NetBSD/sys/kern/subr_cpufreq.c
jruoho 5d9e77ad94 Do not use xcall(9) in cpufreq_register(9), as it requires kthreads to be
running and may impose hacks like config_interrupts(9) in the backend.
2011-10-20 06:48:24 +00:00

503 lines
10 KiB
C

/* $NetBSD: subr_cpufreq.c,v 1.5 2011/10/20 06:48:24 jruoho Exp $ */
/*-
* Copyright (c) 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jukka Ruohonen.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.5 2011/10/20 06:48:24 jruoho Exp $");
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/cpufreq.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/time.h>
#include <sys/xcall.h>
static int cpufreq_latency(void);
static uint32_t cpufreq_get_max(void);
static uint32_t cpufreq_get_min(void);
static uint32_t cpufreq_get_raw(struct cpu_info *);
static void cpufreq_get_state_raw(uint32_t, struct cpufreq_state *);
static void cpufreq_set_raw(struct cpu_info *, uint32_t);
static void cpufreq_set_all_raw(uint32_t);
static kmutex_t cpufreq_lock __cacheline_aligned;
static struct cpufreq *cf_backend __read_mostly = NULL;
void
cpufreq_init(void)
{
mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE);
cf_backend = kmem_zalloc(sizeof(*cf_backend), KM_SLEEP);
}
int
cpufreq_register(struct cpufreq *cf)
{
uint32_t c, i, j, k;
int rv;
KASSERT(cf != NULL);
KASSERT(cf_backend != NULL);
KASSERT(cf->cf_get_freq != NULL);
KASSERT(cf->cf_set_freq != NULL);
KASSERT(cf->cf_state_count > 0);
KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX);
mutex_enter(&cpufreq_lock);
if (cf_backend->cf_init != false) {
mutex_exit(&cpufreq_lock);
return EALREADY;
}
cf_backend->cf_init = true;
cf_backend->cf_mp = cf->cf_mp;
cf_backend->cf_cookie = cf->cf_cookie;
cf_backend->cf_get_freq = cf->cf_get_freq;
cf_backend->cf_set_freq = cf->cf_set_freq;
(void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name));
/*
* Sanity check the values and verify descending order.
*/
for (c = i = 0; i < cf->cf_state_count; i++) {
CTASSERT(CPUFREQ_STATE_ENABLED != 0);
CTASSERT(CPUFREQ_STATE_DISABLED != 0);
if (cf->cf_state[i].cfs_freq == 0)
continue;
if (cf->cf_state[i].cfs_freq > 9999 &&
cf->cf_state[i].cfs_freq != CPUFREQ_STATE_ENABLED &&
cf->cf_state[i].cfs_freq != CPUFREQ_STATE_DISABLED)
continue;
for (j = k = 0; j < i; j++) {
if (cf->cf_state[i].cfs_freq >=
cf->cf_state[j].cfs_freq) {
k = 1;
break;
}
}
if (k != 0)
continue;
cf_backend->cf_state[c].cfs_index = c;
cf_backend->cf_state[c].cfs_freq = cf->cf_state[i].cfs_freq;
cf_backend->cf_state[c].cfs_power = cf->cf_state[i].cfs_power;
c++;
}
cf_backend->cf_state_count = c;
if (cf_backend->cf_state_count == 0) {
mutex_exit(&cpufreq_lock);
cpufreq_deregister();
return EINVAL;
}
rv = cpufreq_latency();
if (rv != 0) {
mutex_exit(&cpufreq_lock);
cpufreq_deregister();
return rv;
}
mutex_exit(&cpufreq_lock);
return 0;
}
void
cpufreq_deregister(void)
{
mutex_enter(&cpufreq_lock);
memset(cf_backend, 0, sizeof(*cf_backend));
mutex_exit(&cpufreq_lock);
}
static int
cpufreq_latency(void)
{
struct cpufreq *cf = cf_backend;
struct timespec nta, ntb;
const uint32_t n = 10;
uint32_t i, j, l, m;
uint64_t s;
l = cpufreq_get_min();
m = cpufreq_get_max();
/*
* For each state, sample the average transition
* latency required to set the state for all CPUs.
*/
for (i = 0; i < cf->cf_state_count; i++) {
for (s = 0, j = 0; j < n; j++) {
/*
* Attempt to exclude possible
* caching done by the backend.
*/
if (i == 0)
cpufreq_set_all_raw(l);
else {
cpufreq_set_all_raw(m);
}
nta.tv_sec = nta.tv_nsec = 0;
ntb.tv_sec = ntb.tv_nsec = 0;
nanotime(&nta);
cpufreq_set_all_raw(cf->cf_state[i].cfs_freq);
nanotime(&ntb);
timespecsub(&ntb, &nta, &ntb);
if (ntb.tv_sec != 0 ||
ntb.tv_nsec > CPUFREQ_LATENCY_MAX)
continue;
if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX)
break;
s += ntb.tv_nsec;
}
/*
* Consider the backend unsuitable if
* the transition latency was too high.
