NetBSD/sys/dev/i2c/m41st84.c
2006-03-29 06:41:24 +00:00

429 lines
12 KiB
C

/* $NetBSD: m41st84.c,v 1.7 2006/03/29 06:41:24 thorpej Exp $ */
/*
* Copyright (c) 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/fcntl.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <sys/event.h>
#include <dev/clock_subr.h>
#include <dev/i2c/i2cvar.h>
#include <dev/i2c/m41st84reg.h>
struct strtc_softc {
struct device sc_dev;
i2c_tag_t sc_tag;
int sc_address;
int sc_open;
struct todr_chip_handle sc_todr;
};
static void strtc_attach(struct device *, struct device *, void *);
static int strtc_match(struct device *, struct cfdata *, void *);
CFATTACH_DECL(strtc, sizeof(struct strtc_softc),
strtc_match, strtc_attach, NULL, NULL);
extern struct cfdriver strtc_cd;
dev_type_open(strtc_open);
dev_type_close(strtc_close);
dev_type_read(strtc_read);
dev_type_write(strtc_write);
const struct cdevsw strtc_cdevsw = {
strtc_open, strtc_close, strtc_read, strtc_write, noioctl,
nostop, notty, nopoll, nommap, nokqfilter
};
static int strtc_clock_read(struct strtc_softc *, struct clock_ymdhms *);
static int strtc_clock_write(struct strtc_softc *, struct clock_ymdhms *);
static int strtc_gettime(struct todr_chip_handle *, volatile struct timeval *);
static int strtc_settime(struct todr_chip_handle *, volatile struct timeval *);
static int strtc_getcal(struct todr_chip_handle *, int *);
static int strtc_setcal(struct todr_chip_handle *, int);
static int
strtc_match(struct device *parent, struct cfdata *cf, void *arg)
{
struct i2c_attach_args *ia = arg;
if (ia->ia_addr == M41ST84_ADDR)
return (1);
return (0);
}
static void
strtc_attach(struct device *parent, struct device *self, void *arg)
{
struct strtc_softc *sc = device_private(self);
struct i2c_attach_args *ia = arg;
aprint_naive(": Real-time Clock/NVRAM\n");
aprint_normal(": M41ST84 Real-time Clock/NVRAM\n");
sc->sc_tag = ia->ia_tag;
sc->sc_address = ia->ia_addr;
sc->sc_open = 0;
sc->sc_todr.cookie = sc;
sc->sc_todr.todr_gettime = strtc_gettime;
sc->sc_todr.todr_settime = strtc_settime;
sc->sc_todr.todr_getcal = strtc_getcal;
sc->sc_todr.todr_setcal = strtc_setcal;
sc->sc_todr.todr_setwen = NULL;
todr_attach(&sc->sc_todr);
}
/*ARGSUSED*/
int
strtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct strtc_softc *sc;
if ((sc = device_lookup(&strtc_cd, minor(dev))) == NULL)
return (ENXIO);
/* XXX: Locking */
if (sc->sc_open)
return (EBUSY);
sc->sc_open = 1;
return (0);
}
/*ARGSUSED*/
int
strtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct strtc_softc *sc;
if ((sc = device_lookup(&strtc_cd, minor(dev))) == NULL)
return (ENXIO);
sc->sc_open = 0;
return (0);
}
/*ARGSUSED*/
int
strtc_read(dev_t dev, struct uio *uio, int flags)
{
struct strtc_softc *sc;
u_int8_t ch, cmdbuf[1];
int a, error;
if ((sc = device_lookup(&strtc_cd, minor(dev))) == NULL)
return (ENXIO);
