NetBSD/sys/arch/powerpc/ibm4xx/intr.c

477 lines
11 KiB
C

/* $NetBSD: intr.c,v 1.7 2005/06/03 11:58:02 scw Exp $ */
/*
* Copyright 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: intr.c,v 1.7 2005/06/03 11:58:02 scw Exp $");
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <uvm/uvm_extern.h>
#include <machine/intr.h>
#include <machine/psl.h>
#include <powerpc/spr.h>
#ifdef PPC_IBM403
#include <powerpc/ibm4xx/dcr403cgx.h>
#define INTR_STATUS DCR_EXISR
#define INTR_ACK DCR_EXISR
#define INTR_ENABLE DCR_EXIER
#else
#include <powerpc/ibm4xx/dcr405gp.h>
#define INTR_STATUS DCR_UIC0_MSR
#define INTR_ACK DCR_UIC0_SR
#define INTR_ENABLE DCR_UIC0_ER
#endif
static inline void disable_irq(int irq);
static inline void enable_irq(int irq);
static void intr_calculatemasks(void);
static const char *intr_typename(int);
static int fakeintr(void *);
static inline int cntlzw(int);
volatile int cpl, ipending;
u_long imask[NIPL];
static int intrtype[ICU_LEN], intrmask[ICU_LEN], intrlevel[ICU_LEN];
static struct intrhand *intrhand[ICU_LEN];
static inline int
cntlzw(int x)
{
int a;
__asm __volatile ("cntlzw %0,%1" : "=r"(a) : "r"(x));
return a;
}
static int
fakeintr(void *arg)
{
return 0;
}
/*
* Set up interrupt mapping array.
*/
void
intr_init(void)
{
}
/*
* external interrupt handler
*/
void
ext_intr(void)
{
int i, bits_to_clear;
int r_imen, msr;
int pcpl;
struct intrhand *ih;
u_long int_state;
pcpl = cpl;
asm volatile ("mfmsr %0" : "=r"(msr));
int_state = mfdcr(INTR_STATUS); /* Read non-masked interrupt status */
bits_to_clear = int_state;
while (int_state) {
i = cntlzw(int_state);
int_state &= ~IRQ_TO_MASK(i);
r_imen = IRQ_TO_MASK(i);
if ((pcpl & r_imen) != 0) {
ipending |= r_imen; /* Masked! Mark this as pending */
disable_irq(i);
} else {
splraise(intrmask[i]);
asm volatile ("mtmsr %0" :: "r"(msr | PSL_EE));
KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
ih = intrhand[i];
while (ih) {
(*ih->ih_fun)(ih->ih_arg);
ih = ih->ih_next;
}
KERNEL_UNLOCK();
asm volatile ("mtmsr %0" :: "r"(msr));
cpl = pcpl;
uvmexp.intrs++;
intrcnt[i]++;
}
}
mtdcr(INTR_ACK, bits_to_clear); /* Acknowledge all pending interrupts */
asm volatile ("mtmsr %0" :: "r"(msr | PSL_EE));
splx(pcpl);
asm volatile ("mtmsr %0" :: "r"(msr));
}
static inline void
disable_irq(int irq)
{
int mask, omask;
mask = omask = mfdcr(INTR_ENABLE);
mask &= ~IRQ_TO_MASK(irq);
if (mask == omask)
return;
mtdcr(INTR_ENABLE, mask);
#ifdef IRQ_DEBUG
printf("irq_disable: irq=%d, mask=%08x\n",irq,mask);
#endif
}
static inline void
enable_irq(int irq)
{
int mask, omask;
mask = omask = mfdcr(INTR_ENABLE);
mask |= IRQ_TO_MASK(irq);
if (mask == omask)
return;
mtdcr(INTR_ENABLE, mask);
#ifdef IRQ_DEBUG
printf("irq_enable: irq=%d, mask=%08x\n",irq,mask);
#endif
}
static const char *
intr_typename(int type)
{
switch (type) {
case IST_NONE :
return ("none");
case IST_PULSE:
return ("pulsed");
case IST_EDGE:
return ("edge-triggered");
case IST_LEVEL:
return ("level-triggered");
default:
panic("isa_intr_typename: invalid type %d", type);
}
}
/*
* Register an interrupt handler.
