NetBSD/sys/dev/sbus/cs4231_sbus.c
1999-01-12 02:28:55 +00:00

1050 lines
26 KiB
C

/* $NetBSD: cs4231_sbus.c,v 1.7 1999/01/12 02:28:55 kleink Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "audio.h"
#if NAUDIO > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/ic/ad1848reg.h>
#include <dev/ic/cs4231reg.h>
#include <dev/ic/ad1848var.h>
#if 0
/* XXX- put these elsewhere */
#define SUNAUDIO_MIC_PORT 0
#define SUNAUDIO_SPEAKER 1
#define SUNAUDIO_HEADPHONES 2
#define SUNAUDIO_MONITOR 3
#define SUNAUDIO_SOURCE 4
#define SUNAUDIO_OUTPUT 5
#define SUNAUDIO_INPUT_CLASS 6
#define SUNAUDIO_OUTPUT_CLASS 7
#define SUNAUDIO_RECORD_CLASS 8
#define SUNAUDIO_MONITOR_CLASS 9
#endif
/*---*/
#define CSAUDIO_DAC_LVL 0
#define CSAUDIO_LINE_IN_LVL 1
#define CSAUDIO_MONO_LVL 2
#define CSAUDIO_CD_LVL 3
#define CSAUDIO_MONITOR_LVL 4
#define CSAUDIO_OUT_LVL 5
#define CSAUDIO_LINE_IN_MUTE 6
#define CSAUDIO_DAC_MUTE 7
#define CSAUDIO_CD_MUTE 8
#define CSAUDIO_MONO_MUTE 9
#define CSAUDIO_MONITOR_MUTE 10
#define CSAUDIO_REC_LVL 11
#define CSAUDIO_RECORD_SOURCE 12
#define CSAUDIO_INPUT_CLASS 13
#define CSAUDIO_OUTPUT_CLASS 14
#define CSAUDIO_RECORD_CLASS 15
#define CSAUDIO_MONITOR_CLASS 16
#define AUDIO_ROM_NAME "SUNW,CS4231"
#ifdef AUDIO_DEBUG
int cs4231debug = 0;
#define DPRINTF(x) if (cs4231debug) printf x
#else
#define DPRINTF(x)
#endif
/*
* Layout of 4231 registers.
*
struct cs4231_reg {
volatile u_int8_t iar; // Index Address Register
volatile u_int8_t pad0[3];
volatile u_int8_t idr; // Data Register
volatile u_int8_t pad1[3];
volatile u_int8_t status; // Status Register
volatile u_int8_t pad2[3];
volatile u_int8_t piodr; // PIO Data Register I/O
volatile u_int8_t pad3[3];
};
*/
#define CS4231_REG_SIZE 16
/*
* APC DMA hardware; from SunOS header
* Thanks to Derrick J. Brashear for additional info on the
* meaning of some of these bits.
*/
struct apc_dma {
volatile u_int32_t dmacsr; /* APC CSR */
volatile u_int32_t lpad[3]; /* */
volatile u_int32_t dmacva; /* Capture Virtual Address */
volatile u_int32_t dmacc; /* Capture Count */
volatile u_int32_t dmacnva; /* Capture Next Virtual Address */
volatile u_int32_t dmacnc; /* Capture next count */
volatile u_int32_t dmapva; /* Playback Virtual Address */
volatile u_int32_t dmapc; /* Playback Count */
volatile u_int32_t dmapnva; /* Playback Next VAddress */
volatile u_int32_t dmapnc; /* Playback Next Count */
};
/*
* APC CSR Register bit definitions
*/
#define APC_IP 0x00800000 /* Interrupt Pending */
#define APC_PI 0x00400000 /* Playback interrupt */
#define APC_CI 0x00200000 /* Capture interrupt */
#define APC_EI 0x00100000 /* General interrupt */
#define APC_IE 0x00080000 /* General ext int. enable */
#define APC_PIE 0x00040000 /* Playback ext intr */
#define APC_CIE 0x00020000 /* Capture ext intr */
#define APC_EIE 0x00010000 /* Error ext intr */
