e8532b7138
- Give kernel_lock its own cache line.
843 lines
23 KiB
C
843 lines
23 KiB
C
/* $NetBSD: kern_lock.c,v 1.132 2008/01/10 20:14:12 ad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2000, 2006, 2007 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center, and by Andrew Doran.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Ross Harvey.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code contains ideas from software contributed to Berkeley by
|
|
* Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
|
|
* System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.132 2008/01/10 20:14:12 ad Exp $");
|
|
|
|
#include "opt_multiprocessor.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lockdebug.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/atomic.h>
|
|
|
|
#include <machine/stdarg.h>
|
|
#include <machine/lock.h>
|
|
|
|
#include <dev/lockstat.h>
|
|
|
|
/*
|
|
* note that stdarg.h and the ansi style va_start macro is used for both
|
|
* ansi and traditional c compiles.
|
|
* XXX: this requires that stdarg.h define: va_alist and va_dcl
|
|
*/
|
|
void lock_printf(const char *fmt, ...)
|
|
__attribute__((__format__(__printf__,1,2)));
|
|
|
|
static int acquire(struct lock **, int *, int, int, int, uintptr_t);
|
|
|
|
int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
|
|
bool kernel_lock_dodebug;
|
|
|
|
__cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
|
|
__aligned(CACHE_LINE_SIZE);
|
|
|
|
#ifdef LOCKDEBUG
|
|
static lockops_t lockmgr_lockops = {
|
|
"lockmgr",
|
|
1,
|
|
(void *)nullop
|
|
};
|
|
#endif
|
|
|
|
#if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
|
|
#define COUNT(lkp, l, cpu_id, x) (l)->l_locks += (x)
|
|
#else
|
|
#define COUNT(lkp, p, cpu_id, x)
|
|
#endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
|
|
|
|
#define RETURN_ADDRESS ((uintptr_t)__builtin_return_address(0))
|
|
|
|
/*
|
|
* Acquire a resource.
|
|
*/
|
|
static int
|
|
acquire(struct lock **lkpp, int *s, int extflags,
|
|
int drain, int wanted, uintptr_t ra)
|
|
{
|
|
int error;
|
|
struct lock *lkp = *lkpp;
|
|
LOCKSTAT_TIMER(slptime);
|
|
LOCKSTAT_FLAG(lsflag);
|
|
|
|
KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
|
|
|
|
LOCKSTAT_ENTER(lsflag);
|
|
|
|
for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
|
|
if (drain)
|
|
lkp->lk_flags |= LK_WAITDRAIN;
|
|
else {
|
|
lkp->lk_waitcount++;
|
|
lkp->lk_flags |= LK_WAIT_NONZERO;
|
|
}
|
|
LOCKSTAT_START_TIMER(lsflag, slptime);
|
|
error = mtsleep(drain ? (void *)&lkp->lk_flags : (void *)lkp,
|
|
lkp->lk_prio, lkp->lk_wmesg, lkp->lk_timo,
|
|
__UNVOLATILE(&lkp->lk_interlock));
|
|
LOCKSTAT_STOP_TIMER(lsflag, slptime);
|
|
LOCKSTAT_EVENT_RA(lsflag, (void *)(uintptr_t)lkp,
|
|
LB_LOCKMGR | LB_SLEEP1, 1, slptime, ra);
|
|
if (!drain) {
|
|
lkp->lk_waitcount--;
|
|
if (lkp->lk_waitcount == 0)
|
|
lkp->lk_flags &= ~LK_WAIT_NONZERO;
|
|
}
|
|
if (error)
|
|
break;
|
|
if (extflags & LK_SLEEPFAIL) {
|
|
error = ENOLCK;
|
|
break;
|
|
}
|
|
}
|
|
|
|
LOCKSTAT_EXIT(lsflag);
|
|
|
|
return error;
|
|
}
|
|
|
|
#define SETHOLDER(lkp, pid, lid, cpu_id) \
|
|
do { \
|
|
(lkp)->lk_lockholder = pid; \
|
|
(lkp)->lk_locklwp = lid; \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define WEHOLDIT(lkp, pid, lid, cpu_id) \
|
|
((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid))
|
|
|
|
#define WAKEUP_WAITER(lkp) \
|
|
do { \
|
|
if (((lkp)->lk_flags & LK_WAIT_NONZERO) != 0) { \
|
|
wakeup((lkp)); \
|
|
} \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#if defined(LOCKDEBUG)
|
|
/*
|
|
* Lock debug printing routine; can be configured to print to console
|
|
* or log to syslog.
