock released on success, held on failure
* (*allocator releases lock on success, retains lock on failure)
*/
/*VARARGS5*/
static daddr_t
ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
int size /* size for data blocks, mode for inodes */,
int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
{
struct fs *fs;
daddr_t result;
int i, icg = cg;
fs = ip->i_fs;
/*
* 1: preferred cylinder group
*/
result = (*allocator)(ip, cg, pref, size, flags);
if (result)
return (result);
if (flags & B_CONTIG)
return (result);
/*
* 2: quadratic rehash
*/
for (i = 1; i < fs->fs_ncg; i *= 2) {
cg += i;
if (cg >= fs->fs_ncg)
cg -= fs->fs_ncg;
result = (*allocator)(ip, cg, 0, size, flags);
if (result)
return (result);
}
/*
* 3: brute force search
* Note that we start at i == 2, since 0 was checked initially,
* and 1 is always checked in the quadratic rehash.
*/
cg = (icg + 2) % fs->fs_ncg;
for (i = 2; i < fs->fs_ncg; i++) {
result = (*allocator)(ip, cg, 0, size, flags);
if (result)
return (result);
cg++;
if (cg == fs->fs_ncg)
cg = 0;
}
return (0);
}
/*
* Determine whether a fragment can be extended.
*
* Check to see if the necessary fragments are available, and
* if they are, allocate them.
*
* => called with um_lock held
* => returns with um_lock released on success, held on failure
*/
static daddr_t
ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
{
struct ufsmount *ump;
struct fs *fs;
struct cg *cgp;
struct buf *bp;
daddr_t bno;
int frags, bbase;
int i, error;
u_int8_t *blksfree;
fs = ip->i_fs;
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
return (0);
frags = numfrags(fs, nsize);
bbase = fragnum(fs, bprev);
if (bbase > fragnum(fs, (bprev + frags - 1))) {
/* cannot extend across a block boundary */
return (0);
}
mutex_exit(&ump->um_lock);
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
if (error)
goto fail;
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
goto fail;
cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
bno = dtogd(fs, bprev);
blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
for (i = numfrags(fs, osize); i < frags; i++)
if (isclr(blksfree, bno + i))
goto fail;
/*
* the current fragment can be extended
* deduct the count on fragment being extended into
* increase the count on the remaining fragment (if any)
* allocate the extended piece
*/
for (i = frags; i < fs->fs_frag - bbase; i++)
if (isclr(blksfree, bno + i))
break;
ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
if (i != frags)
ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
mutex_enter(&ump->um_lock);
for (i = numfrags(fs, osize); i < frags; i++) {
clrbit(blksfree, bno + i);
ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
fs->fs_cstotal.cs_nffree--;
fs->fs_cs(fs, cg).cs_nffree--;
}
fs->fs_fmod = 1;
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
return (bprev);
fail:
brelse(bp, 0);
mutex_enter(&ump->um_lock);
return (0);
}
/*
* Determine whether a block can be allocated.
*
* Check to see if a block of the appropriate size is available,
* and if it is, allocate it.
*/
static daddr_t
ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
{
struct ufsmount *ump;
struct fs *fs = ip->i_fs;
struct cg *cgp;
struct buf *bp;
int32_t bno;
daddr_t blkno;
int error, frags, allocsiz, i;
u_int8_t *blksfree;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
return (0);
mutex_exit(&ump->um_lock);
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
if (error)
goto fail;
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap) ||
(cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
goto fail;
cgp->cg_old_time = ufs_rw32(time_second, needswap);
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, needswap);
if (size == fs->fs_bsize) {
mutex_enter(&ump->um_lock);
blkno = ffs_alloccgblk(ip, bp, bpref, flags);
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
return (blkno);
}
/*
* check to see if any fragments are already available
* allocsiz is the size which will be allocated, hacking
* it down to a smaller size if necessary
*/
blksfree = cg_blksfree(cgp, needswap);
frags = numfrags(fs, size);
for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
if (cgp->cg_frsum[allocsiz] != 0)
break;
if (allocsiz == fs->fs_frag) {
/*
* no fragments were available, so a block will be
* allocated, and hacked up
*/
if (cgp->cg_cs.cs_nbfree == 0)
goto fail;
mutex_enter(&ump->um_lock);
blkno = ffs_alloccgblk(ip, bp, bpref, flags);
bno = dtogd(fs, blkno);
for (i = frags; i < fs->fs_frag; i++)
setbit(blksfree, bno + i);
i = fs->fs_frag - frags;
ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cg).cs_nffree += i;
fs->fs_fmod = 1;
ufs_add32(cgp->cg_frsum[i], 1, needswap);
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
return (blkno);
}
bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
#if 0
/*
* XXX fvdl mapsearch will panic, and never return -1
* also: returning NULL as daddr_t ?
