NetBSD/sys/arch/arm/arm32/pmap.c

4158 lines
106 KiB
C

/* $NetBSD: pmap.c,v 1.124 2003/01/17 22:28:49 thorpej Exp $ */
/*
* Copyright (c) 2002 Wasabi Systems, Inc.
* Copyright (c) 2001 Richard Earnshaw
* Copyright (c) 2001-2002 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
*
* RiscBSD kernel project
*
* pmap.c
*
* Machine dependant vm stuff
*
* Created : 20/09/94
*/
/*
* Performance improvements, UVM changes, overhauls and part-rewrites
* were contributed by Neil A. Carson <neil@causality.com>.
*/
/*
* The dram block info is currently referenced from the bootconfig.
* This should be placed in a separate structure.
*/
/*
* Special compilation symbols
* PMAP_DEBUG - Build in pmap_debug_level code
*/
/* Include header files */
#include "opt_pmap_debug.h"
#include "opt_ddb.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/user.h>
#include <sys/pool.h>
#include <sys/cdefs.h>
#include <uvm/uvm.h>
#include <machine/bootconfig.h>
#include <machine/bus.h>
#include <machine/pmap.h>
#include <machine/pcb.h>
#include <machine/param.h>
#include <arm/arm32/katelib.h>
__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.124 2003/01/17 22:28:49 thorpej Exp $");
#ifdef PMAP_DEBUG
#define PDEBUG(_lev_,_stat_) \
if (pmap_debug_level >= (_lev_)) \
((_stat_))
int pmap_debug_level = -2;
void pmap_dump_pvlist(vaddr_t phys, char *m);
/*
* for switching to potentially finer grained debugging
*/
#define PDB_FOLLOW 0x0001
#define PDB_INIT 0x0002
#define PDB_ENTER 0x0004
#define PDB_REMOVE 0x0008
#define PDB_CREATE 0x0010
#define PDB_PTPAGE 0x0020
#define PDB_GROWKERN 0x0040
#define PDB_BITS 0x0080
#define PDB_COLLECT 0x0100
#define PDB_PROTECT 0x0200
#define PDB_MAP_L1 0x0400
#define PDB_BOOTSTRAP 0x1000
#define PDB_PARANOIA 0x2000
#define PDB_WIRING 0x4000
#define PDB_PVDUMP 0x8000
int debugmap = 0;
int pmapdebug = PDB_PARANOIA | PDB_FOLLOW | PDB_GROWKERN | PDB_ENTER | PDB_REMOVE;
#define NPDEBUG(_lev_,_stat_) \
if (pmapdebug & (_lev_)) \
((_stat_))
#else /* PMAP_DEBUG */
#define PDEBUG(_lev_,_stat_) /* Nothing */
#define NPDEBUG(_lev_,_stat_) /* Nothing */
#endif /* PMAP_DEBUG */
struct pmap kernel_pmap_store;
/*
* linked list of all non-kernel pmaps
*/
static LIST_HEAD(, pmap) pmaps;
/*
* pool that pmap structures are allocated from
*/
struct pool pmap_pmap_pool;
/*
* pool/cache that PT-PT's are allocated from
*/
struct pool pmap_ptpt_pool;
struct pool_cache pmap_ptpt_cache;
u_int pmap_ptpt_cache_generation;
static void *pmap_ptpt_page_alloc(struct pool *, int);
static void pmap_ptpt_page_free(struct pool *, void *);
struct pool_allocator pmap_ptpt_allocator = {
pmap_ptpt_page_alloc, pmap_ptpt_page_free,
};
static int pmap_ptpt_ctor(void *, void *, int);
static pt_entry_t *csrc_pte, *cdst_pte;
static vaddr_t csrcp, cdstp;
char *memhook;
extern caddr_t msgbufaddr;
boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
/*
* locking data structures
*/
static struct lock pmap_main_lock;
static struct simplelock pvalloc_lock;
static struct simplelock pmaps_lock;
#ifdef LOCKDEBUG
#define PMAP_MAP_TO_HEAD_LOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
#define PMAP_MAP_TO_HEAD_UNLOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
#define PMAP_HEAD_TO_MAP_LOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
#define PMAP_HEAD_TO_MAP_UNLOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
#else
#define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
#define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
#define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
#define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
#endif /* LOCKDEBUG */
/*
* pv_page management structures: locked by pvalloc_lock
*/
TAILQ_HEAD(pv_pagelist, pv_page);
static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
static unsigned int pv_nfpvents; /* # of free pv entries */
static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
static vaddr_t pv_cachedva; /* cached VA for later use */
#define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
#define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
/* high water mark */
/*
* local prototypes
*/
static struct pv_entry *pmap_add_pvpage(struct pv_page *, boolean_t);
static struct pv_entry *pmap_alloc_pv(struct pmap *, int); /* see codes below */
#define ALLOCPV_NEED 0 /* need PV now */
#define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
#define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
static struct pv_entry *pmap_alloc_pvpage(struct pmap *, int);
static void pmap_enter_pv(struct vm_page *,
struct pv_entry *, struct pmap *,
vaddr_t, struct vm_page *, unsigned int);
static void pmap_free_pv(struct pmap *, struct pv_entry *);
static void pmap_free_pvs(struct pmap *, struct pv_entry *);
static void pmap_free_pv_doit(struct pv_entry *);
static void pmap_free_pvpage(void);
static boolean_t pmap_is_curpmap(struct pmap *);
static struct pv_entry *pmap_remove_pv(struct vm_page *, struct pmap *,
vaddr_t);
#define PMAP_REMOVE_ALL 0 /* remove all mappings */
#define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
static u_int pmap_modify_pv(struct pmap *, vaddr_t, struct vm_page *,
u_int, u_int);
/*
* Structure that describes and L1 table.
*/
struct l1pt {
SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
struct pglist pt_plist; /* Allocated page list */
vaddr_t pt_va; /* Allocated virtual address */
int pt_flags; /* Flags */
};
#define PTFLAG_STATIC 0x01 /* Statically allocated */
#define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
#define PTFLAG_CLEAN 0x04 /* L1 is clean */
static void pmap_free_l1pt(struct l1pt *);
static int pmap_allocpagedir(struct pmap *);
static int pmap_clean_page(struct pv_entry *, boolean_t);
static void pmap_page_remove(struct vm_page *);
static struct vm_page *pmap_alloc_ptp(struct pmap *, vaddr_t);
static struct vm_page *pmap_get_ptp(struct pmap *, vaddr_t);
__inline static void pmap_clearbit(struct vm_page *, unsigned int);
extern paddr_t physical_start;
extern paddr_t physical_end;
extern unsigned int free_pages;
extern int max_processes;
vaddr_t virtual_avail;
vaddr_t virtual_end;
vaddr_t pmap_curmaxkvaddr;
vaddr_t avail_start;
vaddr_t avail_end;
extern pv_addr_t systempage;
/* Variables used by the L1 page table queue code */
SIMPLEQ_HEAD(l1pt_queue, l1pt);
static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
static int l1pt_static_queue_count; /* items in the static l1 queue */
static int l1pt_static_create_count; /* static l1 items created */
static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
static int l1pt_queue_count; /* items in the l1 queue */
static int l1pt_create_count; /* stat - L1's create count */
static int l1pt_reuse_count; /* stat - L1's reused count */
/* Local function prototypes (not used outside this file) */
void pmap_pinit(struct pmap *);
void pmap_freepagedir(struct pmap *);
/* Other function prototypes */
extern void bzero_page(vaddr_t);
extern void bcopy_page(vaddr_t, vaddr_t);
struct l1pt *pmap_alloc_l1pt(void);
static __inline void pmap_map_in_l1(struct pmap *pmap, vaddr_t va,
vaddr_t l2pa, int);
static pt_entry_t *pmap_map_ptes(struct pmap *);
static void pmap_unmap_ptes(struct pmap *);
__inline static void pmap_vac_me_harder(struct pmap *, struct vm_page *,
pt_entry_t *, boolean_t);
static void pmap_vac_me_kpmap(struct pmap *, struct vm_page *,
pt_entry_t *, boolean_t);
static void pmap_vac_me_user(struct pmap *, struct vm_page *,
pt_entry_t *, boolean_t);
/*
* real definition of pv_entry.
*/
struct pv_entry {
struct pv_entry *pv_next; /* next pv_entry */
struct pmap *pv_pmap; /* pmap where mapping lies */
vaddr_t pv_va; /* virtual address for mapping */
int pv_flags; /* flags */
struct vm_page *pv_ptp; /* vm_page for the ptp */
};
/*
* pv_entrys are dynamically allocated in chunks from a single page.
* we keep track of how many pv_entrys are in use for each page and
* we can free pv_entry pages if needed. there is one lock for the
* entire allocation system.
*/
struct pv_page_info {
TAILQ_ENTRY(pv_page) pvpi_list;
struct pv_entry *pvpi_pvfree;
int pvpi_nfree;
};
/*
* number of pv_entry's in a pv_page
* (note: won't work on systems where NPBG isn't a constant)
*/
#define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
sizeof(struct pv_entry))
/*
* a pv_page: where pv_entrys are allocated from
*/
struct pv_page {
struct pv_page_info pvinfo;
struct pv_entry pvents[PVE_PER_PVPAGE];
};
#ifdef MYCROFT_HACK
int mycroft_hack = 0;
#endif
/* Function to set the debug level of the pmap code */
#ifdef PMAP_DEBUG
void
pmap_debug(int level)
{
pmap_debug_level = level;
printf("pmap_debug: level=%d\n", pmap_debug_level);
}
#endif /* PMAP_DEBUG */
__inline static boolean_t
pmap_is_curpmap(struct pmap *pmap)
{
if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
pmap == pmap_kernel())
return (TRUE);
return (FALSE);
}
/*
* PTE_SYNC_CURRENT:
*
* Make sure the pte is flushed to RAM. If the pmap is
* not the current pmap, then also evict the pte from
* any cache lines.
*/
#define PTE_SYNC_CURRENT(pmap, pte) \
do { \
if (pmap_is_curpmap(pmap)) \
PTE_SYNC(pte); \
else \
PTE_FLUSH(pte); \
} while (/*CONSTCOND*/0)
/*
* PTE_FLUSH_ALT:
*
* Make sure the pte is not in any cache lines. We expect
* this to be used only when a pte has not been modified.
*/
#define PTE_FLUSH_ALT(pmap, pte) \
do { \
if (pmap_is_curpmap(pmap) == 0) \
PTE_FLUSH(pte); \
} while (/*CONSTCOND*/0)
/*
* p v _ e n t r y f u n c t i o n s
*/
/*
* pv_entry allocation functions:
* the main pv_entry allocation functions are:
* pmap_alloc_pv: allocate a pv_entry structure
* pmap_free_pv: free one pv_entry
* pmap_free_pvs: free a list of pv_entrys
*
* the rest are helper functions
*/
/*
* pmap_alloc_pv: inline function to allocate a pv_entry structure
* => we lock pvalloc_lock
* => if we fail, we call out to pmap_alloc_pvpage
* => 3 modes:
* ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
* ALLOCPV_TRY = we want a pv_entry, but not enough to steal
* ALLOCPV_NONEED = we are trying to grow our free list, don't really need
* one now
*
* "try" is for optional functions like pmap_copy().
*/
__inline static struct pv_entry *
pmap_alloc_pv(struct pmap *pmap, int mode)
{
struct pv_page *pvpage;
struct pv_entry *pv;
simple_lock(&pvalloc_lock);
pvpage = TAILQ_FIRST(&pv_freepages);
if (pvpage != NULL) {
pvpage->pvinfo.pvpi_nfree--;
if (pvpage->pvinfo.pvpi_nfree == 0) {
/* nothing left in this one? */
TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
}
pv = pvpage->pvinfo.pvpi_pvfree;
KASSERT(pv);
pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
pv_nfpvents--; /* took one from pool */
} else {
pv = NULL; /* need more of them */
}
/*
* if below low water mark or we didn't get a pv_entry we try and
* create more pv_entrys ...
*/
if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
if (pv == NULL)
pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
mode : ALLOCPV_NEED);
else
(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
}
simple_unlock(&pvalloc_lock);
return(pv);
}
/*
* pmap_alloc_pvpage: maybe allocate a new pvpage
*
* if need_entry is false: try and allocate a new pv_page
* if need_entry is true: try and allocate a new pv_page and return a
* new pv_entry from it. if we are unable to allocate a pv_page
* we make a last ditch effort to steal a pv_page from some other
* mapping. if that fails, we panic...
