NetBSD/sys/arch/m68k/fpe/fpu_emulate.c

1209 lines
29 KiB
C

/* $NetBSD: fpu_emulate.c,v 1.23 2001/02/05 12:35:13 chs Exp $ */
/*
* Copyright (c) 1995 Gordon W. Ross
* some portion Copyright (c) 1995 Ken Nakata
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
* 4. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Gordon Ross
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* mc68881 emulator
* XXX - Just a start at it for now...
*/
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/systm.h>
#include <machine/frame.h>
#if defined(DDB) && defined(DEBUG_FPE)
# include <m68k/db_machdep.h>
#endif
#include "fpu_emulate.h"
static int fpu_emul_fmovmcr __P((struct fpemu *fe, struct instruction *insn));
static int fpu_emul_fmovm __P((struct fpemu *fe, struct instruction *insn));
static int fpu_emul_arith __P((struct fpemu *fe, struct instruction *insn));
static int fpu_emul_type1 __P((struct fpemu *fe, struct instruction *insn));
static int fpu_emul_brcc __P((struct fpemu *fe, struct instruction *insn));
static int test_cc __P((struct fpemu *fe, int pred));
static struct fpn *fpu_cmp __P((struct fpemu *fe));
#if DEBUG_FPE
# define DUMP_INSN(insn) \
printf("fpu_emulate: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n", \
(insn)->is_advance, (insn)->is_datasize, \
(insn)->is_opcode, (insn)->is_word1)
#else
# define DUMP_INSN(insn)
#endif
/*
* Emulate a floating-point instruction.
* Return zero for success, else signal number.
* (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
*/
int
fpu_emulate(frame, fpf)
struct frame *frame;
struct fpframe *fpf;
{
static struct instruction insn;
static struct fpemu fe;
int word, optype, sig;
/* initialize insn.is_datasize to tell it is *not* initialized */
insn.is_datasize = -1;
fe.fe_frame = frame;
fe.fe_fpframe = fpf;
fe.fe_fpsr = fpf->fpf_fpsr;
fe.fe_fpcr = fpf->fpf_fpcr;
#if DEBUG_FPE
printf("ENTERING fpu_emulate: FPSR=%08x, FPCR=%08x\n",
fe.fe_fpsr, fe.fe_fpcr);
#endif
/* always set this (to avoid a warning) */
insn.is_pc = frame->f_pc;
insn.is_nextpc = 0;
if (frame->f_format == 4) {
/*
* A format 4 is generated by the 68{EC,LC}040. The PC is
* already set to the instruction following the faulting
* instruction. We need to calculate that, anyway. The
* fslw is the PC of the faulted instruction, which is what
* we expect to be in f_pc.
*
* XXX - This is a hack; it assumes we at least know the
* sizes of all instructions we run across.
* XXX TODO: This may not be true, so we might want to save the PC
* in order to restore it later.
*/
/* insn.is_nextpc = frame->f_pc; */
insn.is_pc = frame->f_fmt4.f_fslw;
frame->f_pc = insn.is_pc;
}
word = fusword((void *) (insn.is_pc));
if (word < 0) {
#ifdef DEBUG
printf("fpu_emulate: fault reading opcode\n");
#endif
return SIGSEGV;
}
if ((word & 0xf000) != 0xf000) {
#ifdef DEBUG
printf("fpu_emulate: not coproc. insn.: opcode=0x%x\n", word);
#endif
return SIGILL;
}
if ((word & 0x0E00) != 0x0200) {
#ifdef DEBUG
printf("fpu_emulate: bad coproc. id: opcode=0x%x\n", word);
#endif
return SIGILL;
}
insn.is_opcode = word;
optype = (word & 0x01C0);
word = fusword((void *) (insn.is_pc + 2));
if (word < 0) {
#ifdef DEBUG
printf("fpu_emulate: fault reading word1\n");
#endif
return SIGSEGV;
}
insn.is_word1 = word;
/* all FPU instructions are at least 4-byte long */
insn.is_advance = 4;
DUMP_INSN(&insn);
/*
* Which family (or type) of opcode is it?