*/
if (bno < 0)
goto fail;
#endif
for (i = 0; i < frags; i++)
clrbit(blksfree, bno + i);
mutex_enter(&ump->um_lock);
ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
fs->fs_cstotal.cs_nffree -= frags;
fs->fs_cs(fs, cg).cs_nffree -= frags;
fs->fs_fmod = 1;
ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
if (frags != allocsiz)
ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
blkno = cgbase(fs, cg) + bno;
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
return blkno;
fail:
brelse(bp, 0);
mutex_enter(&ump->um_lock);
return (0);
}
/*
* Allocate a block in a cylinder group.
*
* This algorithm implements the following policy:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate the next available block on the block rotor for the
* specified cylinder group.
* Note that this routine only allocates fs_bsize blocks; these
* blocks may be fragmented by the routine that allocates them.
*/
static daddr_t
ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
{
struct ufsmount *ump;
struct fs *fs = ip->i_fs;
struct cg *cgp;
int cg;
daddr_t blkno;
int32_t bno;
u_int8_t *blksfree;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
cgp = (struct cg *)bp->b_data;
blksfree = cg_blksfree(cgp, needswap);
if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
bpref = ufs_rw32(cgp->cg_rotor, needswap);
} else {
bpref = blknum(fs, bpref);
bno = dtogd(fs, bpref);
/*
* if the requested block is available, use it
*/
if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
goto gotit;
/*
* if the requested data block isn't available and we are
* trying to allocate a contiguous file, return an error.
*/
if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
return (0);
}
/*
* Take the next available block in this cylinder group.
*/
bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
if (bno < 0)
return (0);
cgp->cg_rotor = ufs_rw32(bno, needswap);
gotit:
blkno = fragstoblks(fs, bno);
ffs_clrblock(fs, blksfree, blkno);
ffs_clusteracct(fs, cgp, blkno, -1);
ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
fs->fs_cstotal.cs_nbfree--;
fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
if ((fs->fs_magic == FS_UFS1_MAGIC) &&
((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
int cylno;
cylno = old_cbtocylno(fs, bno);
KASSERT(cylno >= 0);
KASSERT(cylno < fs->fs_old_ncyl);
KASSERT(old_cbtorpos(fs, bno) >= 0);
KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
needswap);
ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
}
fs->fs_fmod = 1;
cg = ufs_rw32(cgp->cg_cgx, needswap);
blkno = cgbase(fs, cg) + bno;
return (blkno);
}
/*
* Determine whether an inode can be allocated.
*
* Check to see if an inode is available, and if it is,
* allocate it using the following policy:
* 1) allocate the requested inode.
* 2) allocate the next available inode after the requested
* inode in the specified cylinder group.
*/
static daddr_t
ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
{
struct ufsmount *ump = ip->i_ump;
struct fs *fs = ip->i_fs;
struct cg *cgp;
struct buf *bp, *ibp;
u_int8_t *inosused;
int error, start, len, loc, map, i;
int32_t initediblk;
daddr_t nalloc;
struct ufs2_dinode *dp2;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
KASSERT(mutex_owned(&ump->um_lock));
UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
if (fs->fs_cs(fs, cg).cs_nifree == 0)
return (0);
mutex_exit(&ump->um_lock);
ibp = NULL;
initediblk = -1;
retry:
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
if (error)
goto fail;
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
goto fail;
if (ibp != NULL &&
initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
/* Another thread allocated more inodes so we retry the test. */
brelse(ibp, 0);
ibp = NULL;
}
/*
* Check to see if we need to initialize more inodes.