*
* => we assume that the caller holds pvalloc_lock
*/
static struct pv_entry *
pmap_alloc_pvpage(struct pmap *pmap, int mode)
{
struct vm_page *pg;
struct pv_page *pvpage;
struct pv_entry *pv;
/*
* if we need_entry and we've got unused pv_pages, allocate from there
*/
pvpage = TAILQ_FIRST(&pv_unusedpgs);
if (mode != ALLOCPV_NONEED && pvpage != NULL) {
/* move it to pv_freepages list */
TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
/* allocate a pv_entry */
pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
pv = pvpage->pvinfo.pvpi_pvfree;
KASSERT(pv);
pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
pv_nfpvents--; /* took one from pool */
return(pv);
}
/*
* see if we've got a cached unmapped VA that we can map a page in.
* if not, try to allocate one.
*/
if (pv_cachedva == 0) {
int s;
s = splvm();
pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
splx(s);
if (pv_cachedva == 0) {
return (NULL);
}
}
pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
UVM_PGA_USERESERVE);
if (pg == NULL)
return (NULL);
pg->flags &= ~PG_BUSY; /* never busy */
/*
* add a mapping for our new pv_page and free its entrys (save one!)
*
* NOTE: If we are allocating a PV page for the kernel pmap, the
* pmap is already locked! (...but entering the mapping is safe...)
*/
pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
VM_PROT_READ|VM_PROT_WRITE);
pmap_update(pmap_kernel());
pvpage = (struct pv_page *) pv_cachedva;
pv_cachedva = 0;
return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
}
/*
* pmap_add_pvpage: add a pv_page's pv_entrys to the free list
*
* => caller must hold pvalloc_lock
* => if need_entry is true, we allocate and return one pv_entry
*/
static struct pv_entry *
pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
{
unsigned int tofree, lcv;
/* do we need to return one? */
tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
pvp->pvinfo.pvpi_pvfree = NULL;
pvp->pvinfo.pvpi_nfree = tofree;
for (lcv = 0 ; lcv < tofree ; lcv++) {
pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
}
if (need_entry)
TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
else
TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
pv_nfpvents += tofree;
return((need_entry) ? &pvp->pvents[lcv] : NULL);
}
/*
* pmap_free_pv_doit: actually free a pv_entry
*
* => do not call this directly! instead use either
* 1. pmap_free_pv ==> free a single pv_entry
* 2. pmap_free_pvs => free a list of pv_entrys
* => we must be holding pvalloc_lock
*/
__inline static void
pmap_free_pv_doit(struct pv_entry *pv)
{
struct pv_page *pvp;
pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
pv_nfpvents++;
pvp->pvinfo.pvpi_nfree++;
/* nfree == 1 => fully allocated page just became partly allocated */
if (pvp->pvinfo.pvpi_nfree == 1) {
TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
}
/* free it */
pv->pv_next = pvp->pvinfo.pvpi_pvfree;
pvp->pvinfo.pvpi_pvfree = pv;
/*
* are all pv_page's pv_entry's free? move it to unused queue.
*/
if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
}
}
/*
* pmap_free_pv: free a single pv_entry
*
* => we gain the pvalloc_lock
*/
__inline static void
pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
{
simple_lock(&pvalloc_lock);
pmap_free_pv_doit(pv);
/*
* Can't free the PV page if the PV entries were associated with
* the kernel pmap; the pmap is already locked.
*/
if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
pmap != pmap_kernel())
pmap_free_pvpage();
simple_unlock(&pvalloc_lock);
}
/*
* pmap_free_pvs: free a list of pv_entrys
*
* => we gain the pvalloc_lock
*/
__inline static void
pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
{
struct pv_entry *nextpv;
simple_lock(&pvalloc_lock);
for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
nextpv = pvs->pv_next;
pmap_free_pv_doit(pvs);
}
/*
* Can't free the PV page if the PV entries were associated with
* the kernel pmap; the pmap is already locked.
*/
if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
pmap != pmap_kernel())
pmap_free_pvpage();
simple_unlock(&pvalloc_lock);
}
/*
* pmap_free_pvpage: try and free an unused pv_page structure
*
* => assume caller is holding the pvalloc_lock and that
* there is a page on the pv_unusedpgs list
* => if we can't get a lock on the kmem_map we try again later
*/
static void
pmap_free_pvpage(void)
{
int s;
struct vm_map *map;
struct vm_map_entry *dead_entries;
struct pv_page *pvp;
s = splvm(); /* protect kmem_map */
pvp = TAILQ_FIRST(&pv_unusedpgs);
/*
* note: watch out for pv_initpage which is allocated out of
* kernel_map rather than kmem_map.
*/
if (pvp == pv_initpage)
map = kernel_map;
else
map = kmem_map;
if (vm_map_lock_try(map)) {
/* remove pvp from pv_unusedpgs */
TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
/* unmap the page */
dead_entries = NULL;
uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
&dead_entries);
vm_map_unlock(map);
if (dead_entries != NULL)
uvm_unmap_detach(dead_entries, 0);
pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
}
if (pvp == pv_initpage)
/* no more initpage, we've freed it */
pv_initpage = NULL;
splx(s);
}
/*
* main pv_entry manipulation functions:
* pmap_enter_pv: enter a mapping onto a vm_page list
* pmap_remove_pv: remove a mappiing from a vm_page list
*
* NOTE: pmap_enter_pv expects to lock the pvh itself
* pmap_remove_pv expects te caller to lock the pvh before calling
*/
/*
* pmap_enter_pv: enter a mapping onto a vm_page lst
*
* => caller should hold the proper lock on pmap_main_lock
* => caller should have pmap locked
* => we will gain the lock on the vm_page and allocate the new pv_entry
* => caller should adjust ptp's wire_count before calling
* => caller should not adjust pmap's wire_count
*/
__inline static void
pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
vaddr_t va, struct vm_page *ptp, unsigned int flags)
{
pve->pv_pmap = pmap;
pve->pv_va = va;
pve->pv_ptp = ptp; /* NULL for kernel pmap */
pve->pv_flags = flags;
simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
pg->mdpage.pvh_list = pve; /* ... locked list */
simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
if (pve->pv_flags & PVF_WIRED)
++pmap->pm_stats.wired_count;
#ifdef PMAP_ALIAS_DEBUG
{
int s = splhigh();
if (pve->pv_flags & PVF_WRITE)
pg->mdpage.rw_mappings++;
else
pg->mdpage.ro_mappings++;
if (pg->mdpage.rw_mappings != 0 &&
(pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
pg->mdpage.krw_mappings);
}
splx(s);
}
#endif /* PMAP_ALIAS_DEBUG */
}
/*
* pmap_remove_pv: try to remove a mapping from a pv_list
*
* => caller should hold proper lock on pmap_main_lock
* => pmap should be locked
* => caller should hold lock on vm_page [so that attrs can be adjusted]
* => caller should adjust ptp's wire_count and free PTP if needed
* => caller should NOT adjust pmap's wire_count
* => we return the removed pve
*/
__inline static struct pv_entry *
pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
{
struct pv_entry *pve, **prevptr;
prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
pve = *prevptr;
while (pve) {
if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
*prevptr = pve->pv_next; /* remove it! */
if (pve->pv_flags & PVF_WIRED)
--pmap->pm_stats.wired_count;
#ifdef PMAP_ALIAS_DEBUG
{
int s = splhigh();
if (pve->pv_flags & PVF_WRITE) {
KASSERT(pg->mdpage.rw_mappings != 0);
pg->mdpage.rw_mappings--;
} else {
KASSERT(pg->mdpage.ro_mappings != 0);
pg->mdpage.ro_mappings--;
}
splx(s);
}
#endif /* PMAP_ALIAS_DEBUG */
break;
}
prevptr = &pve->pv_next; /* previous pointer */
pve = pve->pv_next; /* advance */
}
return(pve); /* return removed pve */
}
/*
*
* pmap_modify_pv: Update pv flags
*
* => caller should hold lock on vm_page [so that attrs can be adjusted]
* => caller should NOT adjust pmap's wire_count
* => caller must call pmap_vac_me_harder() if writable status of a page
* may have changed.
* => we return the old flags
*
* Modify a physical-virtual mapping in the pv table
*/
static /* __inline */ u_int
pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
u_int bic_mask, u_int eor_mask)
{
struct pv_entry *npv;
u_int flags, oflags;
/*
* There is at least one VA mapping this page.
*/
for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
if (pmap == npv->pv_pmap && va == npv->pv_va) {
oflags = npv->pv_flags;
npv->pv_flags = flags =
((oflags & ~bic_mask) ^ eor_mask);
if ((flags ^ oflags) & PVF_WIRED) {
if (flags & PVF_WIRED)
++pmap->pm_stats.wired_count;
else
--pmap->pm_stats.wired_count;
}
#ifdef PMAP_ALIAS_DEBUG
{
int s = splhigh();
if ((flags ^ oflags) & PVF_WRITE) {
if (flags & PVF_WRITE) {
pg->mdpage.rw_mappings++;
pg->mdpage.ro_mappings--;
if (pg->mdpage.rw_mappings != 0 &&
(pg->mdpage.kro_mappings != 0 ||
pg->mdpage.krw_mappings != 0)) {
printf("pmap_modify_pv: rw %u, "
"kro %u, krw %u\n",
pg->mdpage.rw_mappings,
pg->mdpage.kro_mappings,
pg->mdpage.krw_mappings);
}
} else {
KASSERT(pg->mdpage.rw_mappings != 0);
pg->mdpage.rw_mappings--;
pg->mdpage.ro_mappings++;
}
}
splx(s);
}
#endif /* PMAP_ALIAS_DEBUG */
return (oflags);
}
}
return (0);
}
/*
* Map the specified level 2 pagetable into the level 1 page table for
* the given pmap to cover a chunk of virtual address space starting from the
* address specified.
*/
#define PMAP_PTP_SELFREF 0x01
#define PMAP_PTP_CACHEABLE 0x02
static __inline void
pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, int flags)
{
vaddr_t ptva;
KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
/* Calculate the index into the L1 page table. */
ptva = va >> L1_S_SHIFT;
/* Map page table into the L1. */
pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
/* Map the page table into the page table area. */
if (flags & PMAP_PTP_SELFREF) {
*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) |
((flags & PMAP_PTP_CACHEABLE) ? pte_l2_s_cache_mode : 0);
PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
}
}
#if 0
static __inline void
pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
{
vaddr_t ptva;
KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
/* Calculate the index into the L1 page table. */
ptva = va >> L1_S_SHIFT;
/* Unmap page table from the L1. */
pmap->pm_pdir[ptva + 0] = 0;
pmap->pm_pdir[ptva + 1] = 0;
pmap->pm_pdir[ptva + 2] = 0;
pmap->pm_pdir[ptva + 3] = 0;
cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
/* Unmap the page table from the page table area. */
*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
}
#endif
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* For now, VM is already on, we only need to map the
* specified memory.
*
* XXX This routine should eventually go away; it's only used
* XXX by machine-dependent crash dump code.
*/
vaddr_t
pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
{
pt_entry_t *pte;
while (spa < epa) {
pte = vtopte(va);
*pte = L2_S_PROTO | spa |
L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
PTE_SYNC(pte);
cpu_tlb_flushID_SE(va);
va += NBPG;
spa += NBPG;
}
pmap_update(pmap_kernel());
return(va);
}
/*
* void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
*
* bootstrap the pmap system. This is called from initarm and allows
* the pmap system to initailise any structures it requires.
*
* Currently this sets up the kernel_pmap that is statically allocated
* and also allocated virtual addresses for certain page hooks.
* Currently the only one page hook is allocated that is used
* to zero physical pages of memory.
* It also initialises the start and end address of the kernel data space.
*/
char *boot_head;
void
pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
{
pt_entry_t *pte;
pmap_kernel()->pm_pdir = kernel_l1pt;
pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
simple_lock_init(&pmap_kernel()->pm_lock);
pmap_kernel()->pm_obj.pgops = NULL;
TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
pmap_kernel()->pm_obj.uo_npages = 0;
pmap_kernel()->pm_obj.uo_refs = 1;
virtual_avail = KERNEL_VM_BASE;
virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
/*
* now we allocate the "special" VAs which are used for tmp mappings
* by the pmap (and other modules). we allocate the VAs by advancing
* virtual_avail (note that there are no pages mapped at these VAs).
* we find the PTE that maps the allocated VA via the linear PTE
* mapping.