#define APC_PMI 0x00008000 /* Pipe empty interrupt */
#define APC_PM 0x00004000 /* Play pipe empty */
#define APC_PD 0x00002000 /* Playback NVA dirty */
#define APC_PMIE 0x00001000 /* play pipe empty Int enable */
#define APC_CM 0x00000800 /* Cap data dropped on floor */
#define APC_CD 0x00000400 /* Capture NVA dirty */
#define APC_CMI 0x00000200 /* Capture pipe empty interrupt */
#define APC_CMIE 0x00000100 /* Cap. pipe empty int enable */
#define APC_PPAUSE 0x00000080 /* Pause the play DMA */
#define APC_CPAUSE 0x00000040 /* Pause the capture DMA */
#define APC_CODEC_PDN 0x00000020 /* CODEC RESET */
#define PDMA_GO 0x00000008
#define CDMA_GO 0x00000004 /* bit 2 of the csr */
#define APC_RESET 0x00000001 /* Reset the chip */
#define APC_BITS \
"\20\30IP\27PI\26CI\25EI\24IE" \
"\23PIE\22CIE\21EIE\20PMI\17PM\16PD\15PMIE" \
"\14CM\13CD\12CMI\11CMIE\10PPAUSE\7CPAUSE\6PDN\4PGO\3CGO"
/*
* To start DMA, you write to dma[cp]nva and dma[cp]nc and set [CP]DMA_GO
* in dmacsr. dma[cp]va and dma[cp]c, when read, appear to be the live
* counter as the DMA operation progresses.
* Supposedly, you get an interrupt with the "dirty" bits (APC_PD,APC_CD)
* set, when the next DMA buffer can be programmed, while the current one
* is still in progress. We don't currently use this feature, since I
* haven't been able to make it work.. instead the next buffer goes in
* as soon as we see a "pipe empty" (APC_PM) interrupt.
*/
/* It's not clear if there's a maximum DMA size.. */
#define APC_MAX (sc->sc_blksz)/*(16*1024)*/
/*
* List of device memory allocations (see cs4231_malloc/cs4231_free).
*/
struct cs_dma {
struct cs_dma *next;
caddr_t addr;
bus_dma_segment_t segs[1];
int nsegs;
size_t size;
};
/*
* Software state, per CS4231 audio chip.
*/
struct cs4231_softc {
struct ad1848_softc sc_ad1848; /* base device */
struct sbusdev sc_sd; /* sbus device */
bus_space_tag_t sc_bustag;
bus_dma_tag_t sc_dmatag;
struct evcnt sc_intrcnt; /* statistics */
struct cs_dma *sc_dmas;
struct cs_dma *sc_nowplaying; /*XXX*/
u_long sc_playsegsz; /*XXX*/
u_long sc_playcnt;
u_long sc_blksz;
int sc_open; /* single use device */
int sc_locked; /* true when transfering data */
struct apc_dma *sc_dmareg; /* DMA registers */
/* interfacing with the interrupt handlers */
void (*sc_rintr)(void*); /* input completion intr handler */
void *sc_rarg; /* arg for sc_rintr() */
void (*sc_pintr)(void*); /* output completion intr handler */
void *sc_parg; /* arg for sc_pintr() */
};
/* autoconfiguration driver */
void cs4231attach __P((struct device *, struct device *, void *));
int cs4231match __P((struct device *, struct cfdata *, void *));
struct cfattach audiocs_ca = {
sizeof(struct cs4231_softc), cs4231match, cs4231attach
};
struct audio_device cs4231_device = {
"cs4231",
"x",
"audio"
};
/*
* Define our interface to the higher level audio driver.