* Tests ordered by likelihood (hopefully).
* Certainly, type 0 is the most common.
*/
if (optype == 0x0000) {
/* type=0: generic */
if ((word & 0xc000) == 0xc000) {
#if DEBUG_FPE
printf("fpu_emulate: fmovm FPr\n");
#endif
sig = fpu_emul_fmovm(&fe, &insn);
} else if ((word & 0xc000) == 0x8000) {
#if DEBUG_FPE
printf("fpu_emulate: fmovm FPcr\n");
#endif
sig = fpu_emul_fmovmcr(&fe, &insn);
} else if ((word & 0xe000) == 0x6000) {
/* fstore = fmove FPn,mem */
#if DEBUG_FPE
printf("fpu_emulate: fmove to mem\n");
#endif
sig = fpu_emul_fstore(&fe, &insn);
} else if ((word & 0xfc00) == 0x5c00) {
/* fmovecr */
#if DEBUG_FPE
printf("fpu_emulate: fmovecr\n");
#endif
sig = fpu_emul_fmovecr(&fe, &insn);
} else if ((word & 0xa07f) == 0x26) {
/* fscale */
#if DEBUG_FPE
printf("fpu_emulate: fscale\n");
#endif
sig = fpu_emul_fscale(&fe, &insn);
} else {
#if DEBUG_FPE
printf("fpu_emulate: other type0\n");
#endif
/* all other type0 insns are arithmetic */
sig = fpu_emul_arith(&fe, &insn);
}
if (sig == 0) {
#if DEBUG_FPE
printf("fpu_emulate: type 0 returned 0\n");
#endif
sig = fpu_upd_excp(&fe);
}
} else if (optype == 0x0080 || optype == 0x00C0) {
/* type=2 or 3: fbcc, short or long disp. */
#if DEBUG_FPE
printf("fpu_emulate: fbcc %s\n",
(optype & 0x40) ? "long" : "short");
#endif
sig = fpu_emul_brcc(&fe, &insn);
} else if (optype == 0x0040) {
/* type=1: fdbcc, fscc, ftrapcc */
#if DEBUG_FPE
printf("fpu_emulate: type1\n");
#endif
sig = fpu_emul_type1(&fe, &insn);
} else {
/* type=4: fsave (privileged) */
/* type=5: frestore (privileged) */
/* type=6: reserved */
/* type=7: reserved */
#ifdef DEBUG
printf("fpu_emulate: bad opcode type: opcode=0x%x\n", insn.is_opcode);
#endif
sig = SIGILL;
}
DUMP_INSN(&insn);
/*
* XXX it is not clear to me, if we should progress the PC always,
* for SIGFPE || 0, or only for 0; however, without SIGFPE, we
* don't pass the signalling regression tests. -is
*/
if ((sig == 0) || (sig == SIGFPE))
frame->f_pc += insn.is_advance;
#if defined(DDB) && defined(DEBUG_FPE)
else {
printf("fpu_emulate: sig=%d, opcode=%x, word1=%x\n",
sig, insn.is_opcode, insn.is_word1);
kdb_trap(-1, (db_regs_t *)&frame);
}
#endif
#if 0 /* XXX something is wrong */
if (frame->f_format == 4) {
/* XXX Restore PC -- 68{EC,LC}040 only */
if (insn.is_nextpc)
frame->f_pc = insn.is_nextpc;
}
#endif
#if DEBUG_FPE
printf("EXITING fpu_emulate: w/FPSR=%08x, FPCR=%08x\n",
fe.fe_fpsr, fe.fe_fpcr);
#endif
return (sig);
}
/* update accrued exception bits and see if there's an FP exception */
int
fpu_upd_excp(fe)
struct fpemu *fe;
{
u_int fpsr;
u_int fpcr;
fpsr = fe->fe_fpsr;
fpcr = fe->fe_fpcr;
/* update fpsr accrued exception bits; each insn doesn't have to
update this */
if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
fpsr |= FPSR_AIOP;
}
if (fpsr & FPSR_OVFL) {
fpsr |= FPSR_AOVFL;
}
if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
fpsr |= FPSR_AUNFL;
}
if (fpsr & FPSR_DZ) {
fpsr |= FPSR_ADZ;
}
if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
fpsr |= FPSR_AINEX;
}
fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
}