*/
pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
csrcp = virtual_avail; csrc_pte = pte;
virtual_avail += PAGE_SIZE; pte++;
cdstp = virtual_avail; cdst_pte = pte;
virtual_avail += PAGE_SIZE; pte++;
memhook = (char *) virtual_avail; /* don't need pte */
*pte = 0;
virtual_avail += PAGE_SIZE; pte++;
msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
virtual_avail += round_page(MSGBUFSIZE);
pte += atop(round_page(MSGBUFSIZE));
/*
* init the static-global locks and global lists.
*/
spinlockinit(&pmap_main_lock, "pmaplk", 0);
simple_lock_init(&pvalloc_lock);
simple_lock_init(&pmaps_lock);
LIST_INIT(&pmaps);
TAILQ_INIT(&pv_freepages);
TAILQ_INIT(&pv_unusedpgs);
/*
* initialize the pmap pool.
*/
pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
&pool_allocator_nointr);
/*
* initialize the PT-PT pool and cache.
*/
pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
&pmap_ptpt_allocator);
pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
pmap_ptpt_ctor, NULL, NULL);
cpu_dcache_wbinv_all();
}
/*
* void pmap_init(void)
*
* Initialize the pmap module.
* Called by vm_init() in vm/vm_init.c in order to initialise
* any structures that the pmap system needs to map virtual memory.
*/
extern int physmem;
void
pmap_init(void)
{
/*
* Set the available memory vars - These do not map to real memory
* addresses and cannot as the physical memory is fragmented.
* They are used by ps for %mem calculations.
* One could argue whether this should be the entire memory or just
* the memory that is useable in a user process.
*/
avail_start = 0;
avail_end = physmem * NBPG;
/*
* now we need to free enough pv_entry structures to allow us to get
* the kmem_map/kmem_object allocated and inited (done after this
* function is finished). to do this we allocate one bootstrap page out
* of kernel_map and use it to provide an initial pool of pv_entry
* structures. we never free this page.
*/
pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
if (pv_initpage == NULL)
panic("pmap_init: pv_initpage");
pv_cachedva = 0; /* a VA we have allocated but not used yet */
pv_nfpvents = 0;
(void) pmap_add_pvpage(pv_initpage, FALSE);
pmap_initialized = TRUE;
/* Initialise our L1 page table queues and counters */
SIMPLEQ_INIT(&l1pt_static_queue);
l1pt_static_queue_count = 0;
l1pt_static_create_count = 0;
SIMPLEQ_INIT(&l1pt_queue);
l1pt_queue_count = 0;
l1pt_create_count = 0;
l1pt_reuse_count = 0;
}
/*
* pmap_postinit()
*
* This routine is called after the vm and kmem subsystems have been
* initialised. This allows the pmap code to perform any initialisation
* that can only be done one the memory allocation is in place.
*/
void
pmap_postinit(void)
{
unsigned int loop;
struct l1pt *pt;
#ifdef PMAP_STATIC_L1S
for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
#else /* PMAP_STATIC_L1S */
for (loop = 0; loop < max_processes; ++loop) {
#endif /* PMAP_STATIC_L1S */
/* Allocate a L1 page table */
pt = pmap_alloc_l1pt();
if (!pt)
panic("Cannot allocate static L1 page tables");
/* Clean it */
bzero((void *)pt->pt_va, L1_TABLE_SIZE);
pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
/* Add the page table to the queue */
SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
++l1pt_static_queue_count;
++l1pt_static_create_count;
}
}
/*
* Create and return a physical map.
*
* If the size specified for the map is zero, the map is an actual physical
* map, and may be referenced by the hardware.
*
* If the size specified is non-zero, the map will be used in software only,
* and is bounded by that size.
*/
pmap_t
pmap_create(void)
{
struct pmap *pmap;
/*
* Fetch pmap entry from the pool
*/
pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
/* XXX is this really needed! */
memset(pmap, 0, sizeof(*pmap));
simple_lock_init(&pmap->pm_obj.vmobjlock);
pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
TAILQ_INIT(&pmap->pm_obj.memq);
pmap->pm_obj.uo_npages = 0;
pmap->pm_obj.uo_refs = 1;
pmap->pm_stats.wired_count = 0;
pmap->pm_stats.resident_count = 1;
pmap->pm_ptphint = NULL;
/* Now init the machine part of the pmap */
pmap_pinit(pmap);
return(pmap);
}
/*
* pmap_alloc_l1pt()
*
* This routine allocates physical and virtual memory for a L1 page table
* and wires it.
* A l1pt structure is returned to describe the allocated page table.
*
* This routine is allowed to fail if the required memory cannot be allocated.
* In this case NULL is returned.
*/
struct l1pt *
pmap_alloc_l1pt(void)
{
paddr_t pa;
vaddr_t va;
struct l1pt *pt;
int error;
struct vm_page *m;
/* Allocate virtual address space for the L1 page table */
va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
if (va == 0) {
#ifdef DIAGNOSTIC
PDEBUG(0,
printf("pmap: Cannot allocate pageable memory for L1\n"));
#endif /* DIAGNOSTIC */
return(NULL);
}
/* Allocate memory for the l1pt structure */
pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
/*
* Allocate pages from the VM system.
*/
error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
if (error) {
#ifdef DIAGNOSTIC
PDEBUG(0,
printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
error));
#endif /* DIAGNOSTIC */
/* Release the resources we already have claimed */
free(pt, M_VMPMAP);
uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
return(NULL);
}
/* Map our physical pages into our virtual space */
pt->pt_va = va;
m = TAILQ_FIRST(&pt->pt_plist);
while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
pa = VM_PAGE_TO_PHYS(m);
pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
va += NBPG;
m = m->pageq.tqe_next;
}
#ifdef DIAGNOSTIC
if (m)
panic("pmap_alloc_l1pt: pglist not empty");
#endif /* DIAGNOSTIC */
pt->pt_flags = 0;
return(pt);
}
/*
* Free a L1 page table previously allocated with pmap_alloc_l1pt().
*/
static void
pmap_free_l1pt(struct l1pt *pt)
{
/* Separate the physical memory for the virtual space */
pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
pmap_update(pmap_kernel());
/* Return the physical memory */
uvm_pglistfree(&pt->pt_plist);
/* Free the virtual space */
uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
/* Free the l1pt structure */
free(pt, M_VMPMAP);
}
/*
* pmap_ptpt_page_alloc:
*
* Back-end page allocator for the PT-PT pool.
*/
static void *
pmap_ptpt_page_alloc(struct pool *pp, int flags)
{
struct vm_page *pg;
pt_entry_t *pte;
vaddr_t va;
/* XXX PR_WAITOK? */
va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
if (va == 0)
return (NULL);
for (;;) {
pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
if (pg != NULL)
break;
if ((flags & PR_WAITOK) == 0) {
uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
return (NULL);
}
uvm_wait("pmap_ptpt");
}
pte = vtopte(va);
KDASSERT(pmap_pte_v(pte) == 0);
*pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
PTE_SYNC(pte);
#ifdef PMAP_ALIAS_DEBUG
{
int s = splhigh();
pg->mdpage.krw_mappings++;
splx(s);
}
#endif /* PMAP_ALIAS_DEBUG */
return ((void *) va);
}
/*
* pmap_ptpt_page_free:
*
* Back-end page free'er for the PT-PT pool.
*/
static void
pmap_ptpt_page_free(struct pool *pp, void *v)
{
vaddr_t va = (vaddr_t) v;
paddr_t pa;
pa = vtophys(va);
pmap_kremove(va, L2_TABLE_SIZE);
pmap_update(pmap_kernel());
uvm_pagefree(PHYS_TO_VM_PAGE(pa));
uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
}
/*
* pmap_ptpt_ctor:
*
* Constructor for the PT-PT cache.
*/
static int
pmap_ptpt_ctor(void *arg, void *object, int flags)
{
caddr_t vptpt = object;
/* Page is already zero'd. */
/*
* Map in kernel PTs.
*
* XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
*/
memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
(char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
(KERNEL_PD_SIZE >> 2));
return (0);
}
/*
* Allocate a page directory.
* This routine will either allocate a new page directory from the pool
* of L1 page tables currently held by the kernel or it will allocate
* a new one via pmap_alloc_l1pt().
* It will then initialise the l1 page table for use.
*/
static int
pmap_allocpagedir(struct pmap *pmap)
{
vaddr_t vptpt;
struct l1pt *pt;
u_int gen;
PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
/* Do we have any spare L1's lying around ? */
if (l1pt_static_queue_count) {
--l1pt_static_queue_count;
pt = SIMPLEQ_FIRST(&l1pt_static_queue);
SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
} else if (l1pt_queue_count) {
--l1pt_queue_count;
pt = SIMPLEQ_FIRST(&l1pt_queue);
SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
++l1pt_reuse_count;
} else {
pt = pmap_alloc_l1pt();
if (!pt)
return(ENOMEM);
++l1pt_create_count;
}
/* Store the pointer to the l1 descriptor in the pmap. */
pmap->pm_l1pt = pt;
/* Store the virtual address of the l1 in the pmap. */
pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
/* Clean the L1 if it is dirty */
if (!(pt->pt_flags & PTFLAG_CLEAN)) {
bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
(L1_TABLE_SIZE - KERNEL_PD_SIZE));
}
/* Allocate a page table to map all the page tables for this pmap */
KASSERT(pmap->pm_vptpt == 0);
try_again:
gen = pmap_ptpt_cache_generation;
vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
if (vptpt == NULL) {
PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
pmap_freepagedir(pmap);
return (ENOMEM);
}
/* need to lock this all up for growkernel */
simple_lock(&pmaps_lock);
if (gen != pmap_ptpt_cache_generation) {
simple_unlock(&pmaps_lock);
pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
goto try_again;
}
pmap->pm_vptpt = vptpt;
pmap->pm_pptpt = vtophys(vptpt);
/* Duplicate the kernel mappings. */
bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
(char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
KERNEL_PD_SIZE);
cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
(L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
/* Wire in this page table */
pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, PMAP_PTP_SELFREF);
pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
simple_unlock(&pmaps_lock);
return(0);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
void
pmap_pinit(struct pmap *pmap)
{
int backoff = 6;
int retry = 10;
PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
/* Keep looping until we succeed in allocating a page directory */
while (pmap_allocpagedir(pmap) != 0) {
/*
* Ok we failed to allocate a suitable block of memory for an
* L1 page table. This means that either:
* 1. 16KB of virtual address space could not be allocated
* 2. 16KB of physically contiguous memory on a 16KB boundary
* could not be allocated.
*
* Since we cannot fail we will sleep for a while and try
* again.
*
* Searching for a suitable L1 PT is expensive:
* to avoid hogging the system when memory is really
* scarce, use an exponential back-off so that
* eventually we won't retry more than once every 8
* seconds. This should allow other processes to run
* to completion and free up resources.
*/
(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
NULL);
if (--retry == 0) {
retry = 10;
if (backoff)
--backoff;
}
}
if (vector_page < KERNEL_BASE) {
/*
* Map the vector page. This will also allocate and map
* an L2 table for it.
*/
pmap_enter(pmap, vector_page, systempage.pv_pa,
VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
pmap_update(pmap);
}
}
void
pmap_freepagedir(struct pmap *pmap)
{
/* Free the memory used for the page table mapping */
if (pmap->pm_vptpt != 0) {
/*
* XXX Objects freed to a pool cache must be in constructed
* XXX form when freed, but we don't free page tables as we
* XXX go, so we need to zap the mappings here.
*
* XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
*/
memset((caddr_t) pmap->pm_vptpt, 0,
((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
}
/* junk the L1 page table */
if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
/* Add the page table to the queue */
SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
pmap->pm_l1pt, pt_queue);
++l1pt_static_queue_count;
} else if (l1pt_queue_count < 8) {
/* Add the page table to the queue */
SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
++l1pt_queue_count;
} else
pmap_free_l1pt(pmap->pm_l1pt);
}
/*
* Retire the given physical map from service.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_destroy(struct pmap *pmap)
{
struct vm_page *page;
int count;
if (pmap == NULL)
return;
PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
/*
* Drop reference count
*/
simple_lock(&pmap->pm_obj.vmobjlock);
count = --pmap->pm_obj.uo_refs;
simple_unlock(&pmap->pm_obj.vmobjlock);
if (count > 0) {
return;
}
/*
* reference count is zero, free pmap resources and then free pmap.