|
|
*/
|
|
void
|
|
lock_printf(const char *fmt, ...)
|
|
{
|
|
char b[150];
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
if (lock_debug_syslog)
|
|
vlog(LOG_DEBUG, fmt, ap);
|
|
else {
|
|
vsnprintf(b, sizeof(b), fmt, ap);
|
|
printf_nolog("%s", b);
|
|
}
|
|
va_end(ap);
|
|
}
|
|
#endif /* LOCKDEBUG */
|
|
|
|
static void
|
|
lockpanic(struct lock *lkp, const char *fmt, ...)
|
|
{
|
|
char s[150], b[150];
|
|
static const char *locktype[] = {
|
|
"*0*", "shared", "exclusive", "*3*", "*4*", "downgrade",
|
|
"*release*", "drain", "exclother", "*9*", "*10*",
|
|
"*11*", "*12*", "*13*", "*14*", "*15*"
|
|
};
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
vsnprintf(s, sizeof(s), fmt, ap);
|
|
va_end(ap);
|
|
bitmask_snprintf(lkp->lk_flags, __LK_FLAG_BITS, b, sizeof(b));
|
|
panic("%s ("
|
|
"type %s flags %s, sharecount %d, exclusivecount %d, "
|
|
"recurselevel %d, waitcount %d, wmesg %s"
|
|
", lock_addr %p, unlock_addr %p"
|
|
")\n",
|
|
s, locktype[lkp->lk_flags & LK_TYPE_MASK],
|
|
b, lkp->lk_sharecount, lkp->lk_exclusivecount,
|
|
lkp->lk_recurselevel, lkp->lk_waitcount, lkp->lk_wmesg,
|
|
(void *)lkp->lk_lock_addr, (void *)lkp->lk_unlock_addr
|
|
);
|
|
}
|
|
|
|
/*
|
|
* Initialize a lock; required before use.
|
|
*/
|
|
void
|
|
lockinit(struct lock *lkp, pri_t prio, const char *wmesg, int timo, int flags)
|
|
{
|
|
|
|
memset(lkp, 0, sizeof(struct lock));
|
|
lkp->lk_flags = flags & LK_EXTFLG_MASK;
|
|
mutex_init(&lkp->lk_interlock, MUTEX_DEFAULT, IPL_NONE);
|
|
lkp->lk_lockholder = LK_NOPROC;
|
|
lkp->lk_prio = prio;
|
|
lkp->lk_timo = timo;
|
|
lkp->lk_wmesg = wmesg;
|
|
lkp->lk_lock_addr = 0;
|
|
lkp->lk_unlock_addr = 0;
|
|
|
|
if (LOCKDEBUG_ALLOC(lkp, &lockmgr_lockops,
|
|
(uintptr_t)__builtin_return_address(0))) {
|
|
lkp->lk_flags |= LK_DODEBUG;
|
|
}
|
|
}
|
|
|
|
void
|
|
lockdestroy(struct lock *lkp)
|
|
{
|
|
|
|
LOCKDEBUG_FREE(((lkp->lk_flags & LK_DODEBUG) != 0), lkp);
|
|
mutex_destroy(&lkp->lk_interlock);
|
|
}
|
|
|
|
/*
|
|
* Determine the status of a lock.