/* update fpsr according to fp (= result of an fp op) */
u_int
fpu_upd_fpsr(fe, fp)
struct fpemu *fe;
struct fpn *fp;
{
u_int fpsr;
#if DEBUG_FPE
printf("fpu_upd_fpsr: previous fpsr=%08x\n", fe->fe_fpsr);
#endif
/* clear all condition code */
fpsr = fe->fe_fpsr & ~FPSR_CCB;
#if DEBUG_FPE
printf("fpu_upd_fpsr: result is a ");
#endif
if (fp->fp_sign) {
#if DEBUG_FPE
printf("negative ");
#endif
fpsr |= FPSR_NEG;
#if DEBUG_FPE
} else {
printf("positive ");
#endif
}
switch (fp->fp_class) {
case FPC_SNAN:
#if DEBUG_FPE
printf("signaling NAN\n");
#endif
fpsr |= (FPSR_NAN | FPSR_SNAN);
break;
case FPC_QNAN:
#if DEBUG_FPE
printf("quiet NAN\n");
#endif
fpsr |= FPSR_NAN;
break;
case FPC_ZERO:
#if DEBUG_FPE
printf("Zero\n");
#endif
fpsr |= FPSR_ZERO;
break;
case FPC_INF:
#if DEBUG_FPE
printf("Inf\n");
#endif
fpsr |= FPSR_INF;
break;
default:
#if DEBUG_FPE
printf("Number\n");
#endif
/* anything else is treated as if it is a number */
break;
}
fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
#if DEBUG_FPE
printf("fpu_upd_fpsr: new fpsr=%08x\n", fe->fe_fpframe->fpf_fpsr);
#endif
return fpsr;
}
static int
fpu_emul_fmovmcr(fe, insn)
struct fpemu *fe;
struct instruction *insn;
{
struct frame *frame = fe->fe_frame;
struct fpframe *fpf = fe->fe_fpframe;
int sig;
int reglist;
int fpu_to_mem;
/* move to/from control registers */
reglist = (insn->is_word1 & 0x1c00) >> 10;
/* Bit 13 selects direction (FPU to/from Mem) */
fpu_to_mem = insn->is_word1 & 0x2000;
insn->is_datasize = 4;
insn->is_advance = 4;
sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
if (sig) { return sig; }
if (reglist != 1 && reglist != 2 && reglist != 4 &&
(insn->is_ea.ea_flags & EA_DIRECT)) {
/* attempted to copy more than one FPcr to CPU regs */
#ifdef DEBUG
printf("fpu_emul_fmovmcr: tried to copy too many FPcr\n");
#endif
return SIGILL;
}
if (reglist & 4) {
/* fpcr */
if ((insn->is_ea.ea_flags & EA_DIRECT) &&
insn->is_ea.ea_regnum >= 8 /* address reg */) {
/* attempted to copy FPCR to An */
#ifdef DEBUG
printf("fpu_emul_fmovmcr: tried to copy FPCR from/to A%d\n",
insn->is_ea.ea_regnum & 7);
#endif
return SIGILL;
}
if (fpu_to_mem) {
sig = fpu_store_ea(frame, insn, &insn->is_ea,
(char *)&fpf->fpf_fpcr);
} else {
sig = fpu_load_ea(frame, insn, &insn->is_ea,
(char *)&fpf->fpf_fpcr);
}
}
if (sig) { return sig; }
if (reglist & 2) {
/* fpsr */
if ((insn->is_ea.ea_flags & EA_DIRECT) &&
insn->is_ea.ea_regnum >= 8 /* address reg */) {
/* attempted to copy FPSR to An */
#ifdef DEBUG
printf("fpu_emul_fmovmcr: tried to copy FPSR from/to A%d\n",
insn->is_ea.ea_regnum & 7);
#endif
return SIGILL;
}
if (fpu_to_mem) {
sig = fpu_store_ea(frame, insn, &insn->is_ea,
(char *)&fpf->fpf_fpsr);
} else {
sig = fpu_load_ea(frame, insn, &insn->is_ea,
(char *)&fpf->fpf_fpsr);
}
}
if (sig) { return sig; }
if (reglist & 1) {
/* fpiar - can be moved to/from An */
if (fpu_to_mem) {
sig = fpu_store_ea(frame, insn, &insn->is_ea,
(char *)&fpf->fpf_fpiar);
} else {
sig = fpu_load_ea(frame, insn, &insn->is_ea,
(char *)&fpf->fpf_fpiar);
}
}
return sig;
}
/*
* type 0: fmovem
* Separated out of fpu_emul_type0 for efficiency.