*/
/*
* remove it from global list of pmaps
*/
simple_lock(&pmaps_lock);
LIST_REMOVE(pmap, pm_list);
simple_unlock(&pmaps_lock);
if (vector_page < KERNEL_BASE) {
/* Remove the vector page mapping */
pmap_remove(pmap, vector_page, vector_page + NBPG);
pmap_update(pmap);
}
/*
* Free any page tables still mapped
* This is only temporay until pmap_enter can count the number
* of mappings made in a page table. Then pmap_remove() can
* reduce the count and free the pagetable when the count
* reaches zero. Note that entries in this list should match the
* contents of the ptpt, however this is faster than walking a 1024
* entries looking for pt's
* taken from i386 pmap.c
*/
/*
* vmobjlock must be held while freeing pages
*/
simple_lock(&pmap->pm_obj.vmobjlock);
while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
KASSERT((page->flags & PG_BUSY) == 0);
/* Freeing a PT page? The contents are a throw-away. */
KASSERT((page->offset & PD_OFFSET) == 0);/* XXX KDASSERT */
cpu_dcache_inv_range((vaddr_t)vtopte(page->offset), PAGE_SIZE);
page->wire_count = 0;
uvm_pagefree(page);
}
simple_unlock(&pmap->pm_obj.vmobjlock);
/* Free the page dir */
pmap_freepagedir(pmap);
/* return the pmap to the pool */
pool_put(&pmap_pmap_pool, pmap);
}
/*
* void pmap_reference(struct pmap *pmap)
*
* Add a reference to the specified pmap.
*/
void
pmap_reference(struct pmap *pmap)
{
if (pmap == NULL)
return;
simple_lock(&pmap->pm_lock);
pmap->pm_obj.uo_refs++;
simple_unlock(&pmap->pm_lock);
}
/*
* void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
*
* Return the start and end addresses of the kernel's virtual space.
* These values are setup in pmap_bootstrap and are updated as pages
* are allocated.
*/
void
pmap_virtual_space(vaddr_t *start, vaddr_t *end)
{
*start = virtual_avail;
*end = virtual_end;
}
/*
* Activate the address space for the specified process. If the process
* is the current process, load the new MMU context.
*/
void
pmap_activate(struct lwp *l)
{
struct pmap *pmap = l->l_proc->p_vmspace->vm_map.pmap;
struct pcb *pcb = &l->l_addr->u_pcb;
(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
(paddr_t *)&pcb->pcb_pagedir);
PDEBUG(0, printf("pmap_activate: l=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
l, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
if (l == curlwp) {
PDEBUG(0, printf("pmap_activate: setting TTB\n"));
setttb((u_int)pcb->pcb_pagedir);
}
}
/*
* Deactivate the address space of the specified process.
*/
void
pmap_deactivate(struct lwp *l)
{
}
/*
* Perform any deferred pmap operations.
*/
void
pmap_update(struct pmap *pmap)
{
/*
* We haven't deferred any pmap operations, but we do need to
* make sure TLB/cache operations have completed.
*/
cpu_cpwait();
}
/*
* pmap_clean_page()
*
* This is a local function used to work out the best strategy to clean
* a single page referenced by its entry in the PV table. It's used by
* pmap_copy_page, pmap_zero page and maybe some others later on.
*
* Its policy is effectively:
* o If there are no mappings, we don't bother doing anything with the cache.
* o If there is one mapping, we clean just that page.
* o If there are multiple mappings, we clean the entire cache.
*
* So that some functions can be further optimised, it returns 0 if it didn't
* clean the entire cache, or 1 if it did.
*
* XXX One bug in this routine is that if the pv_entry has a single page
* mapped at 0x00000000 a whole cache clean will be performed rather than
* just the 1 page. Since this should not occur in everyday use and if it does
* it will just result in not the most efficient clean for the page.
*/
static int
pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
{
struct pmap *pmap;
struct pv_entry *npv;
int cache_needs_cleaning = 0;
vaddr_t page_to_clean = 0;
if (pv == NULL) {
/* nothing mapped in so nothing to flush */
return (0);
}
/*
* Since we flush the cache each time we change curlwp, we
* only need to flush the page if it is in the current pmap.
*/
if (curproc)
pmap = curproc->p_vmspace->vm_map.pmap;
else
pmap = pmap_kernel();
for (npv = pv; npv; npv = npv->pv_next) {
if (npv->pv_pmap == pmap) {
/*
* The page is mapped non-cacheable in
* this map. No need to flush the cache.
*/
if (npv->pv_flags & PVF_NC) {
#ifdef DIAGNOSTIC
if (cache_needs_cleaning)
panic("pmap_clean_page: "
"cache inconsistency");
#endif
break;
} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
continue;
if (cache_needs_cleaning) {
page_to_clean = 0;
break;
} else
page_to_clean = npv->pv_va;
cache_needs_cleaning = 1;
}
}
if (page_to_clean) {
/*
* XXX If is_src, we really only need to write-back,
* XXX not invalidate, too. Investigate further.
* XXX --thorpej@netbsd.org
*/
cpu_idcache_wbinv_range(page_to_clean, NBPG);
} else if (cache_needs_cleaning) {
cpu_idcache_wbinv_all();
return (1);
}
return (0);
}
/*
* pmap_zero_page()
*
* Zero a given physical page by mapping it at a page hook point.
* In doing the zero page op, the page we zero is mapped cachable, as with
* StrongARM accesses to non-cached pages are non-burst making writing
* _any_ bulk data very slow.
*/
#if ARM_MMU_GENERIC == 1
void
pmap_zero_page_generic(paddr_t phys)
{
#ifdef DEBUG
struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
if (pg->mdpage.pvh_list != NULL)
panic("pmap_zero_page: page has mappings");
#endif
KDASSERT((phys & PGOFSET) == 0);
/*
* Hook in the page, zero it, and purge the cache for that
* zeroed page. Invalidate the TLB as needed.
*/
*cdst_pte = L2_S_PROTO | phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bzero_page(cdstp);
cpu_dcache_wbinv_range(cdstp, NBPG);
}
#endif /* ARM_MMU_GENERIC == 1 */
#if ARM_MMU_XSCALE == 1
void
pmap_zero_page_xscale(paddr_t phys)
{
#ifdef DEBUG
struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
if (pg->mdpage.pvh_list != NULL)
panic("pmap_zero_page: page has mappings");
#endif
KDASSERT((phys & PGOFSET) == 0);
/*
* Hook in the page, zero it, and purge the cache for that
* zeroed page. Invalidate the TLB as needed.
*/
*cdst_pte = L2_S_PROTO | phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bzero_page(cdstp);
xscale_cache_clean_minidata();
}
#endif /* ARM_MMU_XSCALE == 1 */
/* pmap_pageidlezero()
*
* The same as above, except that we assume that the page is not
* mapped. This means we never have to flush the cache first. Called
* from the idle loop.
*/
boolean_t
pmap_pageidlezero(paddr_t phys)
{
unsigned int i;
int *ptr;
boolean_t rv = TRUE;
#ifdef DEBUG
struct vm_page *pg;
pg = PHYS_TO_VM_PAGE(phys);
if (pg->mdpage.pvh_list != NULL)
panic("pmap_pageidlezero: page has mappings");
#endif
KDASSERT((phys & PGOFSET) == 0);
/*
* Hook in the page, zero it, and purge the cache for that
* zeroed page. Invalidate the TLB as needed.
*/
*cdst_pte = L2_S_PROTO | phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
for (i = 0, ptr = (int *)cdstp;
i < (NBPG / sizeof(int)); i++) {
if (sched_whichqs != 0) {
/*
* A process has become ready. Abort now,
* so we don't keep it waiting while we
* do slow memory access to finish this
* page.
*/
rv = FALSE;
break;
}
*ptr++ = 0;
}
if (rv)
/*
* if we aborted we'll rezero this page again later so don't
* purge it unless we finished it
*/
cpu_dcache_wbinv_range(cdstp, NBPG);
return (rv);
}
/*
* pmap_copy_page()
*
* Copy one physical page into another, by mapping the pages into
* hook points. The same comment regarding cachability as in
* pmap_zero_page also applies here.
*/
#if ARM_MMU_GENERIC == 1
void
pmap_copy_page_generic(paddr_t src, paddr_t dst)
{
struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
#ifdef DEBUG
struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
if (dst_pg->mdpage.pvh_list != NULL)
panic("pmap_copy_page: dst page has mappings");
#endif
KDASSERT((src & PGOFSET) == 0);
KDASSERT((dst & PGOFSET) == 0);
/*
* Clean the source page. Hold the source page's lock for
* the duration of the copy so that no other mappings can
* be created while we have a potentially aliased mapping.
*/
simple_lock(&src_pg->mdpage.pvh_slock);
(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
/*
* Map the pages into the page hook points, copy them, and purge
* the cache for the appropriate page. Invalidate the TLB
* as required.
*/
*csrc_pte = L2_S_PROTO | src |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
PTE_SYNC(csrc_pte);
*cdst_pte = L2_S_PROTO | dst |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(csrcp);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bcopy_page(csrcp, cdstp);
cpu_dcache_inv_range(csrcp, NBPG);
simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
cpu_dcache_wbinv_range(cdstp, NBPG);
}
#endif /* ARM_MMU_GENERIC == 1 */
#if ARM_MMU_XSCALE == 1
void
pmap_copy_page_xscale(paddr_t src, paddr_t dst)
{
struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
#ifdef DEBUG
struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
if (dst_pg->mdpage.pvh_list != NULL)
panic("pmap_copy_page: dst page has mappings");
#endif
KDASSERT((src & PGOFSET) == 0);
KDASSERT((dst & PGOFSET) == 0);
/*
* Clean the source page. Hold the source page's lock for
* the duration of the copy so that no other mappings can
* be created while we have a potentially aliased mapping.
*/
simple_lock(&src_pg->mdpage.pvh_slock);
(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
/*
* Map the pages into the page hook points, copy them, and purge
* the cache for the appropriate page. Invalidate the TLB
* as required.
*/
*csrc_pte = L2_S_PROTO | src |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
PTE_SYNC(csrc_pte);
*cdst_pte = L2_S_PROTO | dst |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(csrcp);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bcopy_page(csrcp, cdstp);
simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
xscale_cache_clean_minidata();
}
#endif /* ARM_MMU_XSCALE == 1 */
#if 0
void
pmap_pte_addref(struct pmap *pmap, vaddr_t va)
{
pd_entry_t *pde;
paddr_t pa;
struct vm_page *m;
if (pmap == pmap_kernel())
return;
pde = pmap_pde(pmap, va & PD_FRAME);
pa = pmap_pte_pa(pde);
m = PHYS_TO_VM_PAGE(pa);
m->wire_count++;
#ifdef MYCROFT_HACK
printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
pmap, va, pde, pa, m, m->wire_count);
#endif
}
void
pmap_pte_delref(struct pmap *pmap, vaddr_t va)
{
pd_entry_t *pde;
paddr_t pa;
struct vm_page *m;
if (pmap == pmap_kernel())
return;
pde = pmap_pde(pmap, va & PD_FRAME);
pa = pmap_pte_pa(pde);
m = PHYS_TO_VM_PAGE(pa);
m->wire_count--;
#ifdef MYCROFT_HACK
printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
pmap, va, pde, pa, m, m->wire_count);
#endif
if (m->wire_count == 0) {
#ifdef MYCROFT_HACK
printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
pmap, va, pde, pa, m);
#endif
pmap_unmap_in_l1(pmap, va & PD_FRAME);
uvm_pagefree(m);
--pmap->pm_stats.resident_count;
}
}
#else
#define pmap_pte_addref(pmap, va)
#define pmap_pte_delref(pmap, va)
#endif
/*
* Since we have a virtually indexed cache, we may need to inhibit caching if
* there is more than one mapping and at least one of them is writable.
* Since we purge the cache on every context switch, we only need to check for
* other mappings within the same pmap, or kernel_pmap.
* This function is also called when a page is unmapped, to possibly reenable
* caching on any remaining mappings.
*
* The code implements the following logic, where:
*
* KW = # of kernel read/write pages
* KR = # of kernel read only pages
* UW = # of user read/write pages
* UR = # of user read only pages
* OW = # of user read/write pages in another pmap, then
*
* KC = kernel mapping is cacheable
* UC = user mapping is cacheable
*
* KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
* +---------------------------------------------
* UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
* UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
* UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
* UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
* UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
*
* Note that the pmap must have it's ptes mapped in, and passed with ptes.
