NetBSD/sys/kern/vfs_vnode.c

1228 lines
31 KiB
C

/* $NetBSD: vfs_vnode.c,v 1.9 2011/06/12 03:35:57 rmind Exp $ */
/*-
* Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
*/
/*
* The vnode cache subsystem.
*
* Life-cycle
*
* Normally, there are two points where new vnodes are created:
* VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode
* starts in one of the following ways:
*
* - Allocation, via getnewvnode(9) and/or vnalloc(9).
* - Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9).
* - Reclamation of inactive vnode, via vget(9).
*
* The life-cycle ends when the last reference is dropped, usually
* in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform
* the file system that vnode is inactive. Via this call, file system
* indicates whether vnode should be recycled (usually, count of links
* is checked i.e. whether file was removed).
*
* Depending on indication, vnode can be put into a free list (cache),
* or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
* underlying file system from the vnode, and finally destroyed.
*
* Reference counting
*
* Vnode is considered active, if reference count (vnode_t::v_usecount)
* is non-zero. It is maintained using: vref(9) and vrele(9), as well
* as vput(9), routines. Common points holding references are e.g.
* file openings, current working directory, mount points, etc.
*
* Note on v_usecount and its locking
*
* At nearly all points it is known that v_usecount could be zero,
* the vnode_t::v_interlock will be held. To change v_usecount away
* from zero, the interlock must be held. To change from a non-zero
* value to zero, again the interlock must be held.
*
* There is a flag bit, VC_XLOCK, embedded in v_usecount. To raise
* v_usecount, if the VC_XLOCK bit is set in it, the interlock must
* be held. To modify the VC_XLOCK bit, the interlock must be held.
* We always keep the usecount (v_usecount & VC_MASK) non-zero while
* the VC_XLOCK bit is set.
*
* Unless the VC_XLOCK bit is set, changing the usecount from a non-zero
* value to a non-zero value can safely be done using atomic operations,
* without the interlock held.
*
* Even if the VC_XLOCK bit is set, decreasing the usecount to a non-zero
* value can be done using atomic operations, without the interlock held.
*
* Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
* mntvnode_lock is still held.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.9 2011/06/12 03:35:57 rmind Exp $");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/atomic.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/module.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/syscallargs.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vnode.h>
#include <sys/wapbl.h>
#include <uvm/uvm.h>
#include <uvm/uvm_readahead.h>
u_int numvnodes __cacheline_aligned;
static pool_cache_t vnode_cache __read_mostly;
static kmutex_t vnode_free_list_lock __cacheline_aligned;
static vnodelst_t vnode_free_list __cacheline_aligned;
static vnodelst_t vnode_hold_list __cacheline_aligned;
static vnodelst_t vrele_list __cacheline_aligned;
static kmutex_t vrele_lock __cacheline_aligned;
static kcondvar_t vrele_cv __cacheline_aligned;
static lwp_t * vrele_lwp __cacheline_aligned;
static int vrele_pending __cacheline_aligned;
static int vrele_gen __cacheline_aligned;
static vnode_t * getcleanvnode(void);
static void vrele_thread(void *);
static void vpanic(vnode_t *, const char *);
/* Routines having to do with the management of the vnode table. */
extern int (**dead_vnodeop_p)(void *);
void
vfs_vnode_sysinit(void)
{
int error;
vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
NULL, IPL_NONE, NULL, NULL, NULL);
KASSERT(vnode_cache != NULL);
mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
TAILQ_INIT(&vnode_free_list);
TAILQ_INIT(&vnode_hold_list);
TAILQ_INIT(&vrele_list);
mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&vrele_cv, "vrele");
error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
NULL, &vrele_lwp, "vrele");
KASSERT(error == 0);
}
/*
* Allocate a new, uninitialized vnode. If 'mp' is non-NULL, this is a
* marker vnode and we are prepared to wait for the allocation.