* In this function, we know:
* (opcode & 0x01C0) == 0
* (word1 & 0x8000) == 0x8000
*
* No conversion or rounding is done by this instruction,
* and the FPSR is not affected.
*/
static int
fpu_emul_fmovm(fe, insn)
struct fpemu *fe;
struct instruction *insn;
{
struct frame *frame = fe->fe_frame;
struct fpframe *fpf = fe->fe_fpframe;
int word1, sig;
int reglist, regmask, regnum;
int fpu_to_mem, order;
int w1_post_incr;
int *fpregs;
insn->is_advance = 4;
insn->is_datasize = 12;
word1 = insn->is_word1;
/* Bit 13 selects direction (FPU to/from Mem) */
fpu_to_mem = word1 & 0x2000;
/*
* Bits 12,11 select register list mode:
* 0,0: Static reg list, pre-decr.
* 0,1: Dynamic reg list, pre-decr.
* 1,0: Static reg list, post-incr.
* 1,1: Dynamic reg list, post-incr
*/
w1_post_incr = word1 & 0x1000;
if (word1 & 0x0800) {
/* dynamic reg list */
reglist = frame->f_regs[(word1 & 0x70) >> 4];
} else {
reglist = word1;
}
reglist &= 0xFF;
/* Get effective address. (modreg=opcode&077) */
sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
if (sig) { return sig; }
/* Get address of soft coprocessor regs. */
fpregs = &fpf->fpf_regs[0];
if (insn->is_ea.ea_flags & EA_PREDECR) {
regnum = 7;
order = -1;
} else {
regnum = 0;
order = 1;
}
regmask = 0x80;
while ((0 <= regnum) && (regnum < 8)) {
if (regmask & reglist) {
if (fpu_to_mem) {
sig = fpu_store_ea(frame, insn, &insn->is_ea,
(char*)&fpregs[regnum * 3]);
#if DEBUG_FPE
printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) saved\n",
regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
fpregs[regnum * 3 + 2]);
#endif
} else { /* mem to fpu */
sig = fpu_load_ea(frame, insn, &insn->is_ea,
(char*)&fpregs[regnum * 3]);
#if DEBUG_FPE
printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) loaded\n",
regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
fpregs[regnum * 3 + 2]);
#endif
}
if (sig) { break; }
}
regnum += order;
regmask >>= 1;
}
return sig;
}
static struct fpn *
fpu_cmp(fe)
struct fpemu *fe;
{
struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
/* take care of special cases */
if (x->fp_class < 0 || y->fp_class < 0) {
/* if either of two is a SNAN, result is SNAN */
x->fp_class = (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
} else if (x->fp_class == FPC_INF) {
if (y->fp_class == FPC_INF) {
/* both infinities */
if (x->fp_sign == y->fp_sign) {
x->fp_class = FPC_ZERO; /* return a signed zero */
} else {
x->fp_class = FPC_NUM; /* return a faked number w/x's sign */
x->fp_exp = 16383;
x->fp_mant[0] = FP_1;
}
} else {
/* y is a number */
x->fp_class = FPC_NUM; /* return a forged number w/x's sign */
x->fp_exp = 16383;
x->fp_mant[0] = FP_1;
}
} else if (y->fp_class == FPC_INF) {
/* x is a Num but y is an Inf */
/* return a forged number w/y's sign inverted */
x->fp_class = FPC_NUM;
x->fp_sign = !y->fp_sign;
x->fp_exp = 16383;
x->fp_mant[0] = FP_1;
} else {
/* x and y are both numbers or zeros, or pair of a number and a zero */
y->fp_sign = !y->fp_sign;
x = fpu_add(fe); /* (x - y) */
/*
* FCMP does not set Inf bit in CC, so return a forged number
* (value doesn't matter) if Inf is the result of fsub.
