NetBSD/sys/dev/raidframe/rf_layout.h

350 lines
14 KiB
C

/* $NetBSD: rf_layout.h,v 1.4 2000/05/23 00:44:38 thorpej Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/* rf_layout.h -- header file defining layout data structures
*/
#ifndef _RF__RF_LAYOUT_H_
#define _RF__RF_LAYOUT_H_
#include "rf_types.h"
#include "rf_archs.h"
#include "rf_alloclist.h"
#ifndef _KERNEL
#include <stdio.h>
#endif
/*****************************************************************************************
*
* This structure identifies all layout-specific operations and parameters.
*
****************************************************************************************/
typedef struct RF_LayoutSW_s {
RF_ParityConfig_t parityConfig;
const char *configName;
#ifndef _KERNEL
/* layout-specific parsing */
int (*MakeLayoutSpecific) (FILE * fp, RF_Config_t * cfgPtr, void *arg);
void *makeLayoutSpecificArg;
#endif /* !KERNEL */
#if RF_UTILITY == 0
/* initialization routine */
int (*Configure) (RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr);
/* routine to map RAID sector address -> physical (row, col, offset) */
void (*MapSector) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
/* routine to map RAID sector address -> physical (r,c,o) of parity
* unit */
void (*MapParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
/* routine to map RAID sector address -> physical (r,c,o) of Q unit */
void (*MapQ) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * row,
RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
/* routine to identify the disks comprising a stripe */
void (*IdentifyStripe) (RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
/* routine to select a dag */
void (*SelectionFunc) (RF_Raid_t * raidPtr, RF_IoType_t type,
RF_AccessStripeMap_t * asmap,
RF_VoidFuncPtr *);
#if 0
void (**createFunc) (RF_Raid_t *,
RF_AccessStripeMap_t *,
RF_DagHeader_t *, void *,
RF_RaidAccessFlags_t,
/**INDENT** Warning@88: Extra ) */
RF_AllocListElem_t *));
#endif
/* map a stripe ID to a parity stripe ID. This is typically the
* identity mapping */
void (*MapSIDToPSID) (RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID,
RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru);
/* get default head separation limit (may be NULL) */
RF_HeadSepLimit_t(*GetDefaultHeadSepLimit) (RF_Raid_t * raidPtr);
/* get default num recon buffers (may be NULL) */
int (*GetDefaultNumFloatingReconBuffers) (RF_Raid_t * raidPtr);
/* get number of spare recon units (may be NULL) */
RF_ReconUnitCount_t(*GetNumSpareRUs) (RF_Raid_t * raidPtr);
/* spare table installation (may be NULL) */
int (*InstallSpareTable) (RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol);
/* recon buffer submission function */
int (*SubmitReconBuffer) (RF_ReconBuffer_t * rbuf, int keep_it,
int use_committed);
/*
* verify that parity information for a stripe is correct
* see rf_parityscan.h for return vals
*/
int (*VerifyParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
/* number of faults tolerated by this mapping */
int faultsTolerated;
/* states to step through in an access. Must end with "LastState". The
* default is DefaultStates in rf_layout.c */
RF_AccessState_t *states;
RF_AccessStripeMapFlags_t flags;
#endif /* RF_UTILITY == 0 */
} RF_LayoutSW_t;
/* enables remapping to spare location under dist sparing */
#define RF_REMAP 1
#define RF_DONT_REMAP 0
/*
* Flags values for RF_AccessStripeMapFlags_t
*/
#define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */
#define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs
* that support it */
#define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */
/*************************************************************************
*
* this structure forms the layout component of the main Raid
* structure. It describes everything needed to define and perform
* the mapping of logical RAID addresses <-> physical disk addresses.
*
*************************************************************************/
struct RF_RaidLayout_s {
/* configuration parameters */
RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one
* stripe unit */
RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */
RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction
* unit */
/* redundant-but-useful info computed from the above, used in all
* layouts */
RF_StripeCount_t numStripe; /* total number of stripes in the
* array */
RF_SectorCount_t dataSectorsPerStripe;
RF_StripeCount_t dataStripeUnitsPerDisk;
u_int bytesPerStripeUnit;
u_int dataBytesPerStripe;
RF_StripeCount_t numDataCol; /* number of SUs of data per stripe
* (name here is a la RAID4) */
RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe.