*/
vnode_t *
vnalloc(struct mount *mp)
{
vnode_t *vp;
vp = pool_cache_get(vnode_cache, (mp != NULL ? PR_WAITOK : PR_NOWAIT));
if (vp == NULL) {
return NULL;
}
memset(vp, 0, sizeof(*vp));
uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
cv_init(&vp->v_cv, "vnode");
/*
* Done by memset() above.
* LIST_INIT(&vp->v_nclist);
* LIST_INIT(&vp->v_dnclist);
*/
if (mp != NULL) {
vp->v_mount = mp;
vp->v_type = VBAD;
vp->v_iflag = VI_MARKER;
} else {
rw_init(&vp->v_lock);
}
return vp;
}
/*
* Free an unused, unreferenced vnode.
*/
void
vnfree(vnode_t *vp)
{
KASSERT(vp->v_usecount == 0);
if ((vp->v_iflag & VI_MARKER) == 0) {
rw_destroy(&vp->v_lock);
mutex_enter(&vnode_free_list_lock);
numvnodes--;
mutex_exit(&vnode_free_list_lock);
}
/*
* Note: the vnode interlock will either be freed, of reference
* dropped (if VI_LOCKSHARE was in use).
*/
uvm_obj_destroy(&vp->v_uobj, true);
cv_destroy(&vp->v_cv);
pool_cache_put(vnode_cache, vp);
}
/*
* getcleanvnode: grab a vnode from freelist and clean it.
*
* => Releases vnode_free_list_lock.
* => Returns referenced vnode on success.
*/
static vnode_t *
getcleanvnode(void)
{
vnode_t *vp;
vnodelst_t *listhd;
KASSERT(mutex_owned(&vnode_free_list_lock));
retry:
listhd = &vnode_free_list;
try_nextlist:
TAILQ_FOREACH(vp, listhd, v_freelist) {
/*
* It's safe to test v_usecount and v_iflag
* without holding the interlock here, since
* these vnodes should never appear on the
* lists.
*/
KASSERT(vp->v_usecount == 0);
KASSERT((vp->v_iflag & VI_CLEAN) == 0);
KASSERT(vp->v_freelisthd == listhd);
if (!mutex_tryenter(vp->v_interlock))
continue;
if ((vp->v_iflag & VI_XLOCK) == 0)
break;
mutex_exit(vp->v_interlock);
}
if (vp == NULL) {
if (listhd == &vnode_free_list) {
listhd = &vnode_hold_list;
goto try_nextlist;
}
mutex_exit(&vnode_free_list_lock);
return NULL;
}
/* Remove it from the freelist. */
TAILQ_REMOVE(listhd, vp, v_freelist);
vp->v_freelisthd = NULL;
mutex_exit(&vnode_free_list_lock);
KASSERT(vp->v_usecount == 0);
/*
* The vnode is still associated with a file system, so we must
* clean it out before reusing it. We need to add a reference
* before doing this. If the vnode gains another reference while
* being cleaned out then we lose - retry.
*/
atomic_add_int(&vp->v_usecount, 1 + VC_XLOCK);
vclean(vp, DOCLOSE);
KASSERT(vp->v_usecount >= 1 + VC_XLOCK);
atomic_add_int(&vp->v_usecount, -VC_XLOCK);
if (vp->v_usecount == 1) {
/* We're about to dirty it. */
vp->v_iflag &= ~VI_CLEAN;
mutex_exit(vp->v_interlock);
if (vp->v_type == VBLK || vp->v_type == VCHR) {
spec_node_destroy(vp);
}
vp->v_type = VNON;
} else {
/*
* Don't return to freelist - the holder of the last
* reference will destroy it.
*/
vrelel(vp, 0); /* releases vp->v_interlock */
mutex_enter(&vnode_free_list_lock);
goto retry;
}
KASSERT(vp->v_data == NULL);
KASSERT(vp->v_uobj.uo_npages == 0);
KASSERT(TAILQ_EMPTY(&vp->v_uobj.memq));
KASSERT(vp->v_numoutput == 0);
KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
return vp;
}
/*
* getnewvnode: return the next vnode from the free list.