*/
if (x->fp_class == FPC_INF) {
x->fp_class = FPC_NUM;
x->fp_exp = 16383;
x->fp_mant[0] = FP_1;
}
}
return x;
}
/*
* arithmetic oprations
*/
static int
fpu_emul_arith(fe, insn)
struct fpemu *fe;
struct instruction *insn;
{
struct frame *frame = fe->fe_frame;
u_int *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
struct fpn *res;
int word1, sig = 0;
int regnum, format;
int discard_result = 0;
u_int buf[3];
#if DEBUG_FPE
int flags;
char regname;
#endif
fe->fe_fpsr &= ~FPSR_EXCP;
DUMP_INSN(insn);
#if DEBUG_FPE
printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
fe->fe_fpsr, fe->fe_fpcr);
#endif
word1 = insn->is_word1;
format = (word1 >> 10) & 7;
regnum = (word1 >> 7) & 7;
/* fetch a source operand : may not be used */
#if DEBUG_FPE
printf("fpu_emul_arith: dst/src FP%d=%08x,%08x,%08x\n",
regnum, fpregs[regnum*3], fpregs[regnum*3+1],
fpregs[regnum*3+2]);
#endif
fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
DUMP_INSN(insn);
/* get the other operand which is always the source */
if ((word1 & 0x4000) == 0) {
#if DEBUG_FPE
printf("fpu_emul_arith: FP%d op FP%d => FP%d\n",
format, regnum, regnum);
printf("fpu_emul_arith: src opr FP%d=%08x,%08x,%08x\n",
format, fpregs[format*3], fpregs[format*3+1],
fpregs[format*3+2]);
#endif
fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
} else {
/* the operand is in memory */
if (format == FTYPE_DBL) {
insn->is_datasize = 8;
} else if (format == FTYPE_SNG || format == FTYPE_LNG) {
insn->is_datasize = 4;
} else if (format == FTYPE_WRD) {
insn->is_datasize = 2;
} else if (format == FTYPE_BYT) {
insn->is_datasize = 1;
} else if (format == FTYPE_EXT) {
insn->is_datasize = 12;
} else {
/* invalid or unsupported operand format */
sig = SIGFPE;
return sig;
}
/* Get effective address. (modreg=opcode&077) */
sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
if (sig) {
#if DEBUG_FPE
printf("fpu_emul_arith: error in fpu_decode_ea\n");
#endif
return sig;
}
DUMP_INSN(insn);
#if DEBUG_FPE
printf("fpu_emul_arith: addr mode = ");
flags = insn->is_ea.ea_flags;
regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
if (flags & EA_DIRECT) {
printf("%c%d\n",
regname, insn->is_ea.ea_regnum & 7);
} else if (flags & EA_PC_REL) {
if (flags & EA_OFFSET) {
printf("pc@(%d)\n", insn->is_ea.ea_offset);
} else if (flags & EA_INDEXED) {
printf("pc@(...)\n");
}
} else if (flags & EA_PREDECR) {
printf("%c%d@-\n",
regname, insn->is_ea.ea_regnum & 7);
} else if (flags & EA_POSTINCR) {
printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
} else if (flags & EA_OFFSET) {
printf("%c%d@(%d)\n", regname, insn->is_ea.ea_regnum & 7,
insn->is_ea.ea_offset);
} else if (flags & EA_INDEXED) {
printf("%c%d@(...)\n", regname, insn->is_ea.ea_regnum & 7);
} else if (flags & EA_ABS) {
printf("0x%08x\n", insn->is_ea.ea_absaddr);
} else if (flags & EA_IMMED) {
printf("#0x%08x,%08x,%08x\n", insn->is_ea.ea_immed[0],
insn->is_ea.ea_immed[1], insn->is_ea.ea_immed[2]);
} else {
printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
}
#endif /* DEBUG_FPE */
fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
if (format == FTYPE_WRD) {
/* sign-extend */
buf[0] &= 0xffff;
if (buf[0] & 0x8000) {
buf[0] |= 0xffff0000;
}
format = FTYPE_LNG;
} else if (format == FTYPE_BYT) {
/* sign-extend */
buf[0] &= 0xff;
if (buf[0] & 0x80) {
buf[0] |= 0xffffff00;
}
format = FTYPE_LNG;
}
#if DEBUG_FPE
printf("fpu_emul_arith: src = %08x %08x %08x, siz = %d\n",
buf[0], buf[1], buf[2], insn->is_datasize);
#endif
fpu_explode(fe, &fe->fe_f2, format, buf);
}
DUMP_INSN(insn);
/* An arithmetic instruction emulate function has a prototype of
* struct fpn *fpu_op(struct fpemu *);
* 1) If the instruction is monadic, then fpu_op() must use
* fe->fe_f2 as its operand, and return a pointer to the
* result.