*/
int cs4231_open __P((void *, int));
void cs4231_close __P((void *));
u_long cs4231_round_buffersize __P((void *, u_long));
int cs4231_round_blocksize __P((void *, int));
int cs4231_halt_output __P((void *));
int cs4231_halt_input __P((void *));
int cs4231_getdev __P((void *, struct audio_device *));
int cs4231_set_port __P((void *, mixer_ctrl_t *));
int cs4231_get_port __P((void *, mixer_ctrl_t *));
int cs4231_query_devinfo __P((void *, mixer_devinfo_t *));
int cs4231_get_props __P((void *));
void *cs4231_malloc __P((void *, u_long, int, int));
void cs4231_free __P((void *, void *, int));
int cs4231_trigger_output __P((void *, void *, void *, int,
void (*)(void *), void *,
struct audio_params *));
int cs4231_trigger_input __P((void *, void *, void *, int,
void (*)(void *), void *,
struct audio_params *));
int cs4231_intr __P((void *));
void cs4231_init __P((struct cs4231_softc *));
#ifdef AUDIO_DEBUG
static void cs4231_regdump __P((char *, struct cs4231_softc *));
#endif
static int cs_read __P((struct ad1848_softc *, int));
static void cs_write __P((struct ad1848_softc *, int, int));
static int
cs_read(sc, index)
struct ad1848_softc *sc;
int index;
{
u_int8_t *p = (u_int8_t *)sc->sc_ioh + (index << 2);
int v;
v = *p;
return (v);
}
static void
cs_write(sc, index, value)
struct ad1848_softc *sc;
int index, value;
{
u_int8_t *p = (u_int8_t *)sc->sc_ioh + (index << 2);
*p = value;
}
static struct audio_hw_if hw_if = {
cs4231_open,
cs4231_close,
0,
ad1848_query_encoding,
ad1848_set_params,
cs4231_round_blocksize,
ad1848_commit_settings,
0,
0,
NULL,
NULL,
cs4231_halt_output,
cs4231_halt_input,
0,
cs4231_getdev,
0,
cs4231_set_port,
cs4231_get_port,
cs4231_query_devinfo,
cs4231_malloc,
cs4231_free,
cs4231_round_buffersize,
0,
cs4231_get_props,
cs4231_trigger_output,
cs4231_trigger_input
};
/* autoconfig routines */
int
cs4231match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct sbus_attach_args *sa = aux;
return (strcmp(AUDIO_ROM_NAME, sa->sa_name) == 0);
}
/*
* Audio chip found.
*/
void
cs4231attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct cs4231_softc *sc = (struct cs4231_softc *)self;
struct sbus_attach_args *sa = aux;
bus_space_handle_t bh;
sc->sc_bustag = sa->sa_bustag;
sc->sc_dmatag = sa->sa_dmatag;
sc->sc_ad1848.parent = sc;
sc->sc_ad1848.sc_readreg = cs_read;
sc->sc_ad1848.sc_writereg = cs_write;
/*
* Map my registers in, if they aren't already in virtual
* address space.
*/
if (sa->sa_npromvaddrs) {
bh = (bus_space_handle_t)sa->sa_promvaddrs[0];
} else {
if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
sa->sa_offset,
sa->sa_size,
BUS_SPACE_MAP_LINEAR,
0, &bh) != 0) {
printf("%s @ sbus: cannot map registers\n",
self->dv_xname);
return;
}
}
sc->sc_ad1848.sc_ioh = bh;
sc->sc_dmareg = (struct apc_dma *)((int)bh + CS4231_REG_SIZE);
cs4231_init(sc);
/* Put ad1848 driver in `MODE 2' mode */
sc->sc_ad1848.mode = 2;
ad1848_attach(&sc->sc_ad1848);
printf("\n");
sbus_establish(&sc->sc_sd, &sc->sc_ad1848.sc_dev);
/* Establish interrupt channel */
bus_intr_establish(sa->sa_bustag,
sa->sa_pri, 0,
cs4231_intr, sc);
evcnt_attach(&sc->sc_ad1848.sc_dev, "intr", &sc->sc_intrcnt);
audio_attach_mi(&hw_if, sc, &sc->sc_ad1848.sc_dev);
}
#ifdef AUDIO_DEBUG
static void
cs4231_regdump(label, sc)