*
* => Returns referenced vnode, moved into the mount queue.
* => Shares the interlock specified by 'slock', if it is not NULL.
*/
int
getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
kmutex_t *slock, vnode_t **vpp)
{
struct uvm_object *uobj;
static int toggle;
vnode_t *vp;
int error = 0, tryalloc;
try_again:
if (mp != NULL) {
/*
* Mark filesystem busy while we are creating a vnode.
* If unmount is in progress, this will fail.
*/
error = vfs_busy(mp, NULL);
if (error)
return error;
}
/*
* We must choose whether to allocate a new vnode or recycle an
* existing one. The criterion for allocating a new one is that
* the total number of vnodes is less than the number desired or
* there are no vnodes on either free list. Generally we only
* want to recycle vnodes that have no buffers associated with
* them, so we look first on the vnode_free_list. If it is empty,
* we next consider vnodes with referencing buffers on the
* vnode_hold_list. The toggle ensures that half the time we
* will use a buffer from the vnode_hold_list, and half the time
* we will allocate a new one unless the list has grown to twice
* the desired size. We are reticent to recycle vnodes from the
* vnode_hold_list because we will lose the identity of all its
* referencing buffers.
*/
vp = NULL;
mutex_enter(&vnode_free_list_lock);
toggle ^= 1;
if (numvnodes > 2 * desiredvnodes)
toggle = 0;
tryalloc = numvnodes < desiredvnodes ||
(TAILQ_FIRST(&vnode_free_list) == NULL &&
(TAILQ_FIRST(&vnode_hold_list) == NULL || toggle));
if (tryalloc) {
/* Allocate a new vnode. */
numvnodes++;
mutex_exit(&vnode_free_list_lock);
if ((vp = vnalloc(NULL)) == NULL) {
mutex_enter(&vnode_free_list_lock);
numvnodes--;
} else
vp->v_usecount = 1;
}
if (vp == NULL) {
/* Recycle and get vnode clean. */
vp = getcleanvnode();
if (vp == NULL) {
if (mp != NULL) {
vfs_unbusy(mp, false, NULL);
}
if (tryalloc) {
printf("WARNING: unable to allocate new "
"vnode, retrying...\n");
kpause("newvn", false, hz, NULL);
goto try_again;
}
tablefull("vnode", "increase kern.maxvnodes or NVNODE");
*vpp = 0;
return ENFILE;
}
if ((vp->v_iflag & VI_LOCKSHARE) != 0 || slock) {
/* We must remove vnode from the old mount point. */
if (vp->v_mount) {
vfs_insmntque(vp, NULL);
}
/* Allocate a new interlock, if it was shared. */
if (vp->v_iflag & VI_LOCKSHARE) {
uvm_obj_setlock(&vp->v_uobj, NULL);
vp->v_iflag &= ~VI_LOCKSHARE;
}
}
vp->v_iflag = 0;
vp->v_vflag = 0;
vp->v_uflag = 0;
vp->v_socket = NULL;
}
KASSERT(vp->v_usecount == 1);
KASSERT(vp->v_freelisthd == NULL);
KASSERT(LIST_EMPTY(&vp->v_nclist));
KASSERT(LIST_EMPTY(&vp->v_dnclist));
/* Initialize vnode. */
vp->v_type = VNON;
vp->v_tag = tag;
vp->v_op = vops;
vp->v_data = NULL;
uobj = &vp->v_uobj;
KASSERT(uobj->pgops == &uvm_vnodeops);
KASSERT(uobj->uo_npages == 0);
KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
vp->v_size = vp->v_writesize = VSIZENOTSET;
/* Share the vnode_t::v_interlock, if requested. */
if (slock) {
/* Set the interlock and mark that it is shared. */
KASSERT(vp->v_mount == NULL);
mutex_obj_hold(slock);
uvm_obj_setlock(&vp->v_uobj, slock);
KASSERT(vp->v_interlock == slock);
vp->v_iflag |= VI_LOCKSHARE;
}
/* Finally, move vnode into the mount queue. */
vfs_insmntque(vp, mp);
if (mp != NULL) {
if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
vp->v_vflag |= VV_MPSAFE;
vfs_unbusy(mp, true, NULL);
}
*vpp = vp;
return 0;
}
/*
* This is really just the reverse of getnewvnode(). Needed for
* VFS_VGET functions who may need to push back a vnode in case
* of a locking race.