|
|
*/
|
|
int
|
|
lockstatus(struct lock *lkp)
|
|
{
|
|
int lock_type = 0;
|
|
struct lwp *l = curlwp; /* XXX */
|
|
pid_t pid;
|
|
lwpid_t lid;
|
|
cpuid_t cpu_num;
|
|
|
|
if (l == NULL) {
|
|
cpu_num = cpu_number();
|
|
pid = LK_KERNPROC;
|
|
lid = 0;
|
|
} else {
|
|
cpu_num = LK_NOCPU;
|
|
pid = l->l_proc->p_pid;
|
|
lid = l->l_lid;
|
|
}
|
|
|
|
mutex_enter(&lkp->lk_interlock);
|
|
if (lkp->lk_exclusivecount != 0) {
|
|
if (WEHOLDIT(lkp, pid, lid, cpu_num))
|
|
lock_type = LK_EXCLUSIVE;
|
|
else
|
|
lock_type = LK_EXCLOTHER;
|
|
} else if (lkp->lk_sharecount != 0)
|
|
lock_type = LK_SHARED;
|
|
else if (lkp->lk_flags & LK_WANT_EXCL)
|
|
lock_type = LK_EXCLOTHER;
|
|
mutex_exit(&lkp->lk_interlock);
|
|
return (lock_type);
|
|
}
|
|
|
|
/*
|
|
* XXX XXX kludge around another kludge..
|
|
*
|
|
* vfs_shutdown() may be called from interrupt context, either as a result
|
|
* of a panic, or from the debugger. It proceeds to call
|
|
* sys_sync(&proc0, ...), pretending its running on behalf of proc0
|
|
*
|
|
* We would like to make an attempt to sync the filesystems in this case, so
|
|
* if this happens, we treat attempts to acquire locks specially.
|
|
* All locks are acquired on behalf of proc0.
|
|
*
|
|
* If we've already paniced, we don't block waiting for locks, but
|
|
* just barge right ahead since we're already going down in flames.
|
|
*/
|
|
|
|
/*
|
|
* Set, change, or release a lock.
|
|
*
|
|
* Shared requests increment the shared count. Exclusive requests set the
|
|
* LK_WANT_EXCL flag (preventing further shared locks), and wait for already
|
|
* accepted shared locks to go away.
|
|
*/
|
|
int
|
|
lockmgr(struct lock *lkp, u_int flags, kmutex_t *interlkp)
|
|
{
|
|
int error;
|
|
pid_t pid;
|
|
lwpid_t lid;
|
|
int extflags;
|
|
cpuid_t cpu_num;
|
|
struct lwp *l = curlwp;
|
|
int lock_shutdown_noblock = 0;
|
|
int s = 0;
|
|
|
|
error = 0;
|
|
|
|
/* LK_RETRY is for vn_lock, not for lockmgr. */
|
|
KASSERT((flags & LK_RETRY) == 0);
|
|
KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
|
|
|
|
mutex_enter(&lkp->lk_interlock);
|
|
if (flags & LK_INTERLOCK)
|
|
mutex_exit(interlkp);
|
|
extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
|
|
|
|
if (l == NULL) {
|
|
if (!doing_shutdown) {
|
|
panic("lockmgr: no context");
|
|
} else {
|
|
l = &lwp0;
|
|
if (panicstr && (!(flags & LK_NOWAIT))) {
|
|
flags |= LK_NOWAIT;
|
|
lock_shutdown_noblock = 1;
|
|
}
|
|
}
|
|
}
|
|
lid = l->l_lid;
|
|
pid = l->l_proc->p_pid;
|
|
cpu_num = cpu_number();
|
|
|
|
/*
|
|
* Once a lock has drained, the LK_DRAINING flag is set and an
|
|
* exclusive lock is returned. The only valid operation thereafter
|
|
* is a single release of that exclusive lock. This final release
|
|
* clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
|
|
* further requests of any sort will result in a panic. The bits
|
|
* selected for these two flags are chosen so that they will be set
|
|
* in memory that is freed (freed memory is filled with 0xdeadbeef).
|
|
* The final release is permitted to give a new lease on life to
|
|
* the lock by specifying LK_REENABLE.
|
|
*/
|
|
if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
|
|
#ifdef DIAGNOSTIC /* { */
|
|
if (lkp->lk_flags & LK_DRAINED)
|
|
lockpanic(lkp, "lockmgr: using decommissioned lock");
|
|
if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
|
|
WEHOLDIT(lkp, pid, lid, cpu_num) == 0)
|
|
lockpanic(lkp, "lockmgr: non-release on draining lock: %d",
|
|
flags & LK_TYPE_MASK);
|
|
#endif /* DIAGNOSTIC */ /* } */
|
|
lkp->lk_flags &= ~LK_DRAINING;
|
|
if ((flags & LK_REENABLE) == 0)
|
|
lkp->lk_flags |= LK_DRAINED;
|
|
}
|
|
|
|
switch (flags & LK_TYPE_MASK) {
|
|
|
|
case LK_SHARED:
|
|
if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
|
|
/*
|
|
* If just polling, check to see if we will block.