*/
__inline static void
pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
boolean_t clear_cache)
{
if (pmap == pmap_kernel())
pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
else
pmap_vac_me_user(pmap, pg, ptes, clear_cache);
}
static void
pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
boolean_t clear_cache)
{
unsigned int user_entries = 0;
unsigned int user_writable = 0;
unsigned int user_cacheable = 0;
unsigned int kernel_entries = 0;
unsigned int kernel_writable = 0;
unsigned int kernel_cacheable = 0;
struct pv_entry *pv;
struct pmap *last_pmap = pmap;
#ifdef DIAGNOSTIC
if (pmap != pmap_kernel())
panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
#endif
/*
* Pass one, see if there are both kernel and user pmaps for
* this page. Calculate whether there are user-writable or
* kernel-writable pages.
*/
for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
if (pv->pv_pmap != pmap) {
user_entries++;
if (pv->pv_flags & PVF_WRITE)
user_writable++;
if ((pv->pv_flags & PVF_NC) == 0)
user_cacheable++;
} else {
kernel_entries++;
if (pv->pv_flags & PVF_WRITE)
kernel_writable++;
if ((pv->pv_flags & PVF_NC) == 0)
kernel_cacheable++;
}
}
/*
* We know we have just been updating a kernel entry, so if
* all user pages are already cacheable, then there is nothing
* further to do.
*/
if (kernel_entries == 0 &&
user_cacheable == user_entries)
return;
if (user_entries) {
/*
* Scan over the list again, for each entry, if it
* might not be set correctly, call pmap_vac_me_user
* to recalculate the settings.
*/
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
/*
* We know kernel mappings will get set
* correctly in other calls. We also know
* that if the pmap is the same as last_pmap
* then we've just handled this entry.
*/
if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
continue;
/*
* If there are kernel entries and this page
* is writable but non-cacheable, then we can
* skip this entry also.
*/
if (kernel_entries > 0 &&
(pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
(PVF_NC | PVF_WRITE))
continue;
/*
* Similarly if there are no kernel-writable
* entries and the page is already
* read-only/cacheable.
*/
if (kernel_writable == 0 &&
(pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
continue;
/*
* For some of the remaining cases, we know
* that we must recalculate, but for others we
* can't tell if they are correct or not, so
* we recalculate anyway.
*/
pmap_unmap_ptes(last_pmap);
last_pmap = pv->pv_pmap;
ptes = pmap_map_ptes(last_pmap);
pmap_vac_me_user(last_pmap, pg, ptes,
pmap_is_curpmap(last_pmap));
}
/* Restore the pte mapping that was passed to us. */
if (last_pmap != pmap) {
pmap_unmap_ptes(last_pmap);
ptes = pmap_map_ptes(pmap);
}
if (kernel_entries == 0)
return;
}
pmap_vac_me_user(pmap, pg, ptes, clear_cache);
return;
}
static void
pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
boolean_t clear_cache)
{
struct pmap *kpmap = pmap_kernel();
struct pv_entry *pv, *npv;
unsigned int entries = 0;
unsigned int writable = 0;
unsigned int cacheable_entries = 0;
unsigned int kern_cacheable = 0;
unsigned int other_writable = 0;
pv = pg->mdpage.pvh_list;
KASSERT(ptes != NULL);
/*
* Count mappings and writable mappings in this pmap.
* Include kernel mappings as part of our own.
* Keep a pointer to the first one.
*/
for (npv = pv; npv; npv = npv->pv_next) {
/* Count mappings in the same pmap */
if (pmap == npv->pv_pmap ||
kpmap == npv->pv_pmap) {
if (entries++ == 0)
pv = npv;
/* Cacheable mappings */
if ((npv->pv_flags & PVF_NC) == 0) {
cacheable_entries++;
if (kpmap == npv->pv_pmap)
kern_cacheable++;
}
/* Writable mappings */
if (npv->pv_flags & PVF_WRITE)
++writable;
} else if (npv->pv_flags & PVF_WRITE)
other_writable = 1;
}
PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
"writable %d cacheable %d %s\n", pmap, entries, writable,
cacheable_entries, clear_cache ? "clean" : "no clean"));
/*
* Enable or disable caching as necessary.
* Note: the first entry might be part of the kernel pmap,
* so we can't assume this is indicative of the state of the
* other (maybe non-kpmap) entries.
*/
if ((entries > 1 && writable) ||
(entries > 0 && pmap == kpmap && other_writable)) {
if (cacheable_entries == 0)
return;
for (npv = pv; npv; npv = npv->pv_next) {
if ((pmap == npv->pv_pmap
|| kpmap == npv->pv_pmap) &&
(npv->pv_flags & PVF_NC) == 0) {
ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
PTE_SYNC_CURRENT(pmap,
&ptes[arm_btop(npv->pv_va)]);
npv->pv_flags |= PVF_NC;
/*
* If this page needs flushing from the
* cache, and we aren't going to do it
* below, do it now.
*/
if ((cacheable_entries < 4 &&
(clear_cache || npv->pv_pmap == kpmap)) ||
(npv->pv_pmap == kpmap &&
!clear_cache && kern_cacheable < 4)) {
cpu_idcache_wbinv_range(npv->pv_va,
NBPG);
cpu_tlb_flushID_SE(npv->pv_va);
}
}
}
if ((clear_cache && cacheable_entries >= 4) ||
kern_cacheable >= 4) {
cpu_idcache_wbinv_all();
cpu_tlb_flushID();
}
cpu_cpwait();
} else if (entries > cacheable_entries) {
/*
* Turn cacheing back on for some pages. If it is a kernel
* page, only do so if there are no other writable pages.
*/
for (npv = pv; npv; npv = npv->pv_next) {
if ((pmap == npv->pv_pmap ||
(kpmap == npv->pv_pmap && other_writable == 0)) &&
(npv->pv_flags & PVF_NC)) {
ptes[arm_btop(npv->pv_va)] |=
pte_l2_s_cache_mode;
PTE_SYNC_CURRENT(pmap,
&ptes[arm_btop(npv->pv_va)]);
npv->pv_flags &= ~PVF_NC;
}
}
}
}
/*
* pmap_remove()
*
* pmap_remove is responsible for nuking a number of mappings for a range
* of virtual address space in the current pmap. To do this efficiently
* is interesting, because in a number of cases a wide virtual address
* range may be supplied that contains few actual mappings. So, the
* optimisations are:
* 1. Try and skip over hunks of address space for which an L1 entry
* does not exist.
* 2. Build up a list of pages we've hit, up to a maximum, so we can
* maybe do just a partial cache clean. This path of execution is
* complicated by the fact that the cache must be flushed _before_
* the PTE is nuked, being a VAC :-)
* 3. Maybe later fast-case a single page, but I don't think this is
* going to make _that_ much difference overall.
*/
#define PMAP_REMOVE_CLEAN_LIST_SIZE 3
void
pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
{
unsigned int cleanlist_idx = 0;
struct pagelist {
vaddr_t va;
pt_entry_t *pte;
} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
pt_entry_t *pte = 0, *ptes;
paddr_t pa;
int pmap_active;
struct vm_page *pg;
struct pv_entry *pv_tofree = NULL;
/* Exit quick if there is no pmap */
if (!pmap)
return;
NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
pmap, sva, eva));
/*
* we lock in the pmap => vm_page direction
*/
PMAP_MAP_TO_HEAD_LOCK();
ptes = pmap_map_ptes(pmap);
/* Get a page table pointer */
while (sva < eva) {
if (pmap_pde_page(pmap_pde(pmap, sva)))
break;
sva = (sva & L1_S_FRAME) + L1_S_SIZE;
}
pte = &ptes[arm_btop(sva)];
/* Note if the pmap is active thus require cache and tlb cleans */
pmap_active = pmap_is_curpmap(pmap);
/* Now loop along */
while (sva < eva) {
/* Check if we can move to the next PDE (l1 chunk) */
if ((sva & L2_ADDR_BITS) == 0) {
if (!pmap_pde_page(pmap_pde(pmap, sva))) {
sva += L1_S_SIZE;
pte += arm_btop(L1_S_SIZE);
continue;
}
}
/* We've found a valid PTE, so this page of PTEs has to go. */
if (pmap_pte_v(pte)) {
/* Update statistics */
--pmap->pm_stats.resident_count;
/*
* Add this page to our cache remove list, if we can.
* If, however the cache remove list is totally full,
* then do a complete cache invalidation taking note
* to backtrack the PTE table beforehand, and ignore
* the lists in future because there's no longer any
* point in bothering with them (we've paid the
* penalty, so will carry on unhindered). Otherwise,
* when we fall out, we just clean the list.
*/
PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
pa = pmap_pte_pa(pte);
if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
/* Add to the clean list. */
cleanlist[cleanlist_idx].pte = pte;
cleanlist[cleanlist_idx].va = sva;
cleanlist_idx++;
} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
int cnt;
/* Nuke everything if needed. */
if (pmap_active) {
cpu_idcache_wbinv_all();
cpu_tlb_flushID();
}
/*
* Roll back the previous PTE list,
* and zero out the current PTE.
*/
for (cnt = 0;
cnt < PMAP_REMOVE_CLEAN_LIST_SIZE;
cnt++) {
*cleanlist[cnt].pte = 0;
if (pmap_active)
PTE_SYNC(cleanlist[cnt].pte);
else
PTE_FLUSH(cleanlist[cnt].pte);
pmap_pte_delref(pmap,
cleanlist[cnt].va);
}
*pte = 0;
if (pmap_active)
PTE_SYNC(pte);
else
PTE_FLUSH(pte);
pmap_pte_delref(pmap, sva);
cleanlist_idx++;
} else {
/*
* We've already nuked the cache and
* TLB, so just carry on regardless,
* and we won't need to do it again
*/
*pte = 0;
if (pmap_active)
PTE_SYNC(pte);
else
PTE_FLUSH(pte);
pmap_pte_delref(pmap, sva);
}
/*
* Update flags. In a number of circumstances,
* we could cluster a lot of these and do a
* number of sequential pages in one go.
*/
if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
struct pv_entry *pve;
simple_lock(&pg->mdpage.pvh_slock);
pve = pmap_remove_pv(pg, pmap, sva);
pmap_vac_me_harder(pmap, pg, ptes, FALSE);
simple_unlock(&pg->mdpage.pvh_slock);
if (pve != NULL) {
pve->pv_next = pv_tofree;
pv_tofree = pve;
}
}
} else if (pmap_active == 0)
PTE_FLUSH(pte);
sva += NBPG;
pte++;
}
/*
* Now, if we've fallen through down to here, chances are that there
* are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
*/
if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
u_int cnt;
for (cnt = 0; cnt < cleanlist_idx; cnt++) {
if (pmap_active) {
cpu_idcache_wbinv_range(cleanlist[cnt].va,
NBPG);
*cleanlist[cnt].pte = 0;
cpu_tlb_flushID_SE(cleanlist[cnt].va);
PTE_SYNC(cleanlist[cnt].pte);
} else {
*cleanlist[cnt].pte = 0;
PTE_FLUSH(cleanlist[cnt].pte);
}
pmap_pte_delref(pmap, cleanlist[cnt].va);
}
}
/* Delete pv entries */
if (pv_tofree != NULL)
pmap_free_pvs(pmap, pv_tofree);
pmap_unmap_ptes(pmap);
PMAP_MAP_TO_HEAD_UNLOCK();
}
/*
* Routine: pmap_page_remove
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*/
static void
pmap_page_remove(struct vm_page *pg)
{
struct pv_entry *pv, *npv;
struct pmap *pmap;
pt_entry_t *pte, *ptes;
PDEBUG(0, printf("pmap_page_remove: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
/* set vm_page => pmap locking */
PMAP_HEAD_TO_MAP_LOCK();
simple_lock(&pg->mdpage.pvh_slock);
pv = pg->mdpage.pvh_list;
if (pv == NULL) {
PDEBUG(0, printf("free page\n"));
simple_unlock(&pg->mdpage.pvh_slock);
PMAP_HEAD_TO_MAP_UNLOCK();
return;
}
pmap_clean_page(pv, FALSE);
while (pv) {
pmap = pv->pv_pmap;
ptes = pmap_map_ptes(pmap);
pte = &ptes[arm_btop(pv->pv_va)];
PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
pv->pv_va, pv->pv_flags));
#ifdef DEBUG
if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
pmap_pte_v(pte) == 0 ||
pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
panic("pmap_page_remove: bad mapping");
#endif /* DEBUG */
/*
* Update statistics
*/
--pmap->pm_stats.resident_count;
/* Wired bit */
if (pv->pv_flags & PVF_WIRED)
--pmap->pm_stats.wired_count;
/*
* Invalidate the PTEs.
* XXX: should cluster them up and invalidate as many
* as possible at once.