* Always 1 for now */
RF_StripeCount_t numParityLogCol; /* number of SUs of parity log
* per stripe. Always 1 for
* now */
RF_StripeCount_t stripeUnitsPerDisk;
RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and
* information */
void *layoutSpecificInfo; /* ptr to a structure holding
* layout-specific params */
};
/*****************************************************************************************
*
* The mapping code returns a pointer to a list of AccessStripeMap structures, which
* describes all the mapping information about an access. The list contains one
* AccessStripeMap structure per stripe touched by the access. Each element in the list
* contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each
* element in this latter list describes the physical location of a stripe unit accessed
* within the corresponding stripe.
*
****************************************************************************************/
#define RF_PDA_TYPE_DATA 0
#define RF_PDA_TYPE_PARITY 1
#define RF_PDA_TYPE_Q 2
struct RF_PhysDiskAddr_s {
RF_RowCol_t row, col; /* disk identifier */
RF_SectorNum_t startSector; /* sector offset into the disk */
RF_SectorCount_t numSector; /* number of sectors accessed */
int type; /* used by higher levels: currently, data,
* parity, or q */
caddr_t bufPtr; /* pointer to buffer supplying/receiving data */
RF_RaidAddr_t raidAddress; /* raid address corresponding to this
* physical disk address */
RF_PhysDiskAddr_t *next;
};
#define RF_MAX_FAILED_PDA RF_MAXCOL
struct RF_AccessStripeMap_s {
RF_StripeNum_t stripeID;/* the stripe index */
RF_RaidAddr_t raidAddress; /* the starting raid address within
* this stripe */
RF_RaidAddr_t endRaidAddress; /* raid address one sector past the
* end of the access */
RF_SectorCount_t totalSectorsAccessed; /* total num sectors
* identified in physInfo list */
RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in
* physInfo list */
int numDataFailed; /* number of failed data disks accessed */
int numParityFailed;/* number of failed parity disks accessed (0
* or 1) */
int numQFailed; /* number of failed Q units accessed (0 or 1) */
RF_AccessStripeMapFlags_t flags; /* various flags */
#if 0
RF_PhysDiskAddr_t *failedPDA; /* points to the PDA that has failed */
RF_PhysDiskAddr_t *failedPDAtwo; /* points to the second PDA
* that has failed, if any */
#else
int numFailedPDAs; /* number of failed phys addrs */
RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys
* addrs */
#endif
RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */
RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the
* parity (P of P + Q ) */
RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of
* P + Q */
RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */
RF_RowCol_t origRow; /* the original row: we may redirect the acc
* to a different row */
RF_AccessStripeMap_t *next;
};
/* flag values */
#define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation
* code to redirect failed
* accs */
#define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect
* recursive calls to the
* bailout write dag */
#define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on
* the first parity range in
* this parity stripe */
#define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on
* the 2nd parity range in
* this parity stripe */
#define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon
* call on this parity stripe */
#define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must
* unblock it later */
struct RF_AccessStripeMapHeader_s {
RF_StripeCount_t numStripes; /* total number of stripes touched by
* this acc */
RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map.
* Also used for making lists */
RF_AccessStripeMapHeader_t *next;
};
/*****************************************************************************************
*
* various routines mapping addresses in the RAID address space. These work across
* all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
*
****************************************************************************************/
/* return the identifier of the stripe containing the given address */
#define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
/* return the raid address of the start of the indicates stripe ID */
#define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
/* return the identifier of the stripe containing the given stripe unit id */
#define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
( (_addr_) / (_layoutPtr_)->numDataCol )
/* return the identifier of the stripe unit containing the given address */
#define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
/* return the RAID address of next stripe boundary beyond the given address */
#define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
/* return the RAID address of the start of the stripe containing the given address */
#define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
/* return the RAID address of next stripe unit boundary beyond the given address */
#define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
/* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
#define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
/* returns the offset into the stripe. used by RaidAddressStripeAligned */
#define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
/* returns the offset into the stripe unit. */
#define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
/* returns nonzero if the given RAID address is stripe-aligned */
#define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
/* returns nonzero if the given address is stripe-unit aligned */
#define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
/* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
#define rf_RaidAddressToByte(_raidPtr_, _addr_) \
( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
#define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
/* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy,
* since we're asking for the address of the first sector in the parity stripe. Conversion to a
* parity stripe ID is more complex, since stripes are not contiguously allocated in
* parity stripes.
*/
#define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
#define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
int
rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
RF_Config_t * cfgPtr);
RF_StripeNum_t
rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
#endif /* !_RF__RF_LAYOUT_H_ */