*/
void
ungetnewvnode(vnode_t *vp)
{
KASSERT(vp->v_usecount == 1);
KASSERT(vp->v_data == NULL);
KASSERT(vp->v_freelisthd == NULL);
mutex_enter(vp->v_interlock);
vp->v_iflag |= VI_CLEAN;
vrelel(vp, 0);
}
/*
* Remove a vnode from its freelist.
*/
void
vremfree(vnode_t *vp)
{
KASSERT(mutex_owned(vp->v_interlock));
KASSERT(vp->v_usecount == 0);
/*
* Note that the reference count must not change until
* the vnode is removed.
*/
mutex_enter(&vnode_free_list_lock);
if (vp->v_holdcnt > 0) {
KASSERT(vp->v_freelisthd == &vnode_hold_list);
} else {
KASSERT(vp->v_freelisthd == &vnode_free_list);
}
TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
vp->v_freelisthd = NULL;
mutex_exit(&vnode_free_list_lock);
}
/*
* Try to gain a reference to a vnode, without acquiring its interlock.
* The caller must hold a lock that will prevent the vnode from being
* recycled or freed.
*/
bool
vtryget(vnode_t *vp)
{
u_int use, next;
/*
* If the vnode is being freed, don't make life any harder
* for vclean() by adding another reference without waiting.
* This is not strictly necessary, but we'll do it anyway.
*/
if (__predict_false((vp->v_iflag & VI_XLOCK) != 0)) {
return false;
}
for (use = vp->v_usecount;; use = next) {
if (use == 0 || __predict_false((use & VC_XLOCK) != 0)) {
/* Need interlock held if first reference. */
return false;
}
next = atomic_cas_uint(&vp->v_usecount, use, use + 1);
if (__predict_true(next == use)) {
return true;
}
}
}
/*
* vget: get a particular vnode from the free list, increment its reference
* count and lock it.
*
* => Should be called with v_interlock held.
*
* If VI_XLOCK is set, the vnode is being eliminated in vgone()/vclean().
* In that case, we cannot grab the vnode, so the process is awakened when
* the transition is completed, and an error returned to indicate that the
* vnode is no longer usable (e.g. changed to a new file system type).
*/
int
vget(vnode_t *vp, int flags)
{
int error = 0;
KASSERT((vp->v_iflag & VI_MARKER) == 0);
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((flags & ~(LK_SHARED|LK_EXCLUSIVE|LK_NOWAIT)) == 0);
/*
* Before adding a reference, we must remove the vnode
* from its freelist.
*/
if (vp->v_usecount == 0) {
vremfree(vp);
vp->v_usecount = 1;
} else {
atomic_inc_uint(&vp->v_usecount);
}
/*
* If the vnode is in the process of being cleaned out for
* another use, we wait for the cleaning to finish and then
* return failure. Cleaning is determined by checking if
* the VI_XLOCK flag is set.
*/
if ((vp->v_iflag & VI_XLOCK) != 0) {
if ((flags & LK_NOWAIT) != 0) {
vrelel(vp, 0);
return EBUSY;
}
vwait(vp, VI_XLOCK);
vrelel(vp, 0);
return ENOENT;
}
/*
* Ok, we got it in good shape. Just locking left.
*/
KASSERT((vp->v_iflag & VI_CLEAN) == 0);
mutex_exit(vp->v_interlock);
if (flags & (LK_EXCLUSIVE | LK_SHARED)) {
error = vn_lock(vp, flags);
if (error != 0) {
vrele(vp);
}
}
return error;
}
/*
* vput: unlock and release the reference.