*/
if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
if (nalloc + INOPB(fs) > initediblk &&
initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
/*
* We have to release the cg buffer here to prevent
* a deadlock when reading the inode block will
* run a copy-on-write that might use this cg.
*/
brelse(bp, 0);
bp = NULL;
error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
FFS_NOBLK, fs->fs_bsize, false, &ibp);
if (error)
goto fail;
goto retry;
}
}
cgp->cg_old_time = ufs_rw32(time_second, needswap);
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, needswap);
inosused = cg_inosused(cgp, needswap);
if (ipref) {
ipref %= fs->fs_ipg;
if (isclr(inosused, ipref))
goto gotit;
}
start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
NBBY);
loc = skpc(0xff, len, &inosused[start]);
if (loc == 0) {
len = start + 1;
start = 0;
loc = skpc(0xff, len, &inosused[0]);
if (loc == 0) {
printf("cg = %d, irotor = %d, fs = %s\n",
cg, ufs_rw32(cgp->cg_irotor, needswap),
fs->fs_fsmnt);
panic("ffs_nodealloccg: map corrupted");
/* NOTREACHED */
}
}
i = start + len - loc;
map = inosused[i] ^ 0xff;
if (map == 0) {
printf("fs = %s\n", fs->fs_fsmnt);
panic("ffs_nodealloccg: block not in map");
}
ipref = i * NBBY + ffs(map) - 1;
cgp->cg_irotor = ufs_rw32(ipref, needswap);
gotit:
UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
mode);
/*
* Check to see if we need to initialize more inodes.
*/
if (ibp != NULL) {
KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
memset(ibp->b_data, 0, fs->fs_bsize);
dp2 = (struct ufs2_dinode *)(ibp->b_data);
for (i = 0; i < INOPB(fs); i++) {
/*
* Don't bother to swap, it's supposed to be
* random, after all.
*/
dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
dp2++;
}
initediblk += INOPB(fs);
cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
}
mutex_enter(&ump->um_lock);
ACTIVECG_CLR(fs, cg);
setbit(inosused, ipref);
ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
fs->fs_cstotal.cs_nifree--;
fs->fs_cs(fs, cg).cs_nifree--;
fs->fs_fmod = 1;
if ((mode & IFMT) == IFDIR) {
ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
fs->fs_cstotal.cs_ndir++;
fs->fs_cs(fs, cg).cs_ndir++;
}
mutex_exit(&ump->um_lock);
if (ibp != NULL) {
bwrite(bp);
bawrite(ibp);
} else
bdwrite(bp);
return (cg * fs->fs_ipg + ipref);
fail:
if (bp != NULL)
brelse(bp, 0);
if (ibp != NULL)
brelse(ibp, 0);
mutex_enter(&ump->um_lock);
return (0);
}
/*
* Allocate a block or fragment.
*
* The specified block or fragment is removed from the
* free map, possibly fragmenting a block in the process.