*/
#ifdef needednotdone
reduce wiring count on page table pages as references drop
#endif
*pte = 0;
PTE_SYNC_CURRENT(pmap, pte);
pmap_pte_delref(pmap, pv->pv_va);
npv = pv->pv_next;
pmap_free_pv(pmap, pv);
pv = npv;
pmap_unmap_ptes(pmap);
}
pg->mdpage.pvh_list = NULL;
simple_unlock(&pg->mdpage.pvh_slock);
PMAP_HEAD_TO_MAP_UNLOCK();
PDEBUG(0, printf("done\n"));
cpu_tlb_flushID();
cpu_cpwait();
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
void
pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
{
pt_entry_t *pte = NULL, *ptes;
struct vm_page *pg;
int flush = 0;
PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
pmap, sva, eva, prot));
if (~prot & VM_PROT_READ) {
/*
* Just remove the mappings. pmap_update() is not required
* here since the caller should do it.
*/
pmap_remove(pmap, sva, eva);
return;
}
if (prot & VM_PROT_WRITE) {
/*
* If this is a read->write transition, just ignore it and let
* uvm_fault() take care of it later.
*/
return;
}
/* Need to lock map->head */
PMAP_MAP_TO_HEAD_LOCK();
ptes = pmap_map_ptes(pmap);
/*
* OK, at this point, we know we're doing write-protect operation.
* If the pmap is active, write-back the range.
*/
if (pmap_is_curpmap(pmap))
cpu_dcache_wb_range(sva, eva - sva);
/*
* We need to acquire a pointer to a page table page before entering
* the following loop.
*/
while (sva < eva) {
if (pmap_pde_page(pmap_pde(pmap, sva)))
break;
sva = (sva & L1_S_FRAME) + L1_S_SIZE;
}
pte = &ptes[arm_btop(sva)];
while (sva < eva) {
/* only check once in a while */
if ((sva & L2_ADDR_BITS) == 0) {
if (!pmap_pde_page(pmap_pde(pmap, sva))) {
/* We can race ahead here, to the next pde. */
sva += L1_S_SIZE;
pte += arm_btop(L1_S_SIZE);
continue;
}
}
if (!pmap_pte_v(pte)) {
PTE_FLUSH_ALT(pmap, pte);
goto next;
}
flush = 1;
pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
*pte &= ~L2_S_PROT_W; /* clear write bit */
PTE_SYNC_CURRENT(pmap, pte); /* XXXJRT optimize */
/* Clear write flag */
if (pg != NULL) {
simple_lock(&pg->mdpage.pvh_slock);
(void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
pmap_vac_me_harder(pmap, pg, ptes, FALSE);
simple_unlock(&pg->mdpage.pvh_slock);
}
next:
sva += NBPG;
pte++;
}
pmap_unmap_ptes(pmap);
PMAP_MAP_TO_HEAD_UNLOCK();
if (flush)
cpu_tlb_flushID();
}
/*
* void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
* int flags)
*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
int
pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
int flags)
{
pt_entry_t *ptes, opte, npte;
paddr_t opa;
boolean_t wired = (flags & PMAP_WIRED) != 0;
struct vm_page *pg;
struct pv_entry *pve;
int error, nflags;
struct vm_page *ptp = NULL;
NPDEBUG(PDB_ENTER, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, flags=%08x, wired = %d\n",
va, pa, pmap, prot, flags, wired));
KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
#ifdef DIAGNOSTIC
/* Valid address ? */
if (va >= (pmap_curmaxkvaddr))
panic("pmap_enter: too big");
if (pmap != pmap_kernel() && va != 0) {
if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
panic("pmap_enter: kernel page in user map");
} else {
if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
panic("pmap_enter: user page in kernel map");
if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
panic("pmap_enter: entering PT page");
}
#endif
KDASSERT(((va | pa) & PGOFSET) == 0);
/*
* Get a pointer to the page. Later on in this function, we
* test for a managed page by checking pg != NULL.
*/
pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
/* get lock */
PMAP_MAP_TO_HEAD_LOCK();
/*
* map the ptes. If there's not already an L2 table for this
* address, allocate one.
*/
ptes = pmap_map_ptes(pmap); /* locks pmap */
/* kernel should be pre-grown */
if (pmap != pmap_kernel())
{
/* if failure is allowed then don't try too hard */
ptp = pmap_get_ptp(pmap, va & PD_FRAME);
if (ptp == NULL) {
if (flags & PMAP_CANFAIL) {
error = ENOMEM;
goto out;
}
panic("pmap_enter: get ptp failed");
}
}
opte = ptes[arm_btop(va)];
nflags = 0;
if (prot & VM_PROT_WRITE)
nflags |= PVF_WRITE;
if (wired)
nflags |= PVF_WIRED;
/* Is the pte valid ? If so then this page is already mapped */
if (l2pte_valid(opte)) {
/* Get the physical address of the current page mapped */
opa = l2pte_pa(opte);
/* Are we mapping the same page ? */
if (opa == pa) {
/* Check to see if we're doing rw->ro. */
if ((opte & L2_S_PROT_W) != 0 &&
(prot & VM_PROT_WRITE) == 0) {
/* Yup, flush the cache if current pmap. */
if (pmap_is_curpmap(pmap))
cpu_dcache_wb_range(va, NBPG);
}
/* Has the wiring changed ? */
if (pg != NULL) {
simple_lock(&pg->mdpage.pvh_slock);
(void) pmap_modify_pv(pmap, va, pg,
PVF_WRITE | PVF_WIRED, nflags);
simple_unlock(&pg->mdpage.pvh_slock);
}
} else {
struct vm_page *opg;
/* We are replacing the page with a new one. */
cpu_idcache_wbinv_range(va, NBPG);
/*
* If it is part of our managed memory then we
* must remove it from the PV list
*/
if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
simple_lock(&opg->mdpage.pvh_slock);
pve = pmap_remove_pv(opg, pmap, va);
simple_unlock(&opg->mdpage.pvh_slock);
} else {
pve = NULL;
}
goto enter;
}
} else {
opa = 0;
pve = NULL;
/* bump ptp ref */
if (ptp != NULL)
ptp->wire_count++;
/* pte is not valid so we must be hooking in a new page */
++pmap->pm_stats.resident_count;
enter:
/*
* Enter on the PV list if part of our managed memory
*/
if (pg != NULL) {
if (pve == NULL) {
pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
if (pve == NULL) {
if (flags & PMAP_CANFAIL) {
PTE_FLUSH_ALT(pmap,
ptes[arm_btop(va)]);
error = ENOMEM;
goto out;
}
panic("pmap_enter: no pv entries "
"available");
}
}
/* enter_pv locks pvh when adding */
pmap_enter_pv(pg, pve, pmap, va, ptp, nflags);
} else {
if (pve != NULL)
pmap_free_pv(pmap, pve);
}
}
/* Construct the pte, giving the correct access. */
npte = pa;
/* VA 0 is magic. */
if (pmap != pmap_kernel() && va != vector_page)
npte |= L2_S_PROT_U;
if (pg != NULL) {
#ifdef DIAGNOSTIC
if ((flags & VM_PROT_ALL) & ~prot)
panic("pmap_enter: access_type exceeds prot");
#endif
npte |= pte_l2_s_cache_mode;
if (flags & VM_PROT_WRITE) {
npte |= L2_S_PROTO | L2_S_PROT_W;
pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
} else if (flags & VM_PROT_ALL) {
npte |= L2_S_PROTO;
pg->mdpage.pvh_attrs |= PVF_REF;
} else
npte |= L2_TYPE_INV;
} else {
if (prot & VM_PROT_WRITE)
npte |= L2_S_PROTO | L2_S_PROT_W;
else if (prot & VM_PROT_ALL)
npte |= L2_S_PROTO;
else
npte |= L2_TYPE_INV;
}
#if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
#if ARM_NMMUS > 1
# error "XXX Unable to use read/write-allocate and configure non-XScale"
#endif
/*
* XXX BRUTAL HACK! This allows us to limp along with
* XXX the read/write-allocate cache mode.
*/
if (pmap == pmap_kernel())
npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
#endif
ptes[arm_btop(va)] = npte;
PTE_SYNC_CURRENT(pmap, &ptes[arm_btop(va)]);
if (pg != NULL) {
simple_lock(&pg->mdpage.pvh_slock);
pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
simple_unlock(&pg->mdpage.pvh_slock);
}
/* Better flush the TLB ... */
cpu_tlb_flushID_SE(va);
error = 0;
out:
pmap_unmap_ptes(pmap); /* unlocks pmap */
PMAP_MAP_TO_HEAD_UNLOCK();
return error;
}
/*
* pmap_kenter_pa: enter a kernel mapping
*
* => no need to lock anything assume va is already allocated
* => should be faster than normal pmap enter function
*/
void
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
{
pt_entry_t *pte;
pte = vtopte(va);
KASSERT(!pmap_pte_v(pte));
#ifdef PMAP_ALIAS_DEBUG
{
struct vm_page *pg;
int s;
pg = PHYS_TO_VM_PAGE(pa);
if (pg != NULL) {
s = splhigh();
if (pg->mdpage.ro_mappings == 0 &&
pg->mdpage.rw_mappings == 0 &&
pg->mdpage.kro_mappings == 0 &&
pg->mdpage.krw_mappings == 0) {
/* This case is okay. */
} else if (pg->mdpage.rw_mappings == 0 &&
pg->mdpage.krw_mappings == 0 &&
(prot & VM_PROT_WRITE) == 0) {
/* This case is okay. */
} else {
/* Something is awry. */
printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
"prot 0x%x\n", pg->mdpage.ro_mappings,
pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
pg->mdpage.krw_mappings, prot);
Debugger();
}
if (prot & VM_PROT_WRITE)
pg->mdpage.krw_mappings++;
else
pg->mdpage.kro_mappings++;
splx(s);
}
}
#endif /* PMAP_ALIAS_DEBUG */
*pte = L2_S_PROTO | pa |
L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
PTE_SYNC(pte);
}
void
pmap_kremove(vaddr_t va, vsize_t len)
{
pt_entry_t *pte;
vaddr_t ova = va;
vaddr_t olen = len;
for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
/*
* We assume that we will only be called with small
* regions of memory.
*/
KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
pte = vtopte(va);
#ifdef PMAP_ALIAS_DEBUG
{
struct vm_page *pg;
int s;
if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
(pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
s = splhigh();
if (*pte & L2_S_PROT_W) {
KASSERT(pg->mdpage.krw_mappings != 0);
pg->mdpage.krw_mappings--;
} else {
KASSERT(pg->mdpage.kro_mappings != 0);
pg->mdpage.kro_mappings--;
}
splx(s);
}
}
#endif /* PMAP_ALIAS_DEBUG */
cpu_idcache_wbinv_range(va, PAGE_SIZE);
*pte = 0;
cpu_tlb_flushID_SE(va);
}
PTE_SYNC_RANGE(vtopte(ova), olen >> PAGE_SHIFT);
}
/*
* pmap_page_protect:
*
* Lower the permission for all mappings to a given page.
*/
void
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
{
PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
VM_PAGE_TO_PHYS(pg), prot));
switch(prot) {
case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
case VM_PROT_READ|VM_PROT_WRITE:
return;
case VM_PROT_READ:
case VM_PROT_READ|VM_PROT_EXECUTE:
pmap_clearbit(pg, PVF_WRITE);
break;
default:
pmap_page_remove(pg);
break;
}
}
/*
* Routine: pmap_unwire
* Function: Clear the wired attribute for a map/virtual-address
* pair.
* In/out conditions:
* The mapping must already exist in the pmap.
*/
void
pmap_unwire(struct pmap *pmap, vaddr_t va)
{
pt_entry_t *ptes;
struct vm_page *pg;
paddr_t pa;
PMAP_MAP_TO_HEAD_LOCK();
ptes = pmap_map_ptes(pmap); /* locks pmap */
if (pmap_pde_v(pmap_pde(pmap, va))) {
#ifdef DIAGNOSTIC
if (l2pte_valid(ptes[arm_btop(va)]) == 0)
panic("pmap_unwire: invalid L2 PTE");
#endif
/* Extract the physical address of the page */
pa = l2pte_pa(ptes[arm_btop(va)]);
PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
goto out;
/* Update the wired bit in the pv entry for this page. */
simple_lock(&pg->mdpage.pvh_slock);
(void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
simple_unlock(&pg->mdpage.pvh_slock);
}
#ifdef DIAGNOSTIC
else {
panic("pmap_unwire: invalid L1 PTE");
}
#endif
out:
pmap_unmap_ptes(pmap); /* unlocks pmap */
PMAP_MAP_TO_HEAD_UNLOCK();
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
boolean_t
pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
{
pd_entry_t *pde;
pt_entry_t *pte, *ptes;
paddr_t pa;
PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
ptes = pmap_map_ptes(pmap); /* locks pmap */
pde = pmap_pde(pmap, va);
pte = &ptes[arm_btop(va)];
if (pmap_pde_section(pde)) {
pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
PDEBUG(5, printf("section pa=0x%08lx\n", pa));
goto out;
} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
PDEBUG(5, printf("no mapping\n"));
goto failed;
}
if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
goto out;
}
pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
out:
if (pap != NULL)
*pap = pa;
PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
pmap_unmap_ptes(pmap); /* unlocks pmap */
return (TRUE);
failed:
PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
pmap_unmap_ptes(pmap); /* unlocks pmap */
return (FALSE);
}
/*
* pmap_copy:
*
* Copy the range specified by src_addr/len from the source map to the
* range dst_addr/len in the destination map.