*/
void
vput(vnode_t *vp)
{
KASSERT((vp->v_iflag & VI_MARKER) == 0);
VOP_UNLOCK(vp);
vrele(vp);
}
/*
* Try to drop reference on a vnode. Abort if we are releasing the
* last reference. Note: this _must_ succeed if not the last reference.
*/
static inline bool
vtryrele(vnode_t *vp)
{
u_int use, next;
for (use = vp->v_usecount;; use = next) {
if (use == 1) {
return false;
}
KASSERT((use & VC_MASK) > 1);
next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
if (__predict_true(next == use)) {
return true;
}
}
}
/*
* Vnode release. If reference count drops to zero, call inactive
* routine and either return to freelist or free to the pool.
*/
void
vrelel(vnode_t *vp, int flags)
{
bool recycle, defer;
int error;
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((vp->v_iflag & VI_MARKER) == 0);
KASSERT(vp->v_freelisthd == NULL);
if (__predict_false(vp->v_op == dead_vnodeop_p &&
(vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
vpanic(vp, "dead but not clean");
}
/*
* If not the last reference, just drop the reference count
* and unlock.
*/
if (vtryrele(vp)) {
vp->v_iflag |= VI_INACTREDO;
mutex_exit(vp->v_interlock);
return;
}
if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
vpanic(vp, "vrelel: bad ref count");
}
KASSERT((vp->v_iflag & VI_XLOCK) == 0);
/*
* If not clean, deactivate the vnode, but preserve
* our reference across the call to VOP_INACTIVE().
*/
retry:
if ((vp->v_iflag & VI_CLEAN) == 0) {
recycle = false;
vp->v_iflag |= VI_INACTNOW;
/*
* XXX This ugly block can be largely eliminated if
* locking is pushed down into the file systems.
*
* Defer vnode release to vrele_thread if caller
* requests it explicitly.
*/
if ((curlwp == uvm.pagedaemon_lwp) ||
(flags & VRELEL_ASYNC_RELE) != 0) {
/* The pagedaemon can't wait around; defer. */
defer = true;
} else if (curlwp == vrele_lwp) {
/* We have to try harder. */
vp->v_iflag &= ~VI_INACTREDO;
mutex_exit(vp->v_interlock);
error = vn_lock(vp, LK_EXCLUSIVE);
if (error != 0) {
/* XXX */
vpanic(vp, "vrele: unable to lock %p");
}
defer = false;
} else if ((vp->v_iflag & VI_LAYER) != 0) {
/*
* Acquiring the stack's lock in vclean() even
* for an honest vput/vrele is dangerous because
* our caller may hold other vnode locks; defer.
*/
defer = true;
} else {
/* If we can't acquire the lock, then defer. */
vp->v_iflag &= ~VI_INACTREDO;
mutex_exit(vp->v_interlock);
error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
if (error != 0) {
defer = true;
mutex_enter(vp->v_interlock);
} else {
defer = false;
}
}
if (defer) {
/*
* Defer reclaim to the kthread; it's not safe to
* clean it here. We donate it our last reference.
*/
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((vp->v_iflag & VI_INACTPEND) == 0);
vp->v_iflag &= ~VI_INACTNOW;
vp->v_iflag |= VI_INACTPEND;
mutex_enter(&vrele_lock);
TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
if (++vrele_pending > (desiredvnodes >> 8))
cv_signal(&vrele_cv);
mutex_exit(&vrele_lock);
mutex_exit(vp->v_interlock);
return;
}
#ifdef DIAGNOSTIC
if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
vprint("vrelel: missing VOP_CLOSE()", vp);
}
#endif
/*
* The vnode can gain another reference while being
* deactivated. If VOP_INACTIVE() indicates that
* the described file has been deleted, then recycle
* the vnode irrespective of additional references.
* Another thread may be waiting to re-use the on-disk
* inode.