char *label;
struct cs4231_softc *sc;
{
char bits[128];
volatile struct apc_dma *dma = sc->sc_dmareg;
printf("cs4231regdump(%s): regs:", label);
printf("dmapva: 0x%lx; ", (u_long)dma->dmapva);
printf("dmapc: 0x%lx; ", (u_long)dma->dmapc);
printf("dmapnva: 0x%lx; ", (u_long)dma->dmapnva);
printf("dmapnc: 0x%lx\n", (u_long)dma->dmapnc);
printf("dmacva: 0x%lx; ", (u_long)dma->dmacva);
printf("dmacc: 0x%lx; ", (u_long)dma->dmacc);
printf("dmacnva: 0x%lx; ", (u_long)dma->dmacnva);
printf("dmacnc: 0x%lx\n", (u_long)dma->dmacnc);
printf("apc_dmacsr=%s\n",
bitmask_snprintf(dma->dmacsr, APC_BITS, bits, sizeof(bits)) );
ad1848_dump_regs(&sc->sc_ad1848);
}
#endif
void
cs4231_init(sc)
register struct cs4231_softc *sc;
{
char *buf;
#if 0
volatile struct apc_dma *dma = sc->sc_dmareg;
#endif
int reg;
#if 0
dma->dmacsr = APC_CODEC_PDN;
delay(20);
dma->dmacsr &= ~APC_CODEC_PDN;
#endif
/* First, put chip in native mode */
reg = ad_read(&sc->sc_ad1848, SP_MISC_INFO);
ad_write(&sc->sc_ad1848, SP_MISC_INFO, reg | MODE2);
/* Read version numbers from I25 */
reg = ad_read(&sc->sc_ad1848, CS_VERSION_ID);
switch (reg & (CS_VERSION_NUMBER | CS_VERSION_CHIPID)) {
case 0xa0:
sc->sc_ad1848.chip_name = "CS4231A";
break;
case 0x80:
sc->sc_ad1848.chip_name = "CS4231";
break;
case 0x82:
sc->sc_ad1848.chip_name = "CS4232";
break;
default:
if ((buf = malloc(32, M_TEMP, M_NOWAIT)) != NULL) {
sprintf(buf, "unknown rev: %x/%x", reg&0xe, reg&7);
sc->sc_ad1848.chip_name = buf;
}
}
}
void *
cs4231_malloc(addr, size, pool, flags)
void *addr;
u_long size;
int pool;
int flags;
{
struct cs4231_softc *sc = addr;
struct cs_dma *p;
int error;
p = malloc(sizeof(*p), pool, flags);
if (p == NULL)
return (NULL);
p->size = size;
error = bus_dmamem_alloc(sc->sc_dmatag, size, 64*1024, 0,
p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
&p->nsegs, BUS_DMA_NOWAIT);
if (error) {
free(p, pool);
return (NULL);
}
error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
&p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
if (error) {
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
free(p, pool);
return (NULL);
}
p->next = sc->sc_dmas;
sc->sc_dmas = p;
return (p->addr);
}
void
cs4231_free(addr, ptr, pool)
void *addr;
void *ptr;
int pool;
{
struct cs4231_softc *sc = addr;
struct cs_dma *p, **pp;
for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &(*pp)->next) {
if (p->addr != ptr)
continue;
bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
*pp = p->next;
free(p, pool);
return;
}
printf("cs4231_free: rogue pointer\n");
}
int
cs4231_open(addr, flags)
void *addr;
int flags;
{
struct cs4231_softc *sc = addr;
#if 0
struct apc_dma *dma = sc->sc_dmareg;
#endif
DPRINTF(("sa_open: unit %p\n", sc));
if (sc->sc_open)
return (EBUSY);
sc->sc_open = 1;
sc->sc_locked = 0;
sc->sc_rintr = 0;
sc->sc_rarg = 0;
sc->sc_pintr = 0;
sc->sc_parg = 0;
#if 1
/*No interrupts from ad1848 */
ad_write(&sc->sc_ad1848, SP_PIN_CONTROL, 0);
#endif
#if 0
dma->dmacsr = APC_RESET;
delay(10);
dma->dmacsr = 0;
delay(10);
ad1848_reset(&sc->sc_ad1848);
#endif
DPRINTF(("saopen: ok -> sc=%p\n", sc));
return (0);
}
void
cs4231_close(addr)
void *addr;
{
register struct cs4231_softc *sc = addr;
DPRINTF(("sa_close: sc=%p\n", sc));
/*
* halt i/o, clear open flag, and done.