* 2) If the instruction is diadic, then fpu_op() must use
* fe->fe_f1 and fe->fe_f2 as its two operands, and return a
* pointer to the result.
*/
res = 0;
switch (word1 & 0x3f) {
case 0x00: /* fmove */
res = &fe->fe_f2;
break;
case 0x01: /* fint */
res = fpu_int(fe);
break;
case 0x02: /* fsinh */
res = fpu_sinh(fe);
break;
case 0x03: /* fintrz */
res = fpu_intrz(fe);
break;
case 0x04: /* fsqrt */
res = fpu_sqrt(fe);
break;
case 0x06: /* flognp1 */
res = fpu_lognp1(fe);
break;
case 0x08: /* fetoxm1 */
res = fpu_etoxm1(fe);
break;
case 0x09: /* ftanh */
res = fpu_tanh(fe);
break;
case 0x0A: /* fatan */
res = fpu_atan(fe);
break;
case 0x0C: /* fasin */
res = fpu_asin(fe);
break;
case 0x0D: /* fatanh */
res = fpu_atanh(fe);
break;
case 0x0E: /* fsin */
res = fpu_sin(fe);
break;
case 0x0F: /* ftan */
res = fpu_tan(fe);
break;
case 0x10: /* fetox */
res = fpu_etox(fe);
break;
case 0x11: /* ftwotox */
res = fpu_twotox(fe);
break;
case 0x12: /* ftentox */
res = fpu_tentox(fe);
break;
case 0x14: /* flogn */
res = fpu_logn(fe);
break;
case 0x15: /* flog10 */
res = fpu_log10(fe);
break;
case 0x16: /* flog2 */
res = fpu_log2(fe);
break;
case 0x18: /* fabs */
fe->fe_f2.fp_sign = 0;
res = &fe->fe_f2;
break;
case 0x19: /* fcosh */
res = fpu_cosh(fe);
break;
case 0x1A: /* fneg */
fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
res = &fe->fe_f2;
break;
case 0x1C: /* facos */
res = fpu_acos(fe);
break;
case 0x1D: /* fcos */
res = fpu_cos(fe);
break;
case 0x1E: /* fgetexp */
res = fpu_getexp(fe);
break;
case 0x1F: /* fgetman */
res = fpu_getman(fe);
break;
case 0x20: /* fdiv */
case 0x24: /* fsgldiv: cheating - better than nothing */
res = fpu_div(fe);
break;
case 0x21: /* fmod */
res = fpu_mod(fe);
break;
case 0x28: /* fsub */
fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
case 0x22: /* fadd */
res = fpu_add(fe);
break;
case 0x23: /* fmul */
case 0x27: /* fsglmul: cheating - better than nothing */
res = fpu_mul(fe);
break;
case 0x25: /* frem */
res = fpu_rem(fe);
break;
case 0x26:
/* fscale is handled by a separate function */
break;
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37: /* fsincos */
res = fpu_sincos(fe, word1 & 7);
break;
case 0x38: /* fcmp */
res = fpu_cmp(fe);
discard_result = 1;
break;
case 0x3A: /* ftst */
res = &fe->fe_f2;
discard_result = 1;
break;
default:
#ifdef DEBUG
printf("fpu_emul_arith: bad opcode=0x%x, word1=0x%x\n",
insn->is_opcode, insn->is_word1);
#endif
sig = SIGILL;
} /* switch (word1 & 0x3f) */
if (!discard_result && sig == 0) {
fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
#if DEBUG_FPE
printf("fpu_emul_arith: %08x,%08x,%08x stored in FP%d\n",
fpregs[regnum*3], fpregs[regnum*3+1],
fpregs[regnum*3+2], regnum);
} else if (sig == 0) {
static char *class_name[] = { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
printf("fpu_emul_arith: result(%s,%c,%d,%08x,%08x,%08x) discarded\n",
class_name[res->fp_class + 2],