*
* Note that VOP_INACTIVE() will drop the vnode lock.
*/
VOP_INACTIVE(vp, &recycle);
mutex_enter(vp->v_interlock);
vp->v_iflag &= ~VI_INACTNOW;
if (!recycle) {
if (vtryrele(vp)) {
mutex_exit(vp->v_interlock);
return;
}
/*
* If we grew another reference while
* VOP_INACTIVE() was underway, retry.
*/
if ((vp->v_iflag & VI_INACTREDO) != 0) {
goto retry;
}
}
/* Take care of space accounting. */
if (vp->v_iflag & VI_EXECMAP) {
atomic_add_int(&uvmexp.execpages,
-vp->v_uobj.uo_npages);
atomic_add_int(&uvmexp.filepages,
vp->v_uobj.uo_npages);
}
vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
vp->v_vflag &= ~VV_MAPPED;
/*
* Recycle the vnode if the file is now unused (unlinked),
* otherwise just free it.
*/
if (recycle) {
vclean(vp, DOCLOSE);
}
KASSERT(vp->v_usecount > 0);
}
if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
/* Gained another reference while being reclaimed. */
mutex_exit(vp->v_interlock);
return;
}
if ((vp->v_iflag & VI_CLEAN) != 0) {
/*
* It's clean so destroy it. It isn't referenced
* anywhere since it has been reclaimed.
*/
KASSERT(vp->v_holdcnt == 0);
KASSERT(vp->v_writecount == 0);
mutex_exit(vp->v_interlock);
vfs_insmntque(vp, NULL);
if (vp->v_type == VBLK || vp->v_type == VCHR) {
spec_node_destroy(vp);
}
vnfree(vp);
} else {
/*
* Otherwise, put it back onto the freelist. It
* can't be destroyed while still associated with
* a file system.
*/
mutex_enter(&vnode_free_list_lock);
if (vp->v_holdcnt > 0) {
vp->v_freelisthd = &vnode_hold_list;
} else {
vp->v_freelisthd = &vnode_free_list;
}
TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
mutex_exit(&vnode_free_list_lock);
mutex_exit(vp->v_interlock);
}
}
void
vrele(vnode_t *vp)
{
KASSERT((vp->v_iflag & VI_MARKER) == 0);
if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
return;
}
mutex_enter(vp->v_interlock);
vrelel(vp, 0);
}
/*
* Asynchronous vnode release, vnode is released in different context.
*/
void
vrele_async(vnode_t *vp)
{
KASSERT((vp->v_iflag & VI_MARKER) == 0);
if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
return;
}
mutex_enter(vp->v_interlock);
vrelel(vp, VRELEL_ASYNC_RELE);
}
static void
vrele_thread(void *cookie)
{
vnode_t *vp;
for (;;) {
mutex_enter(&vrele_lock);
while (TAILQ_EMPTY(&vrele_list)) {
vrele_gen++;
cv_broadcast(&vrele_cv);
cv_timedwait(&vrele_cv, &vrele_lock, hz);
}
vp = TAILQ_FIRST(&vrele_list);
TAILQ_REMOVE(&vrele_list, vp, v_freelist);
vrele_pending--;
mutex_exit(&vrele_lock);
/*
* If not the last reference, then ignore the vnode
* and look for more work.
*/
mutex_enter(vp->v_interlock);
KASSERT((vp->v_iflag & VI_INACTPEND) != 0);
vp->v_iflag &= ~VI_INACTPEND;
vrelel(vp, 0);
}
}
void
vrele_flush(void)
{
int gen;
mutex_enter(&vrele_lock);
gen = vrele_gen;
while (vrele_pending && gen == vrele_gen) {
cv_broadcast(&vrele_cv);
cv_wait(&vrele_cv, &vrele_lock);
}
mutex_exit(&vrele_lock);
}
/*
* Vnode reference, where a reference is already held by some other
* object (for example, a file structure).