*
* This routine is only advisory and need not do anything.
*/
/* Call deleted in <arm/arm32/pmap.h> */
#if defined(PMAP_DEBUG)
void
pmap_dump_pvlist(phys, m)
vaddr_t phys;
char *m;
{
struct vm_page *pg;
struct pv_entry *pv;
if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
printf("INVALID PA\n");
return;
}
simple_lock(&pg->mdpage.pvh_slock);
printf("%s %08lx:", m, phys);
if (pg->mdpage.pvh_list == NULL) {
simple_unlock(&pg->mdpage.pvh_slock);
printf(" no mappings\n");
return;
}
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
pv->pv_va, pv->pv_flags);
printf("\n");
simple_unlock(&pg->mdpage.pvh_slock);
}
#endif /* PMAP_DEBUG */
static pt_entry_t *
pmap_map_ptes(struct pmap *pmap)
{
struct proc *p;
/* the kernel's pmap is always accessible */
if (pmap == pmap_kernel()) {
return (pt_entry_t *)PTE_BASE;
}
if (pmap_is_curpmap(pmap)) {
simple_lock(&pmap->pm_obj.vmobjlock);
return (pt_entry_t *)PTE_BASE;
}
p = curproc;
KDASSERT(p != NULL);
/* need to lock both curpmap and pmap: use ordered locking */
if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
simple_lock(&pmap->pm_obj.vmobjlock);
simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
} else {
simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
simple_lock(&pmap->pm_obj.vmobjlock);
}
pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
pmap->pm_pptpt, 0);
cpu_tlb_flushD();
cpu_cpwait();
return (pt_entry_t *)APTE_BASE;
}
/*
* pmap_unmap_ptes: unlock the PTE mapping of "pmap"
*/
static void
pmap_unmap_ptes(struct pmap *pmap)
{
if (pmap == pmap_kernel()) {
return;
}
if (pmap_is_curpmap(pmap)) {
simple_unlock(&pmap->pm_obj.vmobjlock);
} else {
KDASSERT(curproc != NULL);
simple_unlock(&pmap->pm_obj.vmobjlock);
simple_unlock(
&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
}
}
/*
* Modify pte bits for all ptes corresponding to the given physical address.
* We use `maskbits' rather than `clearbits' because we're always passing
* constants and the latter would require an extra inversion at run-time.
*/
static void
pmap_clearbit(struct vm_page *pg, u_int maskbits)
{
struct pv_entry *pv;
pt_entry_t *ptes, npte, opte;
vaddr_t va;
PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
VM_PAGE_TO_PHYS(pg), maskbits));
PMAP_HEAD_TO_MAP_LOCK();
simple_lock(&pg->mdpage.pvh_slock);
/*
* Clear saved attributes (modify, reference)
*/
pg->mdpage.pvh_attrs &= ~maskbits;
if (pg->mdpage.pvh_list == NULL) {
simple_unlock(&pg->mdpage.pvh_slock);
PMAP_HEAD_TO_MAP_UNLOCK();
return;
}
/*
* Loop over all current mappings setting/clearing as appropos
*/
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
#ifdef PMAP_ALIAS_DEBUG
{
int s = splhigh();
if ((maskbits & PVF_WRITE) != 0 &&
(pv->pv_flags & PVF_WRITE) != 0) {
KASSERT(pg->mdpage.rw_mappings != 0);
pg->mdpage.rw_mappings--;
pg->mdpage.ro_mappings++;
}
splx(s);
}
#endif /* PMAP_ALIAS_DEBUG */
va = pv->pv_va;
pv->pv_flags &= ~maskbits;
ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
npte = opte = ptes[arm_btop(va)];
if (maskbits & (PVF_WRITE|PVF_MOD)) {
if ((pv->pv_flags & PVF_NC)) {
/*
* Entry is not cacheable: reenable
* the cache, nothing to flush
*
* Don't turn caching on again if this
* is a modified emulation. This
* would be inconsitent with the
* settings created by
* pmap_vac_me_harder().
*
* There's no need to call
* pmap_vac_me_harder() here: all
* pages are loosing their write
* permission.
*
*/
if (maskbits & PVF_WRITE) {
npte |= pte_l2_s_cache_mode;
pv->pv_flags &= ~PVF_NC;
}
} else if (pmap_is_curpmap(pv->pv_pmap)) {
/*
* Entry is cacheable: check if pmap is
* current if it is flush it,
* otherwise it won't be in the cache
*/
cpu_idcache_wbinv_range(pv->pv_va, NBPG);
}
/* make the pte read only */
npte &= ~L2_S_PROT_W;
}
if (maskbits & PVF_REF) {
if (pmap_is_curpmap(pv->pv_pmap) &&
(pv->pv_flags & PVF_NC) == 0) {
/*
* Check npte here; we may have already
* done the wbinv above, and the validity
* of the PTE is the same for opte and
* npte.
*/
if (npte & L2_S_PROT_W) {
cpu_idcache_wbinv_range(pv->pv_va,
NBPG);
} else if ((npte & L2_TYPE_MASK)
!= L2_TYPE_INV) {
/* XXXJRT need idcache_inv_range */
cpu_idcache_wbinv_range(pv->pv_va,
NBPG);
}
}
/* make the pte invalid */
npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
}
if (npte != opte) {
ptes[arm_btop(va)] = npte;
PTE_SYNC_CURRENT(pv->pv_pmap, &ptes[arm_btop(va)]);
/* Flush the TLB entry if a current pmap. */
if (pmap_is_curpmap(pv->pv_pmap))
cpu_tlb_flushID_SE(pv->pv_va);
} else
PTE_FLUSH_ALT(pv->pv_pmap, &ptes[arm_btop(va)]);
pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
}
cpu_cpwait();
simple_unlock(&pg->mdpage.pvh_slock);
PMAP_HEAD_TO_MAP_UNLOCK();
}
/*
* pmap_clear_modify:
*
* Clear the "modified" attribute for a page.
*/
boolean_t
pmap_clear_modify(struct vm_page *pg)
{
boolean_t rv;
if (pg->mdpage.pvh_attrs & PVF_MOD) {
rv = TRUE;
pmap_clearbit(pg, PVF_MOD);
} else
rv = FALSE;
PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
VM_PAGE_TO_PHYS(pg), rv));
return (rv);
}
/*
* pmap_clear_reference:
*
* Clear the "referenced" attribute for a page.
*/
boolean_t
pmap_clear_reference(struct vm_page *pg)
{
boolean_t rv;
if (pg->mdpage.pvh_attrs & PVF_REF) {
rv = TRUE;
pmap_clearbit(pg, PVF_REF);
} else
rv = FALSE;
PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
VM_PAGE_TO_PHYS(pg), rv));
return (rv);
}
/*
* pmap_is_modified:
*
* Test if a page has the "modified" attribute.
*/
/* See <arm/arm32/pmap.h> */
/*
* pmap_is_referenced:
*
* Test if a page has the "referenced" attribute.
*/
/* See <arm/arm32/pmap.h> */
int
pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
{
pt_entry_t *ptes;
struct vm_page *pg;
paddr_t pa;
u_int flags;
int rv = 0;
PDEBUG(2, printf("pmap_modified_emulation\n"));
PMAP_MAP_TO_HEAD_LOCK();
ptes = pmap_map_ptes(pmap); /* locks pmap */
if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
PDEBUG(2, printf("L1 PTE invalid\n"));
goto out;
}
PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
/*
* Don't need to PTE_FLUSH_ALT() here; this is always done
* with the current pmap.
*/
/* Check for a invalid pte */
if (l2pte_valid(ptes[arm_btop(va)]) == 0)
goto out;
/* This can happen if user code tries to access kernel memory. */
if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
goto out;
/* Extract the physical address of the page */
pa = l2pte_pa(ptes[arm_btop(va)]);
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
goto out;
/* Get the current flags for this page. */
simple_lock(&pg->mdpage.pvh_slock);
flags = pmap_modify_pv(pmap, va, pg, 0, 0);
PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
/*
* Do the flags say this page is writable ? If not then it is a
* genuine write fault. If yes then the write fault is our fault
* as we did not reflect the write access in the PTE. Now we know
* a write has occurred we can correct this and also set the
* modified bit
*/
if (~flags & PVF_WRITE) {
simple_unlock(&pg->mdpage.pvh_slock);
goto out;
}
PDEBUG(0,
printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
va, ptes[arm_btop(va)]));
pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
/*
* Re-enable write permissions for the page. No need to call
* pmap_vac_me_harder(), since this is just a
* modified-emulation fault, and the PVF_WRITE bit isn't changing.
* We've already set the cacheable bits based on the assumption
* that we can write to this page.
*/
ptes[arm_btop(va)] =
(ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
PTE_SYNC(&ptes[arm_btop(va)]);
PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
simple_unlock(&pg->mdpage.pvh_slock);
cpu_tlb_flushID_SE(va);
cpu_cpwait();
rv = 1;
out:
pmap_unmap_ptes(pmap); /* unlocks pmap */
PMAP_MAP_TO_HEAD_UNLOCK();
return (rv);
}
int
pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
{
pt_entry_t *ptes;
struct vm_page *pg;
paddr_t pa;
int rv = 0;
PDEBUG(2, printf("pmap_handled_emulation\n"));
PMAP_MAP_TO_HEAD_LOCK();
ptes = pmap_map_ptes(pmap); /* locks pmap */
if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
PDEBUG(2, printf("L1 PTE invalid\n"));
goto out;
}
PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
/*
* Don't need to PTE_FLUSH_ALT() here; this is always done
* with the current pmap.
*/
/* Check for invalid pte */
if (l2pte_valid(ptes[arm_btop(va)]) == 0)
goto out;
/* This can happen if user code tries to access kernel memory. */
if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
goto out;
/* Extract the physical address of the page */
pa = l2pte_pa(ptes[arm_btop(va)]);
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
goto out;
simple_lock(&pg->mdpage.pvh_slock);
/*
* Ok we just enable the pte and mark the attibs as handled
* XXX Should we traverse the PV list and enable all PTEs?
*/
PDEBUG(0,
printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
va, ptes[arm_btop(va)]));
pg->mdpage.pvh_attrs |= PVF_REF;
ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
PTE_SYNC(&ptes[arm_btop(va)]);
PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
simple_unlock(&pg->mdpage.pvh_slock);
cpu_tlb_flushID_SE(va);
cpu_cpwait();
rv = 1;
out:
pmap_unmap_ptes(pmap); /* unlocks pmap */
PMAP_MAP_TO_HEAD_UNLOCK();
return (rv);
}
/*
* pmap_collect: free resources held by a pmap
*
* => optional function.
* => called when a process is swapped out to free memory.
*/
void
pmap_collect(struct pmap *pmap)
{
}
/*
* Routine: pmap_procwr
*
* Function:
* Synchronize caches corresponding to [addr, addr+len) in p.