res->fp_sign ? '-' : '+', res->fp_exp,
res->fp_mant[0], res->fp_mant[1],
res->fp_mant[2]);
} else {
printf("fpu_emul_arith: received signal %d\n", sig);
#endif
}
/* update fpsr according to the result of operation */
fpu_upd_fpsr(fe, res);
#if DEBUG_FPE
printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
fe->fe_fpsr, fe->fe_fpcr);
#endif
DUMP_INSN(insn);
return sig;
}
/* test condition code according to the predicate in the opcode.
* returns -1 when the predicate evaluates to true, 0 when false.
* signal numbers are returned when an error is detected.
*/
static int
test_cc(fe, pred)
struct fpemu *fe;
int pred;
{
int result, sig_bsun, invert;
int fpsr;
fpsr = fe->fe_fpsr;
invert = 0;
fpsr &= ~FPSR_EXCP; /* clear all exceptions */
#if DEBUG_FPE
printf("test_cc: fpsr=0x%08x\n", fpsr);
#endif
pred &= 0x3f; /* lowest 6 bits */
#if DEBUG_FPE
printf("test_cc: ");
#endif
if (pred >= 0x20) {
return SIGILL;
} else if (pred & 0x10) {
/* IEEE nonaware tests */
sig_bsun = 1;
pred &= 0x0f; /* lower 4 bits */
} else {
/* IEEE aware tests */
#if DEBUG_FPE
printf("IEEE ");
#endif
sig_bsun = 0;
}
if (pred & 0x08) {
#if DEBUG_FPE
printf("Not ");
#endif
/* predicate is "NOT ..." */
pred ^= 0xf; /* invert */
invert = -1;
}
switch (pred) {
case 0: /* (Signaling) False */
#if DEBUG_FPE
printf("False");
#endif
result = 0;
break;
case 1: /* (Signaling) Equal */
#if DEBUG_FPE
printf("Equal");
#endif
result = -((fpsr & FPSR_ZERO) == FPSR_ZERO);
break;
case 2: /* Greater Than */
#if DEBUG_FPE
printf("GT");
#endif
result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == 0);
break;
case 3: /* Greater or Equal */
#if DEBUG_FPE
printf("GE");
#endif
result = -((fpsr & FPSR_ZERO) ||
(fpsr & (FPSR_NAN|FPSR_NEG)) == 0);
break;
case 4: /* Less Than */
#if DEBUG_FPE
printf("LT");
#endif
result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == FPSR_NEG);
break;
case 5: /* Less or Equal */
#if DEBUG_FPE
printf("LE");
#endif
result = -((fpsr & FPSR_ZERO) ||
((fpsr & (FPSR_NAN|FPSR_NEG)) == FPSR_NEG));
break;
case 6: /* Greater or Less than */
#if DEBUG_FPE
printf("GLT");
#endif
result = -((fpsr & (FPSR_NAN|FPSR_ZERO)) == 0);
break;
case 7: /* Greater, Less or Equal */
#if DEBUG_FPE
printf("GLE");
#endif
result = -((fpsr & FPSR_NAN) == 0);
break;
default:
/* invalid predicate */
return SIGILL;
}
result ^= invert; /* if the predicate is "NOT ...", then
invert the result */
#if DEBUG_FPE
printf("=> %s (%d)\n", result ? "true" : "false", result);
#endif
/* if it's an IEEE unaware test and NAN is set, BSUN is set */
if (sig_bsun && (fpsr & FPSR_NAN)) {
fpsr |= FPSR_BSUN;
}
/* put fpsr back */
fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
return result;
}
/*
* type 1: fdbcc, fscc, ftrapcc
* In this function, we know:
* (opcode & 0x01C0) == 0x0040
*/
static int
fpu_emul_type1(fe, insn)
struct fpemu *fe;
struct instruction *insn;
{
struct frame *frame = fe->fe_frame;
int advance, sig, branch, displ;