*/
void
vref(vnode_t *vp)
{
KASSERT((vp->v_iflag & VI_MARKER) == 0);
KASSERT(vp->v_usecount != 0);
atomic_inc_uint(&vp->v_usecount);
}
/*
* Page or buffer structure gets a reference.
* Called with v_interlock held.
*/
void
vholdl(vnode_t *vp)
{
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((vp->v_iflag & VI_MARKER) == 0);
if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
mutex_enter(&vnode_free_list_lock);
KASSERT(vp->v_freelisthd == &vnode_free_list);
TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
vp->v_freelisthd = &vnode_hold_list;
TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
mutex_exit(&vnode_free_list_lock);
}
}
/*
* Page or buffer structure frees a reference.
* Called with v_interlock held.
*/
void
holdrelel(vnode_t *vp)
{
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((vp->v_iflag & VI_MARKER) == 0);
if (vp->v_holdcnt <= 0) {
vpanic(vp, "holdrelel: holdcnt vp %p");
}
vp->v_holdcnt--;
if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
mutex_enter(&vnode_free_list_lock);
KASSERT(vp->v_freelisthd == &vnode_hold_list);
TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
vp->v_freelisthd = &vnode_free_list;
TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
mutex_exit(&vnode_free_list_lock);
}
}
/*
* Disassociate the underlying file system from a vnode.
*
* Must be called with the interlock held, and will return with it held.
*/
void
vclean(vnode_t *vp, int flags)
{
lwp_t *l = curlwp;
bool recycle, active;
int error;
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((vp->v_iflag & VI_MARKER) == 0);
KASSERT(vp->v_usecount != 0);
/* If cleaning is already in progress wait until done and return. */
if (vp->v_iflag & VI_XLOCK) {
vwait(vp, VI_XLOCK);
return;
}
/* If already clean, nothing to do. */
if ((vp->v_iflag & VI_CLEAN) != 0) {
return;
}
/*
* Prevent the vnode from being recycled or brought into use
* while we clean it out.
*/
vp->v_iflag |= VI_XLOCK;
if (vp->v_iflag & VI_EXECMAP) {
atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
}
vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
active = (vp->v_usecount & VC_MASK) > 1;
/* XXXAD should not lock vnode under layer */
mutex_exit(vp->v_interlock);
VOP_LOCK(vp, LK_EXCLUSIVE);
/*
* Clean out any cached data associated with the vnode.
* If purging an active vnode, it must be closed and
* deactivated before being reclaimed. Note that the
* VOP_INACTIVE will unlock the vnode.
*/
if (flags & DOCLOSE) {
error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
if (error != 0) {
/* XXX, fix vn_start_write's grab of mp and use that. */
if (wapbl_vphaswapbl(vp))
WAPBL_DISCARD(wapbl_vptomp(vp));
error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
}
KASSERT(error == 0);
KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
spec_node_revoke(vp);
}
}
if (active) {
VOP_INACTIVE(vp, &recycle);
} else {
/*
* Any other processes trying to obtain this lock must first
* wait for VI_XLOCK to clear, then call the new lock operation.
*/
VOP_UNLOCK(vp);
}
/* Disassociate the underlying file system from the vnode. */
if (VOP_RECLAIM(vp)) {
vpanic(vp, "vclean: cannot reclaim");
}
KASSERT(vp->v_data == NULL);
KASSERT(vp->v_uobj.uo_npages == 0);
if (vp->v_type == VREG && vp->v_ractx != NULL) {
uvm_ra_freectx(vp->v_ractx);
vp->v_ractx = NULL;
}
/* Purge name cache. */
cache_purge(vp);
/* Done with purge, notify sleepers of the grim news. */
mutex_enter(vp->v_interlock);
vp->v_op = dead_vnodeop_p;
vp->v_tag = VT_NON;
KNOTE(&vp->v_klist, NOTE_REVOKE);
vp->v_iflag &= ~VI_XLOCK;
vp->v_vflag &= ~VV_LOCKSWORK;
if ((flags & DOCLOSE) != 0) {
vp->v_iflag |= VI_CLEAN;
}
cv_broadcast(&vp->v_cv);
KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
}
/*
* Recycle an unused vnode to the front of the free list.