|
|
*/
|
|
if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
|
|
(LK_HAVE_EXCL | LK_WANT_EXCL))) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
/*
|
|
* Wait for exclusive locks to clear.
|
|
*/
|
|
error = acquire(&lkp, &s, extflags, 0,
|
|
LK_HAVE_EXCL | LK_WANT_EXCL,
|
|
RETURN_ADDRESS);
|
|
if (error)
|
|
break;
|
|
lkp->lk_sharecount++;
|
|
lkp->lk_flags |= LK_SHARE_NONZERO;
|
|
COUNT(lkp, l, cpu_num, 1);
|
|
break;
|
|
}
|
|
/*
|
|
* We hold an exclusive lock, so downgrade it to shared.
|
|
* An alternative would be to fail with EDEADLK.
|
|
*/
|
|
lkp->lk_sharecount++;
|
|
lkp->lk_flags |= LK_SHARE_NONZERO;
|
|
COUNT(lkp, l, cpu_num, 1);
|
|
/* fall into downgrade */
|
|
|
|
case LK_DOWNGRADE:
|
|
if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0 ||
|
|
lkp->lk_exclusivecount == 0)
|
|
lockpanic(lkp, "lockmgr: not holding exclusive lock");
|
|
lkp->lk_sharecount += lkp->lk_exclusivecount;
|
|
lkp->lk_flags |= LK_SHARE_NONZERO;
|
|
lkp->lk_exclusivecount = 0;
|
|
lkp->lk_recurselevel = 0;
|
|
lkp->lk_flags &= ~LK_HAVE_EXCL;
|
|
SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
|
|
#if defined(LOCKDEBUG)
|
|
lkp->lk_unlock_addr = RETURN_ADDRESS;
|
|
#endif
|
|
WAKEUP_WAITER(lkp);
|
|
break;
|
|
|
|
case LK_EXCLUSIVE:
|
|
if (WEHOLDIT(lkp, pid, lid, cpu_num)) {
|
|
/*
|
|
* Recursive lock.
|
|
*/
|
|
if ((extflags & LK_CANRECURSE) == 0 &&
|
|
lkp->lk_recurselevel == 0) {
|
|
if (extflags & LK_RECURSEFAIL) {
|
|
error = EDEADLK;
|
|
break;
|
|
} else
|
|
lockpanic(lkp, "lockmgr: locking against myself");
|
|
}
|
|
lkp->lk_exclusivecount++;
|
|
COUNT(lkp, l, cpu_num, 1);
|
|
break;
|
|
}
|
|
/*
|
|
* If we are just polling, check to see if we will sleep.
|
|
*/
|
|
if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
|
|
(LK_HAVE_EXCL | LK_WANT_EXCL | LK_SHARE_NONZERO))) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
/*
|
|
* Try to acquire the want_exclusive flag.
|
|
*/
|
|
error = acquire(&lkp, &s, extflags, 0,
|
|
LK_HAVE_EXCL | LK_WANT_EXCL, RETURN_ADDRESS);
|
|
if (error)
|
|
break;
|
|
lkp->lk_flags |= LK_WANT_EXCL;
|
|
/*
|
|
* Wait for shared locks to finish.