branch = test_cc(fe, insn->is_word1);
fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
insn->is_advance = 4;
sig = 0;
switch (insn->is_opcode & 070) {
case 010: /* fdbcc */
if (branch == -1) {
/* advance */
insn->is_advance = 6;
} else if (!branch) {
/* decrement Dn and if (Dn != -1) branch */
u_int16_t count = frame->f_regs[insn->is_opcode & 7];
if (count-- != 0) {
displ = fusword((void *) (insn->is_pc + insn->is_advance));
if (displ < 0) {
#ifdef DEBUG
printf("fpu_emul_type1: fault reading displacement\n");
#endif
return SIGSEGV;
}
/* sign-extend the displacement */
displ &= 0xffff;
if (displ & 0x8000) {
displ |= 0xffff0000;
}
insn->is_advance += displ;
/* XXX insn->is_nextpc = insn->is_pc + insn->is_advance; */
} else {
insn->is_advance = 6;
}
/* write it back */
frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
frame->f_regs[insn->is_opcode & 7] |= (u_int32_t)count;
} else { /* got a signal */
sig = SIGFPE;
}
break;
case 070: /* ftrapcc or fscc */
advance = 4;
if ((insn->is_opcode & 07) >= 2) {
switch (insn->is_opcode & 07) {
case 3: /* long opr */
advance += 2;
case 2: /* word opr */
advance += 2;
case 4: /* no opr */
break;
default:
return SIGILL;
break;
}
if (branch == 0) {
/* no trap */
insn->is_advance = advance;
sig = 0;
} else {
/* trap */
sig = SIGFPE;
}
break;
} /* if ((insn->is_opcode & 7) < 2), fall through to FScc */
default: /* fscc */
insn->is_advance = 4;
insn->is_datasize = 1; /* always byte */
sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
if (sig) {
break;
}
if (branch == -1 || branch == 0) {
/* set result */
sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)&branch);
} else {
/* got an exception */
sig = branch;
}
break;
}
return sig;
}
/*
* Type 2 or 3: fbcc (also fnop)
* In this function, we know:
* (opcode & 0x0180) == 0x0080
*/
static int
fpu_emul_brcc(fe, insn)
struct fpemu *fe;
struct instruction *insn;
{
int displ, word2;
int sig;
/*
* Get branch displacement.
*/
insn->is_advance = 4;
displ = insn->is_word1;
if (insn->is_opcode & 0x40) {
word2 = fusword((void *) (insn->is_pc + insn->is_advance));
if (word2 < 0) {
#ifdef DEBUG
printf("fpu_emul_brcc: fault reading word2\n");
#endif
return SIGSEGV;
}
displ <<= 16;
displ |= word2;
insn->is_advance += 2;
} else /* displacement is word sized */
if (displ & 0x8000)
displ |= 0xFFFF0000;
/* XXX: If CC, insn->is_pc += displ */
sig = test_cc(fe, insn->is_opcode);
fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
return SIGFPE; /* caught an exception */
}
if (sig == -1) {
/* branch does take place; 2 is the offset to the 1st disp word */
insn->is_advance = displ + 2;
/* XXX insn->is_nextpc = insn->is_pc + insn->is_advance; */
} else if (sig) {
return SIGILL; /* got a signal */
}
#if DEBUG_FPE
printf("fpu_emul_brcc: %s insn @ %x (%x+%x) (disp=%x)\n",
(sig == -1) ? "BRANCH to" : "NEXT",
insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
displ);
#endif
return 0;
}