*/
if (s == 0)
return EMSGSIZE;
cf->cf_state[i].cfs_latency = s / n;
}
return 0;
}
void
cpufreq_suspend(struct cpu_info *ci)
{
struct cpufreq *cf = cf_backend;
uint32_t l, s;
mutex_enter(&cpufreq_lock);
if (cf->cf_init != true) {
mutex_exit(&cpufreq_lock);
return;
}
l = cpufreq_get_min();
s = cpufreq_get_raw(ci);
cpufreq_set_raw(ci, l);
cf->cf_state_saved = s;
mutex_exit(&cpufreq_lock);
}
void
cpufreq_resume(struct cpu_info *ci)
{
struct cpufreq *cf = cf_backend;
mutex_enter(&cpufreq_lock);
if (cf->cf_init != true || cf->cf_state_saved == 0) {
mutex_exit(&cpufreq_lock);
return;
}
cpufreq_set_raw(ci, cf->cf_state_saved);
mutex_exit(&cpufreq_lock);
}
uint32_t
cpufreq_get(struct cpu_info *ci)
{
struct cpufreq *cf = cf_backend;
uint32_t freq;
mutex_enter(&cpufreq_lock);
if (cf->cf_init != true) {
mutex_exit(&cpufreq_lock);
return 0;
}
freq = cpufreq_get_raw(ci);
mutex_exit(&cpufreq_lock);
return freq;
}
static uint32_t
cpufreq_get_max(void)
{
struct cpufreq *cf = cf_backend;
KASSERT(cf->cf_init != false);
KASSERT(mutex_owned(&cpufreq_lock) != 0);
return cf->cf_state[0].cfs_freq;
}
static uint32_t
cpufreq_get_min(void)
{
struct cpufreq *cf = cf_backend;
KASSERT(cf->cf_init != false);
KASSERT(mutex_owned(&cpufreq_lock) != 0);
return cf->cf_state[cf->cf_state_count - 1].cfs_freq;
}
static uint32_t
cpufreq_get_raw(struct cpu_info *ci)
{
struct cpufreq *cf = cf_backend;
uint32_t freq = 0;
uint64_t xc;
KASSERT(cf->cf_init != false);
KASSERT(mutex_owned(&cpufreq_lock) != 0);
xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci);
xc_wait(xc);
return freq;
}
int
cpufreq_get_backend(struct cpufreq *dst)
{
struct cpufreq *cf = cf_backend;
mutex_enter(&cpufreq_lock);
if (cf->cf_init != true || dst == NULL) {
mutex_exit(&cpufreq_lock);
return ENODEV;
}
memcpy(dst, cf, sizeof(*cf));
mutex_exit(&cpufreq_lock);
return 0;
}
int
cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs)
{
struct cpufreq *cf = cf_backend;
mutex_enter(&cpufreq_lock);
if (cf->cf_init != true || cfs == NULL) {
mutex_exit(&cpufreq_lock);
return ENODEV;
}
cpufreq_get_state_raw(freq, cfs);
mutex_exit(&cpufreq_lock);
return 0;
}
int
cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs)
{
struct cpufreq *cf = cf_backend;
mutex_enter(&cpufreq_lock);
if (cf->cf_init != true || cfs == NULL) {
mutex_exit(&cpufreq_lock);
return ENODEV;
}
if (index >= cf->cf_state_count) {
mutex_exit(&cpu_lock);
return EINVAL;
}
memcpy(cfs, &cf->cf_state[index], sizeof(*cfs));
mutex_exit(&cpufreq_lock);
return 0;
}
static void
cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs)
{
struct cpufreq *cf = cf_backend;
uint32_t f, hi, i = 0, lo = 0;
KASSERT(mutex_owned(&cpufreq_lock) != 0);
KASSERT(cf->cf_init != false && cfs != NULL);
hi = cf->cf_state_count;
while (lo < hi) {
i = (lo + hi) >> 1;
f = cf->cf_state[i].cfs_freq;
if (freq == f)
break;
else if (freq > f)
hi = i;
else {
lo = i + 1;
}
}
memcpy(cfs, &cf->cf_state[i], sizeof(*cfs));
}
void
cpufreq_set(struct cpu_info *ci, uint32_t freq)
{
struct cpufreq *cf = cf_backend;
mutex_enter(&cpufreq_lock);
if (__predict_false(cf->cf_init != true)) {
mutex_exit(&cpufreq_lock);
return;
}
cpufreq_set_raw(ci, freq);
mutex_exit(&cpufreq_lock);
}
static void
cpufreq_set_raw(struct cpu_info *ci, uint32_t freq)
{
struct cpufreq *cf = cf_backend;
uint64_t xc;
KASSERT(cf->cf_init != false);
KASSERT(mutex_owned(&cpufreq_lock) != 0);
xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci);
xc_wait(xc);
}
void
cpufreq_set_all(uint32_t freq)
{
struct cpufreq *cf = cf_backend;
mutex_enter(&cpufreq_lock);
if (__predict_false(cf->cf_init != true)) {
mutex_exit(&cpufreq_lock);
return;
}
cpufreq_set_all_raw(freq);
mutex_exit(&cpufreq_lock);
}
static void
cpufreq_set_all_raw(uint32_t freq)
{
struct cpufreq *cf = cf_backend;
uint64_t xc;
KASSERT(cf->cf_init != false);
KASSERT(mutex_owned(&cpufreq_lock) != 0);
xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq);
xc_wait(xc);
}
#ifdef notyet
void
cpufreq_set_higher(struct cpu_info *ci)
{
cpufreq_set_step(ci, -1);
}
void
cpufreq_set_lower(struct cpu_info *ci)
{
cpufreq_set_step(ci, 1);
}
static void
cpufreq_set_step(struct cpu_info *ci, int32_t step)
{
struct cpufreq *cf = cf_backend;
struct cpufreq_state cfs;
uint32_t freq;
int32_t index;
mutex_enter(&cpufreq_lock);
if (__predict_false(cf->cf_init != true)) {
mutex_exit(&cpufreq_lock);
return;
}
freq = cpufreq_get_raw(ci);
if (__predict_false(freq == 0)) {
mutex_exit(&cpufreq_lock);
return;
}
cpufreq_get_state_raw(freq, &cfs);
index = cfs.cfs_index + step;
if (index < 0 || index >= (int32_t)cf->cf_state_count) {
mutex_exit(&cpufreq_lock);
return;
}
cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq);
mutex_exit(&cpufreq_lock);
}
#endif