if (uio->uio_offset >= M41ST84_USER_RAM_SIZE)
return (EINVAL);
if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
return (error);
while (uio->uio_resid && uio->uio_offset < M41ST84_USER_RAM_SIZE) {
a = (int)uio->uio_offset;
cmdbuf[0] = a + M41ST84_USER_RAM;
if ((error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_address, cmdbuf, 1,
&ch, 1, 0)) != 0) {
iic_release_bus(sc->sc_tag, 0);
printf("%s: strtc_read: read failed at 0x%x\n",
sc->sc_dev.dv_xname, a);
return (error);
}
if ((error = uiomove(&ch, 1, uio)) != 0) {
iic_release_bus(sc->sc_tag, 0);
return (error);
}
}
iic_release_bus(sc->sc_tag, 0);
return (0);
}
/*ARGSUSED*/
int
strtc_write(dev_t dev, struct uio *uio, int flags)
{
struct strtc_softc *sc;
u_int8_t cmdbuf[2];
int a, error;
if ((sc = device_lookup(&strtc_cd, minor(dev))) == NULL)
return (ENXIO);
if (uio->uio_offset >= M41ST84_USER_RAM_SIZE)
return (EINVAL);
if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
return (error);
while (uio->uio_resid && uio->uio_offset < M41ST84_USER_RAM_SIZE) {
a = (int)uio->uio_offset;
cmdbuf[0] = a + M41ST84_USER_RAM;
if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
break;
if ((error = iic_exec(sc->sc_tag,
uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
printf("%s: strtc_write: write failed at 0x%x\n",
sc->sc_dev.dv_xname, a);
break;
}
}
iic_release_bus(sc->sc_tag, 0);
return (error);
}
static int
strtc_gettime(struct todr_chip_handle *ch, volatile struct timeval *tv)
{
struct strtc_softc *sc = ch->cookie;
struct clock_ymdhms dt, check;
int retries;
memset(&dt, 0, sizeof(dt));
memset(&check, 0, sizeof(check));
/*
* Since we don't support Burst Read, we have to read the clock twice
* until we get two consecutive identical results.
*/
retries = 5;
do {
strtc_clock_read(sc, &dt);
strtc_clock_read(sc, &check);
} while (memcmp(&dt, &check, sizeof(check)) != 0 && --retries);
tv->tv_sec = clock_ymdhms_to_secs(&dt);
tv->tv_usec = 0;
return (0);
}
static int
strtc_settime(struct todr_chip_handle *ch, volatile struct timeval *tv)
{
struct strtc_softc *sc = ch->cookie;
struct clock_ymdhms dt;
clock_secs_to_ymdhms(tv->tv_sec, &dt);
if (strtc_clock_write(sc, &dt) == 0)
return (-1);
return (0);
}
static int
strtc_setcal(struct todr_chip_handle *ch, int cal)
{
return (EOPNOTSUPP);
}
static int
strtc_getcal(struct todr_chip_handle *ch, int *cal)
{
return (EOPNOTSUPP);
}
static int
strtc_clock_read(struct strtc_softc *sc, struct clock_ymdhms *dt)
{
u_int8_t bcd[M41ST84_REG_DATE_BYTES], cmdbuf[1];
int i;
if (iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) {
printf("%s: strtc_clock_read: failed to acquire I2C bus\n",
sc->sc_dev.dv_xname);
return (0);
}
/*
* Check for the HT bit -- if set, then clock lost power & stopped
* If that happened, then clear the bit so that the clock will have
* a chance to run again.