*/
void *
intr_establish(int irq, int type, int level, int (*ih_fun)(void *), void *ih_arg)
{
struct intrhand **p, *q, *ih;
static struct intrhand fakehand = { fakeintr };
/* no point in sleeping unless someone can free memory. */
ih = malloc(sizeof *ih, M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
if (ih == NULL)
panic("intr_establish: can't malloc handler info");
if (!LEGAL_IRQ(irq) || type == IST_NONE)
panic("intr_establish: bogus irq or type");
switch (intrtype[irq]) {
case IST_EDGE:
case IST_LEVEL:
if (type == intrtype[irq])
break;
case IST_PULSE:
if (type != IST_NONE)
panic("intr_establish: can't share %s with %s",
intr_typename(intrtype[irq]),
intr_typename(type));
break;
}
/*
* Figure out where to put the handler.
* This is O(N^2), but we want to preserve the order, and N is
* generally small.
*/
for (p = &intrhand[irq]; (q = *p) != NULL; p = &q->ih_next)
;
/*
* Actually install a fake handler momentarily, since we might be doing
* this with interrupts enabled and don't want the real routine called
* until masking is set up.
*/
fakehand.ih_level = level;
*p = &fakehand;
intr_calculatemasks();
/*
* Poke the real handler in now.
*/
ih->ih_fun = ih_fun;
ih->ih_arg = ih_arg;
ih->ih_count = 0;
ih->ih_next = NULL;
ih->ih_level = level;
ih->ih_irq = irq;
*p = ih;
#ifdef IRQ_DEBUG
printf("***** intr_establish: irq%d h=%p arg=%p\n",irq, ih_fun, ih_arg);
#endif
return (ih);
}
/*
* Deregister an interrupt handler.
*/
void
intr_disestablish(void *arg)
{
struct intrhand *ih = arg;
int irq = ih->ih_irq;
struct intrhand **p, *q;
if (!LEGAL_IRQ(irq))
panic("intr_disestablish: bogus irq");
/*
* Remove the handler from the chain.
* This is O(n^2), too.
*/
for (p = &intrhand[irq]; (q = *p) != NULL && q != ih; p = &q->ih_next)
;
if (q)
*p = q->ih_next;
else
panic("intr_disestablish: handler not registered");
free((void *)ih, M_DEVBUF);
intr_calculatemasks();
if (intrhand[irq] == NULL)
intrtype[irq] = IST_NONE;
}
/*
* Recalculate the interrupt masks from scratch.
* We could code special registry and deregistry versions of this function that
* would be faster, but the code would be nastier, and we don't expect this to
* happen very much anyway.
*/
static void
intr_calculatemasks(void)
{
int irq, level;
struct intrhand *q;
/* First, figure out which levels each IRQ uses. */
for (irq = 0; irq < ICU_LEN; irq++) {
register int levels = 0;
for (q = intrhand[irq]; q; q = q->ih_next)
levels |= 1 << q->ih_level;
intrlevel[irq] = levels;
}
/* Then figure out which IRQs use each level. */
for (level = 0; level < NIPL; level++) {
register int irqs = 0;
for (irq = 0; irq < ICU_LEN; irq++)
if (intrlevel[irq] & (1 << level))
irqs |= IRQ_TO_MASK(irq);
imask[level] = irqs | SINT_MASK;
}
/*
* IPL_CLOCK should mask clock interrupt even if interrupt handler
* is not registered.
*/
imask[IPL_CLOCK] |= SPL_CLOCK;
/*
* Initialize the soft interrupt masks to block themselves.
*/
imask[IPL_SOFTCLOCK] = SINT_CLOCK;
imask[IPL_SOFTNET] = SINT_NET;
imask[IPL_SOFTSERIAL] = SINT_SERIAL;
/*
* IPL_NONE is used for hardware interrupts that are never blocked,
* and do not block anything else.
*/
imask[IPL_NONE] = 0;
/*
* Enforce a hierarchy that gives slow devices a better chance at not
* dropping data.