|
|
*/
|
|
error = acquire(&lkp, &s, extflags, 0,
|
|
LK_HAVE_EXCL | LK_SHARE_NONZERO,
|
|
RETURN_ADDRESS);
|
|
lkp->lk_flags &= ~LK_WANT_EXCL;
|
|
if (error) {
|
|
WAKEUP_WAITER(lkp);
|
|
break;
|
|
}
|
|
lkp->lk_flags |= LK_HAVE_EXCL;
|
|
SETHOLDER(lkp, pid, lid, cpu_num);
|
|
#if defined(LOCKDEBUG)
|
|
lkp->lk_lock_addr = RETURN_ADDRESS;
|
|
#endif
|
|
if (lkp->lk_exclusivecount != 0)
|
|
lockpanic(lkp, "lockmgr: non-zero exclusive count");
|
|
lkp->lk_exclusivecount = 1;
|
|
COUNT(lkp, l, cpu_num, 1);
|
|
break;
|
|
|
|
case LK_RELEASE:
|
|
if (lkp->lk_exclusivecount != 0) {
|
|
if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
|
|
lockpanic(lkp, "lockmgr: pid %d.%d, not "
|
|
"exclusive lock holder %d.%d "
|
|
"unlocking", pid, lid,
|
|
lkp->lk_lockholder,
|
|
lkp->lk_locklwp);
|
|
}
|
|
if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
|
|
lkp->lk_recurselevel = 0;
|
|
lkp->lk_exclusivecount--;
|
|
COUNT(lkp, l, cpu_num, -1);
|
|
if (lkp->lk_exclusivecount == 0) {
|
|
lkp->lk_flags &= ~LK_HAVE_EXCL;
|
|
SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
|
|
#if defined(LOCKDEBUG)
|
|
lkp->lk_unlock_addr = RETURN_ADDRESS;
|
|
#endif
|
|
}
|
|
} else if (lkp->lk_sharecount != 0) {
|
|
lkp->lk_sharecount--;
|
|
if (lkp->lk_sharecount == 0)
|
|
lkp->lk_flags &= ~LK_SHARE_NONZERO;
|
|
COUNT(lkp, l, cpu_num, -1);
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
else
|
|
lockpanic(lkp, "lockmgr: release of unlocked lock!");
|
|
#endif
|
|
WAKEUP_WAITER(lkp);
|
|
break;
|
|
|
|
case LK_DRAIN:
|
|
/*
|
|
* Check that we do not already hold the lock, as it can
|
|
* never drain if we do. Unfortunately, we have no way to
|
|
* check for holding a shared lock, but at least we can
|
|
* check for an exclusive one.
|
|
*/
|
|
if (WEHOLDIT(lkp, pid, lid, cpu_num))
|
|
lockpanic(lkp, "lockmgr: draining against myself");
|
|
/*
|
|
* If we are just polling, check to see if we will sleep.
|
|
*/
|
|
if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
|
|
(LK_HAVE_EXCL | LK_WANT_EXCL |
|
|
LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
error = acquire(&lkp, &s, extflags, 1,
|
|
LK_HAVE_EXCL | LK_WANT_EXCL |
|
|
LK_SHARE_NONZERO | LK_WAIT_NONZERO,
|
|
RETURN_ADDRESS);
|
|
if (error)
|
|
break;
|
|
lkp->lk_flags |= LK_HAVE_EXCL;
|
|
if ((extflags & LK_RESURRECT) == 0)
|
|
lkp->lk_flags |= LK_DRAINING;
|
|
SETHOLDER(lkp, pid, lid, cpu_num);
|
|
#if defined(LOCKDEBUG)
|
|
lkp->lk_lock_addr = RETURN_ADDRESS;
|
|
#endif
|
|
lkp->lk_exclusivecount = 1;
|
|
COUNT(lkp, l, cpu_num, 1);
|
|
break;
|
|
|
|
default:
|
|
mutex_exit(&lkp->lk_interlock);
|
|
lockpanic(lkp, "lockmgr: unknown locktype request %d",
|
|
flags & LK_TYPE_MASK);
|
|
/* NOTREACHED */
|
|
}
|
|
if ((lkp->lk_flags & LK_WAITDRAIN) != 0 &&
|
|
((lkp->lk_flags &
|
|
(LK_HAVE_EXCL | LK_WANT_EXCL |
|
|
LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
|
|
lkp->lk_flags &= ~LK_WAITDRAIN;
|
|
wakeup(&lkp->lk_flags);
|
|
}
|
|
/*
|
|
* Note that this panic will be a recursive panic, since
|
|
* we only set lock_shutdown_noblock above if panicstr != NULL.
|
|
*/
|
|
if (error && lock_shutdown_noblock)
|
|
lockpanic(lkp, "lockmgr: deadlock (see previous panic)");
|
|
|
|
mutex_exit(&lkp->lk_interlock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Print out information about state of a lock. Used by VOP_PRINT
|
|
* routines to display ststus about contained locks.