*
* This implementation should mirror fs_blkfree
*
* => um_lock not held on entry or exit
*/
int
ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
{
int error;
error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
ip->i_dev, ip->i_uid);
if (error)
return error;
return ffs_blkalloc_ump(ip->i_ump, bno, size);
}
int
ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
{
struct fs *fs = ump->um_fs;
struct cg *cgp;
struct buf *bp;
int32_t fragno, cgbno;
int i, error, cg, blk, frags, bbase;
u_int8_t *blksfree;
const int needswap = UFS_FSNEEDSWAP(fs);
KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
KASSERT(bno < fs->fs_size);
cg = dtog(fs, bno);
error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
if (error) {
brelse(bp, 0);
return error;
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap)) {
brelse(bp, 0);
return EIO;
}
cgp->cg_old_time = ufs_rw32(time_second, needswap);
cgp->cg_time = ufs_rw64(time_second, needswap);
cgbno = dtogd(fs, bno);
blksfree = cg_blksfree(cgp, needswap);
mutex_enter(&ump->um_lock);
if (size == fs->fs_bsize) {
fragno = fragstoblks(fs, cgbno);
if (!ffs_isblock(fs, blksfree, fragno)) {
mutex_exit(&ump->um_lock);
brelse(bp, 0);
return EBUSY;
}
ffs_clrblock(fs, blksfree, fragno);
ffs_clusteracct(fs, cgp, fragno, -1);
ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
fs->fs_cstotal.cs_nbfree--;
fs->fs_cs(fs, cg).cs_nbfree--;
} else {
bbase = cgbno - fragnum(fs, cgbno);
frags = numfrags(fs, size);
for (i = 0; i < frags; i++) {
if (isclr(blksfree, cgbno + i)) {
mutex_exit(&ump->um_lock);
brelse(bp, 0);
return EBUSY;
}
}
/*
* if a complete block is being split, account for it
*/
fragno = fragstoblks(fs, bbase);
if (ffs_isblock(fs, blksfree, fragno)) {
ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
fs->fs_cstotal.cs_nffree += fs->fs_frag;
fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
ffs_clusteracct(fs, cgp, fragno, -1);
ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
fs->fs_cstotal.cs_nbfree--;
fs->fs_cs(fs, cg).cs_nbfree--;
}
/*
* decrement the counts associated with the old frags
*/
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
/*
* allocate the fragment
*/
for (i = 0; i < frags; i++) {
clrbit(blksfree, cgbno + i);
}
ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
fs->fs_cstotal.cs_nffree -= i;
fs->fs_cs(fs, cg).cs_nffree -= i;
/*
* add back in counts associated with the new frags
*/
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
}
fs->fs_fmod = 1;
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
return 0;
}
/*
* Free a block or fragment.
*
* The specified block or fragment is placed back in the
* free map. If a fragment is deallocated, a possible
* block reassembly is checked.
*
* => um_lock not held on entry or exit
*/
void
ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
ino_t inum)
{
struct cg *cgp;
struct buf *bp;
struct ufsmount *ump;
daddr_t cgblkno;
int error, cg;
dev_t dev;
const bool devvp_is_snapshot = (devvp->v_type != VBLK);
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
KASSERT(!devvp_is_snapshot);
cg = dtog(fs, bno);
dev = devvp->v_rdev;
ump = VFSTOUFS(devvp->v_specmountpoint);
KASSERT(fs == ump->um_fs);
cgblkno = fsbtodb(fs, cgtod(fs, cg));
if (ffs_snapblkfree(fs, devvp, bno, size, inum))
return;
error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
if (error)
return;
error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
NOCRED, B_MODIFY, &bp);
if (error) {
brelse(bp, 0);
return;
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap)) {
brelse(bp, 0);
return;
}
ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
bdwrite(bp);
}
/*
* Free a block or fragment from a snapshot cg copy.
*
* The specified block or fragment is placed back in the
* free map. If a fragment is deallocated, a possible
* block reassembly is checked.
*
* => um_lock not held on entry or exit
*/
void
ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
ino_t inum)
{
struct cg *cgp;
struct buf *bp;
struct ufsmount *ump;
daddr_t cgblkno;
int error, cg;
dev_t dev;
const bool devvp_is_snapshot = (devvp->v_type != VBLK);
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
KASSERT(devvp_is_snapshot);
cg = dtog(fs, bno);
dev = VTOI(devvp)->i_devvp->v_rdev;
ump = VFSTOUFS(devvp->v_mount);
cgblkno = fragstoblks(fs, cgtod(fs, cg));
error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
if (error)
return;
error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
NOCRED, B_MODIFY, &bp);
if (error) {
brelse(bp, 0);
return;
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap)) {
brelse(bp, 0);
return;
}
ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
bdwrite(bp);
}
static void
ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
{
struct cg *cgp;
int32_t fragno, cgbno;
int i, cg, blk, frags, bbase;
u_int8_t *blksfree;
const int needswap = UFS_FSNEEDSWAP(fs);
cg = dtog(fs, bno);
cgp = (struct cg *)bp->b_data;
cgp->cg_old_time = ufs_rw32(time_second, needswap);
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, needswap);
cgbno = dtogd(fs, bno);
blksfree = cg_blksfree(cgp, needswap);
mutex_enter(&ump->um_lock);
if (size == fs->fs_bsize) {
fragno = fragstoblks(fs, cgbno);