*/
imask[IPL_SOFTCLOCK] |= imask[IPL_NONE];
imask[IPL_SOFTNET] |= imask[IPL_SOFTCLOCK];
imask[IPL_BIO] |= imask[IPL_SOFTNET];
imask[IPL_NET] |= imask[IPL_BIO];
imask[IPL_SOFTSERIAL] |= imask[IPL_NET];
imask[IPL_TTY] |= imask[IPL_SOFTSERIAL];
/*
* There are tty, network and disk drivers that use free() at interrupt
* time, so imp > (tty | net | bio).
*/
imask[IPL_VM] |= imask[IPL_TTY];
imask[IPL_AUDIO] |= imask[IPL_VM];
/*
* Since run queues may be manipulated by both the statclock and tty,
* network, and disk drivers, clock > imp.
*/
imask[IPL_CLOCK] |= imask[IPL_AUDIO];
/*
* IPL_HIGH must block everything that can manipulate a run queue.
*/
imask[IPL_HIGH] |= imask[IPL_CLOCK];
/*
* We need serial drivers to run at the absolute highest priority to
* avoid overruns, so serial > high.
*/
imask[IPL_SERIAL] |= imask[IPL_HIGH];
/* And eventually calculate the complete masks. */
for (irq = 0; irq < ICU_LEN; irq++) {
register int irqs = IRQ_TO_MASK(irq);
for (q = intrhand[irq]; q; q = q->ih_next)
irqs |= imask[q->ih_level];
intrmask[irq] = irqs;
}
for (irq = 0; irq < ICU_LEN; irq++)
if (intrhand[irq])
enable_irq(irq);
else
disable_irq(irq);
}
void
do_pending_int(void)
{
struct intrhand *ih;
int irq;
int pcpl;
int hwpend;
int emsr, dmsr;
static int processing;
if (processing)
return;
processing = 1;
asm volatile("mfmsr %0" : "=r"(emsr));
dmsr = emsr & ~PSL_EE;
asm volatile("mtmsr %0" :: "r"(dmsr));
pcpl = cpl; /* Turn off all */
again:
while ((hwpend = ipending & ~pcpl & HWINT_MASK)) {
irq = cntlzw(hwpend);
enable_irq(irq);
ipending &= ~IRQ_TO_MASK(irq);
splraise(intrmask[irq]);
asm volatile("mtmsr %0" :: "r"(emsr));
KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
ih = intrhand[irq];
while(ih) {
(*ih->ih_fun)(ih->ih_arg);
ih = ih->ih_next;
}
KERNEL_UNLOCK();
asm volatile("mtmsr %0" :: "r"(dmsr));
cpl = pcpl;
intrcnt[irq]++;
}
if ((ipending & ~pcpl) & SINT_SERIAL) {
ipending &= ~SINT_SERIAL;
splsoftserial();
asm volatile("mtmsr %0" :: "r"(emsr));
KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
softserial();
KERNEL_UNLOCK();
asm volatile("mtmsr %0" :: "r"(dmsr));
cpl = pcpl;
intrcnt[CNT_SINT_SERIAL]++;
goto again;
}
if ((ipending & ~pcpl) & SINT_NET) {
ipending &= ~SINT_NET;
splsoftnet();
asm volatile("mtmsr %0" :: "r"(emsr));
KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
softnet();
KERNEL_UNLOCK();
asm volatile("mtmsr %0" :: "r"(dmsr));
cpl = pcpl;
intrcnt[CNT_SINT_NET]++;
goto again;
}
if ((ipending & ~pcpl) & SINT_CLOCK) {
ipending &= ~SINT_CLOCK;
splsoftclock();
asm volatile("mtmsr %0" :: "r"(emsr));
KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
softclock(NULL);
KERNEL_UNLOCK();
asm volatile("mtmsr %0" :: "r"(dmsr));
cpl = pcpl;
intrcnt[CNT_SINT_CLOCK]++;
goto again;
}
cpl = pcpl; /* Don't use splx... we are here already! */
asm volatile("mtmsr %0" :: "r"(emsr));
processing = 0;
}