*
*/
void
pmap_procwr(struct proc *p, vaddr_t va, int len)
{
/* We only need to do anything if it is the current process. */
if (p == curproc)
cpu_icache_sync_range(va, len);
}
/*
* PTP functions
*/
/*
* pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
*
* => pmap should NOT be pmap_kernel()
* => pmap should be locked
*/
static struct vm_page *
pmap_get_ptp(struct pmap *pmap, vaddr_t va)
{
struct vm_page *ptp;
pd_entry_t *pde;
KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
pde = pmap_pde(pmap, va);
if (pmap_pde_v(pde)) {
/* valid... check hint (saves us a PA->PG lookup) */
if (pmap->pm_ptphint &&
((*pde) & L2_S_FRAME) ==
VM_PAGE_TO_PHYS(pmap->pm_ptphint))
return (pmap->pm_ptphint);
ptp = uvm_pagelookup(&pmap->pm_obj, va);
#ifdef DIAGNOSTIC
if (ptp == NULL)
panic("pmap_get_ptp: unmanaged user PTP");
#endif
pmap->pm_ptphint = ptp;
return(ptp);
}
/* allocate a new PTP (updates ptphint) */
return (pmap_alloc_ptp(pmap, va));
}
/*
* pmap_alloc_ptp: allocate a PTP for a PMAP
*
* => pmap should already be locked by caller
* => we use the ptp's wire_count to count the number of active mappings
* in the PTP (we start it at one to prevent any chance this PTP
* will ever leak onto the active/inactive queues)
*/
/*__inline */ static struct vm_page *
pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
{
struct vm_page *ptp;
KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
UVM_PGA_USERESERVE|UVM_PGA_ZERO);
if (ptp == NULL)
return (NULL);
/* got one! */
ptp->flags &= ~PG_BUSY; /* never busy */
ptp->wire_count = 1; /* no mappings yet */
pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp),
PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
pmap->pm_stats.resident_count++; /* count PTP as resident */
pmap->pm_ptphint = ptp;
return (ptp);
}
vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)
{
struct pmap *kpm = pmap_kernel(), *pm;
int s;
paddr_t ptaddr;
struct vm_page *ptp;
if (maxkvaddr <= pmap_curmaxkvaddr)
goto out; /* we are OK */
NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
pmap_curmaxkvaddr, maxkvaddr));
/*
* whoops! we need to add kernel PTPs
*/
s = splhigh(); /* to be safe */
simple_lock(&kpm->pm_obj.vmobjlock);
/* due to the way the arm pmap works we map 4MB at a time */
for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
if (uvm.page_init_done == FALSE) {
/*
* we're growing the kernel pmap early (from
* uvm_pageboot_alloc()). this case must be
* handled a little differently.
*/
if (uvm_page_physget(&ptaddr) == FALSE)
panic("pmap_growkernel: out of memory");
pmap_zero_page(ptaddr);
/* map this page in */
pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr,
PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
/* count PTP as resident */
kpm->pm_stats.resident_count++;
continue;
}
/*
* THIS *MUST* BE CODED SO AS TO WORK IN THE
* pmap_initialized == FALSE CASE! WE MAY BE
* INVOKED WHILE pmap_init() IS RUNNING!
*/
if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
panic("pmap_growkernel: alloc ptp failed");
/* distribute new kernel PTP to all active pmaps */
simple_lock(&pmaps_lock);
LIST_FOREACH(pm, &pmaps, pm_list) {
pmap_map_in_l1(pm, pmap_curmaxkvaddr,
VM_PAGE_TO_PHYS(ptp),
PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
}
/* Invalidate the PTPT cache. */
pool_cache_invalidate(&pmap_ptpt_cache);
pmap_ptpt_cache_generation++;
simple_unlock(&pmaps_lock);
}
/*
* flush out the cache, expensive but growkernel will happen so
* rarely
*/
cpu_tlb_flushD();
cpu_cpwait();
simple_unlock(&kpm->pm_obj.vmobjlock);
splx(s);
out:
return (pmap_curmaxkvaddr);
}
/************************ Utility routines ****************************/
/*
* vector_page_setprot:
*
* Manipulate the protection of the vector page.
*/
void
vector_page_setprot(int prot)
{
pt_entry_t *pte;
pte = vtopte(vector_page);
*pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
PTE_SYNC(pte);
cpu_tlb_flushD_SE(vector_page);
cpu_cpwait();
}
/************************ Bootstrapping routines ****************************/
/*
* This list exists for the benefit of pmap_map_chunk(). It keeps track
* of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
* find them as necessary.
*
* Note that the data on this list is not valid after initarm() returns.
*/
SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
static vaddr_t
kernel_pt_lookup(paddr_t pa)
{
pv_addr_t *pv;
SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
if (pv->pv_pa == pa)
return (pv->pv_va);
}
return (0);
}
/*
* pmap_map_section:
*
* Create a single section mapping.
*/
void
pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
KASSERT(((va | pa) & L1_S_OFFSET) == 0);
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
L1_S_PROT(PTE_KERNEL, prot) | fl;
}
/*
* pmap_map_entry:
*
* Create a single page mapping.
*/
void
pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
pt_entry_t *pte;
KASSERT(((va | pa) & PGOFSET) == 0);
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
pte = (pt_entry_t *)
kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
if (pte == NULL)
panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
L2_S_PROT(PTE_KERNEL, prot) | fl;
}
/*
* pmap_link_l2pt:
*
* Link the L2 page table specified by "pa" into the L1
* page table at the slot for "va".
*/
void
pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
u_int slot = va >> L1_S_SHIFT;
KASSERT((l2pv->pv_pa & PGOFSET) == 0);
pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
}
/*
* pmap_map_chunk:
*
* Map a chunk of memory using the most efficient mappings
* possible (section, large page, small page) into the
* provided L1 and L2 tables at the specified virtual address.
*/
vsize_t
pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
int prot, int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t *pte, fl;
vsize_t resid;
int i;
resid = (size + (NBPG - 1)) & ~(NBPG - 1);
if (l1pt == 0)
panic("pmap_map_chunk: no L1 table provided");
#ifdef VERBOSE_INIT_ARM
printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
"prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
#endif
size = resid;
while (resid > 0) {
/* See if we can use a section mapping. */
if (((pa | va) & L1_S_OFFSET) == 0 &&
resid >= L1_S_SIZE) {
fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
#ifdef VERBOSE_INIT_ARM
printf("S");
#endif
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
L1_S_PROT(PTE_KERNEL, prot) | fl;
va += L1_S_SIZE;
pa += L1_S_SIZE;
resid -= L1_S_SIZE;
continue;
}
/*
* Ok, we're going to use an L2 table. Make sure
* one is actually in the corresponding L1 slot
* for the current VA.
*/
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
pte = (pt_entry_t *)
kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
if (pte == NULL)
panic("pmap_map_chunk: can't find L2 table for VA"
"0x%08lx", va);
/* See if we can use a L2 large page mapping. */
if (((pa | va) & L2_L_OFFSET) == 0 &&
resid >= L2_L_SIZE) {
fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
#ifdef VERBOSE_INIT_ARM
printf("L");
#endif
for (i = 0; i < 16; i++) {
pte[((va >> PGSHIFT) & 0x3f0) + i] =
L2_L_PROTO | pa |
L2_L_PROT(PTE_KERNEL, prot) | fl;
}
va += L2_L_SIZE;
pa += L2_L_SIZE;
resid -= L2_L_SIZE;
continue;
}
/* Use a small page mapping. */
fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
#ifdef VERBOSE_INIT_ARM
printf("P");
#endif
pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
L2_S_PROT(PTE_KERNEL, prot) | fl;
va += NBPG;
pa += NBPG;
resid -= NBPG;
}
#ifdef VERBOSE_INIT_ARM
printf("\n");
#endif
return (size);
}
/********************** PTE initialization routines **************************/
/*
* These routines are called when the CPU type is identified to set up
* the PTE prototypes, cache modes, etc.
*
* The variables are always here, just in case LKMs need to reference
* them (though, they shouldn't).
*/
pt_entry_t pte_l1_s_cache_mode;
pt_entry_t pte_l1_s_cache_mask;
pt_entry_t pte_l2_l_cache_mode;
pt_entry_t pte_l2_l_cache_mask;
pt_entry_t pte_l2_s_cache_mode;
pt_entry_t pte_l2_s_cache_mask;
pt_entry_t pte_l2_s_prot_u;
pt_entry_t pte_l2_s_prot_w;
pt_entry_t pte_l2_s_prot_mask;
pt_entry_t pte_l1_s_proto;
pt_entry_t pte_l1_c_proto;
pt_entry_t pte_l2_s_proto;
void (*pmap_copy_page_func)(paddr_t, paddr_t);
void (*pmap_zero_page_func)(paddr_t);
#if ARM_MMU_GENERIC == 1
void
pmap_pte_init_generic(void)
{
pte_l1_s_cache_mode = L1_S_B|L1_S_C;
pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
pte_l2_l_cache_mode = L2_B|L2_C;
pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
pte_l2_s_cache_mode = L2_B|L2_C;
pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
pte_l2_s_prot_u = L2_S_PROT_U_generic;
pte_l2_s_prot_w = L2_S_PROT_W_generic;
pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
pte_l1_s_proto = L1_S_PROTO_generic;
pte_l1_c_proto = L1_C_PROTO_generic;
pte_l2_s_proto = L2_S_PROTO_generic;
pmap_copy_page_func = pmap_copy_page_generic;
pmap_zero_page_func = pmap_zero_page_generic;
}
#if defined(CPU_ARM9)
void
pmap_pte_init_arm9(void)
{
/*
* ARM9 is compatible with generic, but we want to use
* write-through caching for now.
*/
pmap_pte_init_generic();
pte_l1_s_cache_mode = L1_S_C;
pte_l2_l_cache_mode = L2_C;
pte_l2_s_cache_mode = L2_C;
}
#endif /* CPU_ARM9 */
#endif /* ARM_MMU_GENERIC == 1 */
#if ARM_MMU_XSCALE == 1
void
pmap_pte_init_xscale(void)
{
uint32_t auxctl;
pte_l1_s_cache_mode = L1_S_B|L1_S_C;
pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
pte_l2_l_cache_mode = L2_B|L2_C;
pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
pte_l2_s_cache_mode = L2_B|L2_C;
pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
/*
* The XScale core has an enhanced mode where writes that
* miss the cache cause a cache line to be allocated. This
* is significantly faster than the traditional, write-through
* behavior of this case.
*
* However, there is a bug lurking in this pmap module, or in
* other parts of the VM system, or both, which causes corruption
* of NFS-backed files when this cache mode is used. We have
* an ugly work-around for this problem (disable r/w-allocate
* for managed kernel mappings), but the bug is still evil enough
* to consider this cache mode "experimental".
*/
pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
#ifdef XSCALE_CACHE_WRITE_THROUGH
/*
* Some versions of the XScale core have various bugs in
* their cache units, the work-around for which is to run
* the cache in write-through mode. Unfortunately, this
* has a major (negative) impact on performance. So, we
* go ahead and run fast-and-loose, in the hopes that we
* don't line up the planets in a way that will trip the
* bugs.
*
* However, we give you the option to be slow-but-correct.
*/
pte_l1_s_cache_mode = L1_S_C;
pte_l2_l_cache_mode = L2_C;
pte_l2_s_cache_mode = L2_C;
#endif /* XSCALE_CACHE_WRITE_THROUGH */
pte_l2_s_prot_u = L2_S_PROT_U_xscale;
pte_l2_s_prot_w = L2_S_PROT_W_xscale;
pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
pte_l1_s_proto = L1_S_PROTO_xscale;
pte_l1_c_proto = L1_C_PROTO_xscale;
pte_l2_s_proto = L2_S_PROTO_xscale;
pmap_copy_page_func = pmap_copy_page_xscale;
pmap_zero_page_func = pmap_zero_page_xscale;
/*
* Disable ECC protection of page table access, for now.
*/
__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
: "=r" (auxctl));
auxctl &= ~XSCALE_AUXCTL_P;
__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
:
: "r" (auxctl));
}
/*
* xscale_setup_minidata:
*
* Set up the mini-data cache clean area. We require the
* caller to allocate the right amount of physically and
* virtually contiguous space.
*/
void
xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
{
extern vaddr_t xscale_minidata_clean_addr;
extern vsize_t xscale_minidata_clean_size; /* already initialized */
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t *pte;
vsize_t size;
uint32_t auxctl;
xscale_minidata_clean_addr = va;
/* Round it to page size. */
size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
for (; size != 0;
va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
pte = (pt_entry_t *)
kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
if (pte == NULL)
panic("xscale_setup_minidata: can't find L2 table for "
"VA 0x%08lx", va);
pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
}
/*
* Configure the mini-data cache for write-back with
* read/write-allocate.
*
* NOTE: In order to reconfigure the mini-data cache, we must
* make sure it contains no valid data! In order to do that,
* we must issue a global data cache invalidate command!
*
* WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
* THIS IS VERY IMPORTANT!
*/
/* Invalidate data and mini-data. */
__asm __volatile("mcr p15, 0, %0, c7, c6, 0"
:
: "r" (auxctl));
__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
: "=r" (auxctl));
auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
:
: "r" (auxctl));
}
#endif /* ARM_MMU_XSCALE == 1 */