|
|
*/
|
|
void
|
|
lockmgr_printinfo(struct lock *lkp)
|
|
{
|
|
|
|
if (lkp->lk_sharecount)
|
|
printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
|
|
lkp->lk_sharecount);
|
|
else if (lkp->lk_flags & LK_HAVE_EXCL) {
|
|
printf(" lock type %s: EXCL (count %d) by ",
|
|
lkp->lk_wmesg, lkp->lk_exclusivecount);
|
|
printf("pid %d.%d", lkp->lk_lockholder,
|
|
lkp->lk_locklwp);
|
|
} else
|
|
printf(" not locked");
|
|
if (lkp->lk_waitcount > 0)
|
|
printf(" with %d pending", lkp->lk_waitcount);
|
|
}
|
|
|
|
#if defined(LOCKDEBUG)
|
|
void
|
|
assert_sleepable(struct simplelock *interlock, const char *msg)
|
|
{
|
|
|
|
if (panicstr != NULL)
|
|
return;
|
|
LOCKDEBUG_BARRIER(kernel_lock, 1);
|
|
if (CURCPU_IDLE_P() && !cold) {
|
|
panic("assert_sleepable: idle");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* rump doesn't need the kernel lock so force it out. We cannot
|
|
* currently easily include it for compilation because of
|
|
* a) SPINLOCK_* b) membar_producer(). They are defined in different
|
|
* places / way for each arch, so just simply do not bother to
|
|
* fight a lot for no gain (i.e. pain but still no gain).
|
|
*/
|
|
#ifndef _RUMPKERNEL
|
|
/*
|
|
* Functions for manipulating the kernel_lock. We put them here
|
|
* so that they show up in profiles.
|
|
*/
|
|
|
|
#define _KERNEL_LOCK_ABORT(msg) \
|
|
LOCKDEBUG_ABORT(kernel_lock, &_kernel_lock_ops, __func__, msg)
|
|
|
|
#ifdef LOCKDEBUG
|
|
#define _KERNEL_LOCK_ASSERT(cond) \
|
|
do { \
|
|
if (!(cond)) \
|
|
_KERNEL_LOCK_ABORT("assertion failed: " #cond); \
|
|
} while (/* CONSTCOND */ 0)
|
|
#else
|
|
#define _KERNEL_LOCK_ASSERT(cond) /* nothing */
|
|
#endif
|
|
|
|
void _kernel_lock_dump(volatile void *);
|
|
|
|
lockops_t _kernel_lock_ops = {
|
|
"Kernel lock",
|
|
0,
|
|
_kernel_lock_dump
|
|
};
|
|
|
|
/*
|
|
* Initialize the kernel lock.
|
|
*/
|
|
void
|
|
kernel_lock_init(void)
|
|
{
|
|
|
|
KASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
|
|
__cpu_simple_lock_init(kernel_lock);
|
|
kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
|
|
RETURN_ADDRESS);
|
|
}
|
|
|
|
/*
|
|
* Print debugging information about the kernel lock.
|
|
*/
|
|
void
|
|
_kernel_lock_dump(volatile void *junk)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
|
|
(void)junk;
|
|
|
|
printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
|
|
ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
|
|
}
|
|
|
|
/*
|
|
* Acquire 'nlocks' holds on the kernel lock. If 'l' is non-null, the
|
|
* acquisition is from process context.
|
|
*/
|
|
void
|
|
_kernel_lock(int nlocks, struct lwp *l)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
LOCKSTAT_TIMER(spintime);
|
|
LOCKSTAT_FLAG(lsflag);
|
|
struct lwp *owant;
|
|
u_int spins;
|
|
int s;
|
|
|
|
if (nlocks == 0)
|
|
return;
|
|
_KERNEL_LOCK_ASSERT(nlocks > 0);
|
|
|
|
l = curlwp;
|
|
|
|
if (ci->ci_biglock_count != 0) {
|
|
_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
|
|
ci->ci_biglock_count += nlocks;
|
|
l->l_blcnt += nlocks;
|
|
return;
|
|
}
|
|
|
|
_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
|
|
LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
|
|
0);
|
|
|
|
s = splvm();
|
|
if (__cpu_simple_lock_try(kernel_lock)) {
|
|
ci->ci_biglock_count = nlocks;
|
|
l->l_blcnt = nlocks;
|
|
LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock,
|
|
RETURN_ADDRESS, 0);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* To remove the ordering constraint between adaptive mutexes
|
|
* and kernel_lock we must make it appear as if this thread is
|
|
* blocking. For non-interlocked mutex release, a store fence
|
|
* is required to ensure that the result of any mutex_exit()
|
|
* by the current LWP becomes visible on the bus before the set
|
|
* of ci->ci_biglock_wanted becomes visible.