if (!ffs_isfreeblock(fs, blksfree, fragno)) {
if (devvp_is_snapshot) {
mutex_exit(&ump->um_lock);
return;
}
printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
(unsigned long long)dev, bno, fs->fs_fsmnt);
panic("blkfree: freeing free block");
}
ffs_setblock(fs, blksfree, fragno);
ffs_clusteracct(fs, cgp, fragno, 1);
ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
if ((fs->fs_magic == FS_UFS1_MAGIC) &&
((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
i = old_cbtocylno(fs, cgbno);
KASSERT(i >= 0);
KASSERT(i < fs->fs_old_ncyl);
KASSERT(old_cbtorpos(fs, cgbno) >= 0);
KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
needswap);
ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
}
} else {
bbase = cgbno - fragnum(fs, cgbno);
/*
* decrement the counts associated with the old frags
*/
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
/*
* deallocate the fragment
*/
frags = numfrags(fs, size);
for (i = 0; i < frags; i++) {
if (isset(blksfree, cgbno + i)) {
printf("dev = 0x%llx, block = %" PRId64
", fs = %s\n",
(unsigned long long)dev, bno + i,
fs->fs_fsmnt);
panic("blkfree: freeing free frag");
}
setbit(blksfree, cgbno + i);
}
ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cg).cs_nffree += i;
/*
* add back in counts associated with the new frags
*/
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
/*
* if a complete block has been reassembled, account for it
*/
fragno = fragstoblks(fs, bbase);
if (ffs_isblock(fs, blksfree, fragno)) {
ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
fs->fs_cstotal.cs_nffree -= fs->fs_frag;
fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
ffs_clusteracct(fs, cgp, fragno, 1);
ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
if ((fs->fs_magic == FS_UFS1_MAGIC) &&
((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
i = old_cbtocylno(fs, bbase);
KASSERT(i >= 0);
KASSERT(i < fs->fs_old_ncyl);
KASSERT(old_cbtorpos(fs, bbase) >= 0);
KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
bbase)], 1, needswap);
ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
}
}
}
fs->fs_fmod = 1;
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
}
/*
* Free an inode.
*/
int
ffs_vfree(struct vnode *vp, ino_t ino, int mode)
{
return ffs_freefile(vp->v_mount, ino, mode);
}
/*
* Do the actual free operation.
* The specified inode is placed back in the free map.
*
* => um_lock not held on entry or exit
*/
int
ffs_freefile(struct mount *mp, ino_t ino, int mode)
{
struct ufsmount *ump = VFSTOUFS(mp);
struct fs *fs = ump->um_fs;
struct vnode *devvp;
struct cg *cgp;
struct buf *bp;
int error, cg;
daddr_t cgbno;
dev_t dev;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
cg = ino_to_cg(fs, ino);
devvp = ump->um_devvp;
dev = devvp->v_rdev;
cgbno = fsbtodb(fs, cgtod(fs, cg));
if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
(long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
error = bread(devvp, cgbno, (int)fs->fs_cgsize,
NOCRED, B_MODIFY, &bp);
if (error) {
brelse(bp, 0);
return (error);
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap)) {
brelse(bp, 0);
return (0);
}
ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
bdwrite(bp);
return 0;
}
int
ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
{
struct ufsmount *ump;
struct cg *cgp;
struct buf *bp;
int error, cg;
daddr_t cgbno;
dev_t dev;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
KASSERT(devvp->v_type != VBLK);
cg = ino_to_cg(fs, ino);
dev = VTOI(devvp)->i_devvp->v_rdev;
ump = VFSTOUFS(devvp->v_mount);
cgbno = fragstoblks(fs, cgtod(fs, cg));
if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
(unsigned long long)dev, (unsigned long long)ino,
fs->fs_fsmnt);
error = bread(devvp, cgbno, (int)fs->fs_cgsize,
NOCRED, B_MODIFY, &bp);
if (error) {
brelse(bp, 0);
return (error);
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap)) {
brelse(bp, 0);
return (0);
}
ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
bdwrite(bp);
return 0;
}
static void
ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
{
int cg;
struct cg *cgp;
u_int8_t *inosused;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
cg = ino_to_cg(fs, ino);
cgp = (struct cg *)bp->b_data;
cgp->cg_old_time = ufs_rw32(time_second, needswap);
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, needswap);
inosused = cg_inosused(cgp, needswap);
ino %= fs->fs_ipg;
if (isclr(inosused, ino)) {
printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
(unsigned long long)dev, (unsigned long long)ino +
cg * fs->fs_ipg, fs->fs_fsmnt);
if (fs->fs_ronly == 0)
panic("ifree: freeing free inode");
}
clrbit(inosused, ino);
if (!devvp_is_snapshot)
UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
ino + cg * fs->fs_ipg, mode);
if (ino < ufs_rw32(cgp->cg_irotor, needswap))
cgp->cg_irotor = ufs_rw32(ino, needswap);
ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
mutex_enter(&ump->um_lock);
fs->fs_cstotal.cs_nifree++;
fs->fs_cs(fs, cg).cs_nifree++;
if ((mode & IFMT) == IFDIR) {
ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
fs->fs_cstotal.cs_ndir--;
fs->fs_cs(fs, cg).cs_ndir--;
}
fs->fs_fmod = 1;
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
}
/*
* Check to see if a file is free.