*/
cmdbuf[0] = M41ST84_REG_AL_HOUR;
if (iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
printf("%s: strtc_clock_read: failed to read HT\n",
sc->sc_dev.dv_xname);
return (0);
}
if (cmdbuf[1] & M41ST84_AL_HOUR_HT) {
cmdbuf[1] &= ~M41ST84_AL_HOUR_HT;
if (iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
printf("%s: strtc_clock_read: failed to reset HT\n",
sc->sc_dev.dv_xname);
return (0);
}
}
/* Read each RTC register in order. */
for (i = M41ST84_REG_CSEC; i < M41ST84_REG_DATE_BYTES; i++) {
cmdbuf[0] = i;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_address, cmdbuf, 1,
&bcd[i], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
printf("%s: strtc_clock_read: failed to read rtc "
"at 0x%x\n", sc->sc_dev.dv_xname, i);
return (0);
}
}
/* Done with I2C */
iic_release_bus(sc->sc_tag, I2C_F_POLL);
/*
* Convert the M41ST84's register values into something useable
*/
dt->dt_sec = FROMBCD(bcd[M41ST84_REG_SEC] & M41ST84_SEC_MASK);
dt->dt_min = FROMBCD(bcd[M41ST84_REG_MIN] & M41ST84_MIN_MASK);
dt->dt_hour = FROMBCD(bcd[M41ST84_REG_CENHR] & M41ST84_HOUR_MASK);
dt->dt_day = FROMBCD(bcd[M41ST84_REG_DATE] & M41ST84_DATE_MASK);
dt->dt_mon = FROMBCD(bcd[M41ST84_REG_MONTH] & M41ST84_MONTH_MASK);
/* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
dt->dt_year = FROMBCD(bcd[M41ST84_REG_YEAR]) + POSIX_BASE_YEAR;
return (1);
}
static int
strtc_clock_write(struct strtc_softc *sc, struct clock_ymdhms *dt)
{
uint8_t bcd[M41ST84_REG_DATE_BYTES], cmdbuf[2];
int i;
/*
* Convert our time representation into something the M41ST84
* can understand.
*/
bcd[M41ST84_REG_CSEC] = TOBCD(0); /* must always write as 0 */
bcd[M41ST84_REG_SEC] = TOBCD(dt->dt_sec);
bcd[M41ST84_REG_MIN] = TOBCD(dt->dt_min);
bcd[M41ST84_REG_CENHR] = TOBCD(dt->dt_hour);
bcd[M41ST84_REG_DATE] = TOBCD(dt->dt_day);
bcd[M41ST84_REG_DAY] = TOBCD(dt->dt_wday);
bcd[M41ST84_REG_MONTH] = TOBCD(dt->dt_mon);
bcd[M41ST84_REG_YEAR] = TOBCD((dt->dt_year - POSIX_BASE_YEAR) % 100);
if (iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) {
printf("%s: strtc_clock_write: failed to acquire I2C bus\n",
sc->sc_dev.dv_xname);
return (0);
}
/* Stop the clock */
cmdbuf[0] = M41ST84_REG_SEC;
cmdbuf[1] = M41ST84_SEC_ST;
if (iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
printf("%s: strtc_clock_write: failed to Hold Clock\n",
sc->sc_dev.dv_xname);
return (0);
}
/*
* Check for the HT bit -- if set, then clock lost power & stopped
* If that happened, then clear the bit so that the clock will have
* a chance to run again.
*/
cmdbuf[0] = M41ST84_REG_AL_HOUR;
if (iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
printf("%s: strtc_clock_write: failed to read HT\n",
sc->sc_dev.dv_xname);
return (0);
}
if (cmdbuf[1] & M41ST84_AL_HOUR_HT) {
cmdbuf[1] &= ~M41ST84_AL_HOUR_HT;
if (iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
printf("%s: strtc_clock_write: failed to reset HT\n",
sc->sc_dev.dv_xname);
return (0);
}
}
/*
* Write registers in reverse order. The last write (to the Seconds
* register) will undo the Clock Hold, above.
*/
for (i = M41ST84_REG_DATE_BYTES - 1; i >= 0; i--) {
cmdbuf[0] = i;
if (iic_exec(sc->sc_tag,
i ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
sc->sc_address, cmdbuf, 1, &bcd[i], 1,
I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
printf("%s: strtc_clock_write: failed to write rtc "
" at 0x%x\n", sc->sc_dev.dv_xname, i);
/* XXX: Clock Hold is likely still asserted! */
return (0);
}
}
iic_release_bus(sc->sc_tag, I2C_F_POLL);
return (1);
}