*/
cs4231_halt_input(sc);
cs4231_halt_output(sc);
sc->sc_open = 0;
DPRINTF(("sa_close: closed.\n"));
}
u_long
cs4231_round_buffersize(addr, size)
void *addr;
u_long size;
{
#if 0
if (size > APC_MAX)
size = APC_MAX;
#endif
return (size);
}
int
cs4231_round_blocksize(addr, blk)
void *addr;
int blk;
{
return (blk & -4);
}
int
cs4231_getdev(addr, retp)
void *addr;
struct audio_device *retp;
{
*retp = cs4231_device;
return (0);
}
static ad1848_devmap_t csmapping[] = {
{ CSAUDIO_DAC_LVL, AD1848_KIND_LVL, AD1848_AUX1_CHANNEL },
{ CSAUDIO_LINE_IN_LVL, AD1848_KIND_LVL, AD1848_LINE_CHANNEL },
{ CSAUDIO_MONO_LVL, AD1848_KIND_LVL, AD1848_MONO_CHANNEL },
{ CSAUDIO_CD_LVL, AD1848_KIND_LVL, AD1848_AUX2_CHANNEL },
{ CSAUDIO_MONITOR_LVL, AD1848_KIND_LVL, AD1848_MONITOR_CHANNEL },
{ CSAUDIO_OUT_LVL, AD1848_KIND_LVL, AD1848_DAC_CHANNEL },
{ CSAUDIO_DAC_MUTE, AD1848_KIND_MUTE, AD1848_AUX1_CHANNEL },
{ CSAUDIO_LINE_IN_MUTE, AD1848_KIND_MUTE, AD1848_LINE_CHANNEL },
{ CSAUDIO_MONO_MUTE, AD1848_KIND_MUTE, AD1848_MONO_CHANNEL },
{ CSAUDIO_CD_MUTE, AD1848_KIND_MUTE, AD1848_AUX2_CHANNEL },
{ CSAUDIO_MONITOR_MUTE, AD1848_KIND_MUTE, AD1848_MONITOR_CHANNEL },
{ CSAUDIO_REC_LVL, AD1848_KIND_RECORDGAIN, -1 },
{ CSAUDIO_RECORD_SOURCE, AD1848_KIND_RECORDSOURCE, -1 }
};
static int nummap = sizeof(csmapping) / sizeof(csmapping[0]);
int
cs4231_set_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
struct ad1848_softc *ac = addr;
DPRINTF(("cs4231_set_port: port=%d", cp->dev));
return (ad1848_mixer_set_port(ac, csmapping, nummap, cp));
}
int
cs4231_get_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
struct ad1848_softc *ac = addr;
DPRINTF(("cs4231_get_port: port=%d", cp->dev));
return (ad1848_mixer_get_port(ac, csmapping, nummap, cp));
}
int
cs4231_get_props(addr)
void *addr;
{
return (AUDIO_PROP_FULLDUPLEX);
}
int
cs4231_query_devinfo(addr, dip)
void *addr;
register mixer_devinfo_t *dip;
{
switch(dip->index) {
#if 0
case CSAUDIO_MIC_IN_LVL: /* Microphone */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CSAUDIO_MIC_IN_MUTE;
strcpy(dip->label.name, AudioNmicrophone);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
#endif
case CSAUDIO_MONO_LVL: /* mono/microphone mixer */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CSAUDIO_MONO_MUTE;
strcpy(dip->label.name, AudioNmicrophone);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case CSAUDIO_DAC_LVL: /* dacout */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CSAUDIO_DAC_MUTE;
strcpy(dip->label.name, AudioNdac);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case CSAUDIO_LINE_IN_LVL: /* line */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CSAUDIO_LINE_IN_MUTE;
strcpy(dip->label.name, AudioNline);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case CSAUDIO_CD_LVL: /* cd */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CSAUDIO_CD_MUTE;
strcpy(dip->label.name, AudioNcd);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case CSAUDIO_MONITOR_LVL: /* monitor level */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CSAUDIO_MONITOR_CLASS;
dip->next = CSAUDIO_MONITOR_MUTE;
dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmonitor);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case CSAUDIO_OUT_LVL: /* cs4231 output volume: not useful? */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CSAUDIO_MONITOR_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNoutput);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case CSAUDIO_LINE_IN_MUTE:
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = CSAUDIO_LINE_IN_LVL;
dip->next = AUDIO_MIXER_LAST;
goto mute;
case CSAUDIO_DAC_MUTE:
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = CSAUDIO_DAC_LVL;
dip->next = AUDIO_MIXER_LAST;
goto mute;
case CSAUDIO_CD_MUTE:
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = CSAUDIO_CD_LVL;
dip->next = AUDIO_MIXER_LAST;
goto mute;
case CSAUDIO_MONO_MUTE:
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = CSAUDIO_MONO_LVL;
dip->next = AUDIO_MIXER_LAST;
goto mute;
case CSAUDIO_MONITOR_MUTE:
dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = CSAUDIO_MONITOR_LVL;
dip->next = AUDIO_MIXER_LAST;
mute:
strcpy(dip->label.name, AudioNmute);
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
break;
case CSAUDIO_REC_LVL: /* record level */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CSAUDIO_RECORD_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CSAUDIO_RECORD_SOURCE;
strcpy(dip->label.name, AudioNrecord);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case CSAUDIO_RECORD_SOURCE:
dip->mixer_class = CSAUDIO_RECORD_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = CSAUDIO_REC_LVL;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
dip->un.e.num_mem = 4;
strcpy(dip->un.e.member[0].label.name, AudioNoutput);
dip->un.e.member[0].ord = DAC_IN_PORT;
strcpy(dip->un.e.member[1].label.name, AudioNmicrophone);
dip->un.e.member[1].ord = MIC_IN_PORT;
strcpy(dip->un.e.member[2].label.name, AudioNdac);
dip->un.e.member[2].ord = AUX1_IN_PORT;
strcpy(dip->un.e.member[3].label.name, AudioNline);
dip->un.e.member[3].ord = LINE_IN_PORT;
break;
case CSAUDIO_INPUT_CLASS: /* input class descriptor */
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = CSAUDIO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCinputs);
break;
case CSAUDIO_OUTPUT_CLASS: /* output class descriptor */
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
break;
case CSAUDIO_MONITOR_CLASS: /* monitor class descriptor */
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = CSAUDIO_MONITOR_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCmonitor);
break;
case CSAUDIO_RECORD_CLASS: /* record source class */
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = CSAUDIO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCrecord);
break;
default:
return ENXIO;
/*NOTREACHED*/
}
DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
return (0);
}
int
cs4231_trigger_output(addr, start, end, blksize, intr, arg, param)
void *addr;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
struct cs4231_softc *sc = addr;
struct cs_dma *p;
volatile struct apc_dma *dma = sc->sc_dmareg;
int csr;
u_long n;
if (sc->sc_locked != 0) {
printf("cs4231_trigger_output: already running\n");
return (EINVAL);
}
sc->sc_locked = 1;
sc->sc_pintr = intr;
sc->sc_parg = arg;
for (p = sc->sc_dmas; p != NULL && p->addr != start; p = p->next)
/*void*/;
if (p == NULL) {
printf("cs4231_trigger_output: bad addr %p\n", start);
return (EINVAL);
}
n = (char *)end - (char *)start;
/* XXX
* Do only `blksize' at a time, so audio_pint() is kept
* synchronous with us...
