161 lines
4.5 KiB
C
161 lines
4.5 KiB
C
/* $NetBSD: pthread_barrier.c,v 1.20 2016/07/03 14:24:58 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2001, 2003, 2006, 2007, 2009 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__RCSID("$NetBSD: pthread_barrier.c,v 1.20 2016/07/03 14:24:58 christos Exp $");
|
|
|
|
#include <errno.h>
|
|
|
|
#include "pthread.h"
|
|
#include "pthread_int.h"
|
|
|
|
int
|
|
pthread_barrier_init(pthread_barrier_t *barrier,
|
|
const pthread_barrierattr_t *attr, unsigned int count)
|
|
{
|
|
|
|
if (attr != NULL && attr->ptba_magic != _PT_BARRIERATTR_MAGIC)
|
|
return EINVAL;
|
|
if (count == 0)
|
|
return EINVAL;
|
|
|
|
barrier->ptb_magic = _PT_BARRIER_MAGIC;
|
|
PTQ_INIT(&barrier->ptb_waiters);
|
|
barrier->ptb_initcount = count;
|
|
barrier->ptb_curcount = 0;
|
|
barrier->ptb_generation = 0;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_barrier_destroy(pthread_barrier_t *barrier)
|
|
{
|
|
|
|
if (barrier->ptb_magic != _PT_BARRIER_MAGIC)
|
|
return EINVAL;
|
|
if (barrier->ptb_curcount != 0)
|
|
return EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_barrier_wait(pthread_barrier_t *barrier)
|
|
{
|
|
pthread_mutex_t *interlock;
|
|
pthread_t self;
|
|
unsigned int gen;
|
|
|
|
if (barrier->ptb_magic != _PT_BARRIER_MAGIC)
|
|
return EINVAL;
|
|
|
|
/*
|
|
* A single arbitrary thread is supposed to return
|
|
* PTHREAD_BARRIER_SERIAL_THREAD, and everone else
|
|
* is supposed to return 0. Since pthread_barrier_wait()
|
|
* is not a cancellation point, this is trivial; we
|
|
* simply elect that the thread that causes the barrier
|
|
* to be satisfied gets the special return value. Note
|
|
* that this final thread does not actually need to block,
|
|
* but instead is responsible for waking everyone else up.
|
|
*/
|
|
self = pthread__self();
|
|
interlock = pthread__hashlock(barrier);
|
|
pthread_mutex_lock(interlock);
|
|
if (barrier->ptb_curcount + 1 == barrier->ptb_initcount) {
|
|
barrier->ptb_generation++;
|
|
barrier->ptb_curcount = 0;
|
|
pthread__unpark_all(&barrier->ptb_waiters, self,
|
|
interlock);
|
|
pthread_mutex_unlock(interlock);
|
|
return PTHREAD_BARRIER_SERIAL_THREAD;
|
|
}
|
|
barrier->ptb_curcount++;
|
|
gen = barrier->ptb_generation;
|
|
for (;;) {
|
|
PTQ_INSERT_TAIL(&barrier->ptb_waiters, self, pt_sleep);
|
|
self->pt_sleepobj = &barrier->ptb_waiters;
|
|
(void)pthread__park(self, interlock, &barrier->ptb_waiters,
|
|
NULL, 0, __UNVOLATILE(&interlock->ptm_waiters));
|
|
if (__predict_true(gen != barrier->ptb_generation)) {
|
|
break;
|
|
}
|
|
pthread_mutex_lock(interlock);
|
|
if (gen != barrier->ptb_generation) {
|
|
pthread_mutex_unlock(interlock);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef _PTHREAD_PSHARED
|
|
int
|
|
pthread_barrierattr_getpshared(const pthread_barrierattr_t * __restrict attr,
|
|
int * __restrict pshared)
|
|
{
|
|
|
|
*pshared = PTHREAD_PROCESS_PRIVATE;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_barrierattr_setpshared(pthread_barrierattr_t *attr, int pshared)
|
|
{
|
|
|
|
switch(pshared) {
|
|
case PTHREAD_PROCESS_PRIVATE:
|
|
return 0;
|
|
case PTHREAD_PROCESS_SHARED:
|
|
return ENOSYS;
|
|
}
|
|
return EINVAL;
|
|
}
|
|
#endif
|
|
|
|
int
|
|
pthread_barrierattr_init(pthread_barrierattr_t *attr)
|
|
{
|
|
|
|
attr->ptba_magic = _PT_BARRIERATTR_MAGIC;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_barrierattr_destroy(pthread_barrierattr_t *attr)
|
|
{
|
|
|
|
if (attr->ptba_magic != _PT_BARRIERATTR_MAGIC)
|
|
return EINVAL;
|
|
attr->ptba_magic = _PT_BARRIERATTR_DEAD;
|
|
return 0;
|
|
}
|