* Release the passed interlock if the vnode will be recycled.
*/
int
vrecycle(vnode_t *vp, kmutex_t *inter_lkp, struct lwp *l)
{
KASSERT((vp->v_iflag & VI_MARKER) == 0);
mutex_enter(vp->v_interlock);
if (vp->v_usecount != 0) {
mutex_exit(vp->v_interlock);
return 0;
}
if (inter_lkp) {
mutex_exit(inter_lkp);
}
vremfree(vp);
vp->v_usecount = 1;
vclean(vp, DOCLOSE);
vrelel(vp, 0);
return 1;
}
/*
* Eliminate all activity associated with the requested vnode
* and with all vnodes aliased to the requested vnode.
*/
void
vrevoke(vnode_t *vp)
{
vnode_t *vq, **vpp;
enum vtype type;
dev_t dev;
KASSERT(vp->v_usecount > 0);
mutex_enter(vp->v_interlock);
if ((vp->v_iflag & VI_CLEAN) != 0) {
mutex_exit(vp->v_interlock);
return;
} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
atomic_inc_uint(&vp->v_usecount);
vclean(vp, DOCLOSE);
vrelel(vp, 0);
return;
} else {
dev = vp->v_rdev;
type = vp->v_type;
mutex_exit(vp->v_interlock);
}
vpp = &specfs_hash[SPECHASH(dev)];
mutex_enter(&device_lock);
for (vq = *vpp; vq != NULL;) {
/* If clean or being cleaned, then ignore it. */
mutex_enter(vq->v_interlock);
if ((vq->v_iflag & (VI_CLEAN | VI_XLOCK)) != 0 ||
vq->v_rdev != dev || vq->v_type != type) {
mutex_exit(vq->v_interlock);
vq = vq->v_specnext;
continue;
}
mutex_exit(&device_lock);
if (vq->v_usecount == 0) {
vremfree(vq);
vq->v_usecount = 1;
} else {
atomic_inc_uint(&vq->v_usecount);
}
vclean(vq, DOCLOSE);
vrelel(vq, 0);
mutex_enter(&device_lock);
vq = *vpp;
}
mutex_exit(&device_lock);
}
/*
* Eliminate all activity associated with a vnode in preparation for
* reuse. Drops a reference from the vnode.
*/
void
vgone(vnode_t *vp)
{
mutex_enter(vp->v_interlock);
vclean(vp, DOCLOSE);
vrelel(vp, 0);
}
/*
* Update outstanding I/O count and do wakeup if requested.
*/
void
vwakeup(struct buf *bp)
{
vnode_t *vp;
if ((vp = bp->b_vp) == NULL)
return;
KASSERT(bp->b_objlock == vp->v_interlock);
KASSERT(mutex_owned(bp->b_objlock));
if (--vp->v_numoutput < 0)
panic("vwakeup: neg numoutput, vp %p", vp);
if (vp->v_numoutput == 0)
cv_broadcast(&vp->v_cv);
}
/*
* Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
* recycled.
*/
void
vwait(vnode_t *vp, int flags)
{
KASSERT(mutex_owned(vp->v_interlock));
KASSERT(vp->v_usecount != 0);
while ((vp->v_iflag & flags) != 0)
cv_wait(&vp->v_cv, vp->v_interlock);
}
int
vfs_drainvnodes(long target)
{
while (numvnodes > target) {
vnode_t *vp;
mutex_enter(&vnode_free_list_lock);
vp = getcleanvnode();
if (vp == NULL) {
return EBUSY;
}
ungetnewvnode(vp);
}
return 0;
}
void
vpanic(vnode_t *vp, const char *msg)
{
#ifdef DIAGNOSTIC
vprint(NULL, vp);
panic("%s\n", msg);
#endif
}