*/
/*XXX*/sc->sc_blksz = blksize;
/*XXX*/sc->sc_nowplaying = p;
/*XXX*/sc->sc_playsegsz = n;
if (n > APC_MAX)
n = APC_MAX;
sc->sc_playcnt = n;
DPRINTF(("trigger_out: start %p, end %p, size %lu; "
"dmaaddr 0x%lx, dmacnt %lu, segsize %lu\n",
start, end, sc->sc_playsegsz, p->segs[0].ds_addr,
n, (u_long)p->size));
csr = dma->dmacsr;
dma->dmapnva = (u_long)p->segs[0].ds_addr;
dma->dmapnc = n;
if ((csr & PDMA_GO) == 0 || (csr & APC_PPAUSE) != 0) {
int reg;
dma->dmacsr &= ~(APC_PIE|APC_PPAUSE);
dma->dmacsr |= APC_EI|APC_IE|APC_PIE|APC_EIE|APC_PMIE|PDMA_GO;
/* Start chip */
/* Probably should just ignore this.. */
ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG,
(PLAYBACK_ENABLE|reg));
}
return (0);
}
int
cs4231_trigger_input(addr, start, end, blksize, intr, arg, param)
void *addr;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
return (ENXIO);
}
int
cs4231_halt_output(addr)
void *addr;
{
struct cs4231_softc *sc = addr;
volatile struct apc_dma *dma = sc->sc_dmareg;
int reg;
dma->dmacsr &= ~(APC_EI | APC_IE | APC_PIE | APC_EIE | PDMA_GO | APC_PMIE);
reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~PLAYBACK_ENABLE));
sc->sc_locked = 0;
return (0);
}
int
cs4231_halt_input(addr)
void *addr;
{
struct cs4231_softc *sc = addr;
int reg;
reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~CAPTURE_ENABLE));
sc->sc_locked = 0;
return (0);
}
int
cs4231_intr(arg)
void *arg;
{
struct cs4231_softc *sc = arg;
volatile struct apc_dma *dma = sc->sc_dmareg;
struct cs_dma *p;
int ret = 0;
int csr;
int reg, status;
#if defined(DEBUG) || defined(AUDIO_DEBUG)
char bits[128];
#endif
#ifdef AUDIO_DEBUG
if (cs4231debug > 1)
cs4231_regdump("audiointr", sc);
#endif
/* Read DMA status */
csr = dma->dmacsr;
DPRINTF((
"intr: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
(u_long)dma->dmapva, (u_long)dma->dmapc,
(u_long)dma->dmapnva, (u_long)dma->dmapnc));
status = ADREAD(&sc->sc_ad1848, AD1848_STATUS);
DPRINTF(("%s: status: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
bitmask_snprintf(status, AD_R2_BITS, bits, sizeof(bits))));
if (status & (INTERRUPT_STATUS | SAMPLE_ERROR)) {
reg = ad_read(&sc->sc_ad1848, CS_IRQ_STATUS);
DPRINTF(("%s: i24: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
bitmask_snprintf(reg, CS_I24_BITS, bits, sizeof(bits))));
if (reg & CS_IRQ_PI) {
ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
}
/* Clear interrupt bit */
ADWRITE(&sc->sc_ad1848, AD1848_STATUS, 0);
}
/* Write back DMA status (clears interrupt) */
dma->dmacsr = csr;
/*
* Simplistic.. if "play emtpy" is set advance to next chunk.
*/
#if 1
/* Ack all play interrupts*/
if ((csr & (APC_PI|APC_PD|APC_PIE|APC_PMI)) != 0)
ret = 1;
#endif
if (csr & APC_PM) {
u_long nextaddr, togo;
p = sc->sc_nowplaying;
togo = sc->sc_playsegsz - sc->sc_playcnt;
if (togo == 0) {
/* Roll over */
nextaddr = (u_long)p->segs[0].ds_addr;
sc->sc_playcnt = togo = APC_MAX;
} else {
nextaddr = dma->dmapnva + APC_MAX;
if (togo > APC_MAX)
togo = APC_MAX;
sc->sc_playcnt += togo;
}
dma->dmapnva = nextaddr;
dma->dmapnc = togo;
if (sc->sc_pintr != NULL)
(*sc->sc_pintr)(sc->sc_parg);
ret = 1;
}
if (csr & APC_CI) {
if (sc->sc_rintr != NULL) {
ret = 1;
(*sc->sc_rintr)(sc->sc_rarg);
}
}
#ifdef DEBUG
if (ret == 0) {
printf(
"oops: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
(u_long)dma->dmapva, (u_long)dma->dmapc,
(u_long)dma->dmapnva, (u_long)dma->dmapnc);
ret = 1;
}
#endif
return (ret);
}
#endif /* NAUDIO > 0 */