*/
int
ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
{
struct cg *cgp;
struct buf *bp;
daddr_t cgbno;
int ret, cg;
u_int8_t *inosused;
const bool devvp_is_snapshot = (devvp->v_type != VBLK);
KASSERT(devvp_is_snapshot);
cg = ino_to_cg(fs, ino);
if (devvp_is_snapshot)
cgbno = fragstoblks(fs, cgtod(fs, cg));
else
cgbno = fsbtodb(fs, cgtod(fs, cg));
if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
return 1;
if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
brelse(bp, 0);
return 1;
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
brelse(bp, 0);
return 1;
}
inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
ino %= fs->fs_ipg;
ret = isclr(inosused, ino);
brelse(bp, 0);
return ret;
}
/*
* Find a block of the specified size in the specified cylinder group.
*
* It is a panic if a request is made to find a block if none are
* available.
*/
static int32_t
ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
{
int32_t bno;
int start, len, loc, i;
int blk, field, subfield, pos;
int ostart, olen;
u_int8_t *blksfree;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
/* KASSERT(mutex_owned(&ump->um_lock)); */
/*
* find the fragment by searching through the free block
* map for an appropriate bit pattern
*/
if (bpref)
start = dtogd(fs, bpref) / NBBY;
else
start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
blksfree = cg_blksfree(cgp, needswap);
len = howmany(fs->fs_fpg, NBBY) - start;
ostart = start;
olen = len;
loc = scanc((u_int)len,
(const u_char *)&blksfree[start],
(const u_char *)fragtbl[fs->fs_frag],
(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
if (loc == 0) {
len = start + 1;
start = 0;
loc = scanc((u_int)len,
(const u_char *)&blksfree[0],
(const u_char *)fragtbl[fs->fs_frag],
(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
if (loc == 0) {
printf("start = %d, len = %d, fs = %s\n",
ostart, olen, fs->fs_fsmnt);
printf("offset=%d %ld\n",
ufs_rw32(cgp->cg_freeoff, needswap),
(long)blksfree - (long)cgp);
printf("cg %d\n", cgp->cg_cgx);
panic("ffs_alloccg: map corrupted");
/* NOTREACHED */
}
}
bno = (start + len - loc) * NBBY;
cgp->cg_frotor = ufs_rw32(bno, needswap);
/*
* found the byte in the map
* sift through the bits to find the selected frag
*/
for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
blk = blkmap(fs, blksfree, bno);
blk <<= 1;
field = around[allocsiz];
subfield = inside[allocsiz];
for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
if ((blk & field) == subfield)
return (bno + pos);
field <<= 1;
subfield <<= 1;
}
}
printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
panic("ffs_alloccg: block not in map");
/* return (-1); */
}
/*
* Fserr prints the name of a file system with an error diagnostic.
*
* The form of the error message is:
* fs: error message
*/
static void
ffs_fserr(struct fs *fs, u_int uid, const char *cp)
{
log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
}