|
|
*/
|
|
membar_producer();
|
|
owant = ci->ci_biglock_wanted;
|
|
ci->ci_biglock_wanted = l;
|
|
|
|
/*
|
|
* Spin until we acquire the lock. Once we have it, record the
|
|
* time spent with lockstat.
|
|
*/
|
|
LOCKSTAT_ENTER(lsflag);
|
|
LOCKSTAT_START_TIMER(lsflag, spintime);
|
|
|
|
spins = 0;
|
|
do {
|
|
splx(s);
|
|
while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
|
|
if (SPINLOCK_SPINOUT(spins)) {
|
|
_KERNEL_LOCK_ABORT("spinout");
|
|
}
|
|
SPINLOCK_BACKOFF_HOOK;
|
|
SPINLOCK_SPIN_HOOK;
|
|
}
|
|
s = splvm();
|
|
} while (!__cpu_simple_lock_try(kernel_lock));
|
|
|
|
ci->ci_biglock_count = nlocks;
|
|
l->l_blcnt = nlocks;
|
|
LOCKSTAT_STOP_TIMER(lsflag, spintime);
|
|
LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS, 0);
|
|
if (owant == NULL) {
|
|
LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
|
|
LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
|
|
}
|
|
LOCKSTAT_EXIT(lsflag);
|
|
splx(s);
|
|
|
|
/*
|
|
* Now that we have kernel_lock, reset ci_biglock_wanted. This
|
|
* store must be unbuffered (immediately visible on the bus) in
|
|
* order for non-interlocked mutex release to work correctly.
|
|
* It must be visible before a mutex_exit() can execute on this
|
|
* processor.
|
|
*
|
|
* Note: only where CAS is available in hardware will this be
|
|
* an unbuffered write, but non-interlocked release cannot be
|
|
* done on CPUs without CAS in hardware.
|
|
*/
|
|
(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
|
|
|
|
/*
|
|
* Issue a memory barrier as we have acquired a lock. This also
|
|
* prevents stores from a following mutex_exit() being reordered
|
|
* to occur before our store to ci_biglock_wanted above.
|
|
*/
|
|
membar_enter();
|
|
}
|
|
|
|
/*
|
|
* Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
|
|
* all holds. If 'l' is non-null, the release is from process context.
|
|
*/
|
|
void
|
|
_kernel_unlock(int nlocks, struct lwp *l, int *countp)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
u_int olocks;
|
|
int s;
|
|
|
|
l = curlwp;
|
|
|
|
_KERNEL_LOCK_ASSERT(nlocks < 2);
|
|
|
|
olocks = l->l_blcnt;
|
|
|
|
if (olocks == 0) {
|
|
_KERNEL_LOCK_ASSERT(nlocks <= 0);
|
|
if (countp != NULL)
|
|
*countp = 0;
|
|
return;
|
|
}
|
|
|
|
_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
|
|
|
|
if (nlocks == 0)
|
|
nlocks = olocks;
|
|
else if (nlocks == -1) {
|
|
nlocks = 1;
|
|
_KERNEL_LOCK_ASSERT(olocks == 1);
|
|
}
|
|
|
|
_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
|
|
|
|
l->l_blcnt -= nlocks;
|
|
if (ci->ci_biglock_count == nlocks) {
|
|
s = splvm();
|
|
LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
|
|
RETURN_ADDRESS, 0);
|
|
ci->ci_biglock_count = 0;
|
|
__cpu_simple_unlock(kernel_lock);
|
|
splx(s);
|
|
} else
|
|
ci->ci_biglock_count -= nlocks;
|
|
|
|
if (countp != NULL)
|
|
*countp = olocks;
|
|
}
|
|
#endif /* !_RUMPKERNEL */
|