NetBSD/sys/compat/netbsd32/netbsd32_netbsd.c

5165 lines
117 KiB
C

/* $NetBSD: netbsd32_netbsd.c,v 1.6 1998/10/01 14:27:57 eeh Exp $ */
/*
* Copyright (c) 1998 Matthew R. Green
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_ktrace.h"
#include "opt_ntp.h"
#include "fs_lfs.h"
#include "fs_nfs.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/socketvar.h>
#include <sys/mbuf.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/timex.h>
#include <sys/signalvar.h>
#include <sys/wait.h>
#include <sys/ptrace.h>
#include <sys/ktrace.h>
#include <sys/trace.h>
#include <sys/resourcevar.h>
#include <sys/pool.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/namei.h>
#include <vm/vm.h>
#include <sys/syscallargs.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <compat/sparc32/sparc32.h>
#include <compat/sparc32/sparc32_syscallargs.h>
#include <machine/frame.h>
static __inline void sparc32_from_timeval __P((struct timeval *, struct sparc32_timeval *));
static __inline void sparc32_to_timeval __P((struct sparc32_timeval *, struct timeval *));
static __inline void sparc32_from_itimerval __P((struct itimerval *, struct sparc32_itimerval *));
static __inline void sparc32_to_itimerval __P((struct sparc32_itimerval *, struct itimerval *));
static __inline void sparc32_to_timespec __P((struct sparc32_timespec *, struct timespec *));
static __inline void sparc32_from_timespec __P((struct timespec *, struct sparc32_timespec *));
static __inline void sparc32_from_rusage __P((struct rusage *, struct sparc32_rusage *));
static __inline void sparc32_to_rusage __P((struct sparc32_rusage *, struct rusage *));
static __inline int sparc32_to_iovecin __P((struct sparc32_iovec *, struct iovec *, int));
static __inline void sparc32_to_msghdr __P((struct sparc32_msghdr *, struct msghdr *));
static __inline void sparc32_from_msghdr __P((struct sparc32_msghdr *, struct msghdr *));
static __inline void sparc32_from_statfs __P((struct statfs *, struct sparc32_statfs *));
static __inline void sparc32_from_timex __P((struct timex *, struct sparc32_timex *));
static __inline void sparc32_to_timex __P((struct sparc32_timex *, struct timex *));
static __inline void sparc32_from___stat13 __P((struct stat *, struct sparc32_stat *));
static __inline void sparc32_to_ipc_perm __P((struct sparc32_ipc_perm *, struct ipc_perm *));
static __inline void sparc32_from_ipc_perm __P((struct ipc_perm *, struct sparc32_ipc_perm *));
static __inline void sparc32_to_msg __P((struct sparc32_msg *, struct msg *));
static __inline void sparc32_from_msg __P((struct msg *, struct sparc32_msg *));
static __inline void sparc32_to_msqid_ds __P((struct sparc32_msqid_ds *, struct msqid_ds *));
static __inline void sparc32_from_msqid_ds __P((struct msqid_ds *, struct sparc32_msqid_ds *));
static __inline void sparc32_to_shmid_ds __P((struct sparc32_shmid_ds *, struct shmid_ds *));
static __inline void sparc32_from_shmid_ds __P((struct shmid_ds *, struct sparc32_shmid_ds *));
static __inline void sparc32_to_semid_ds __P((struct sparc32_semid_ds *, struct semid_ds *));
static __inline void sparc32_from_semid_ds __P((struct semid_ds *, struct sparc32_semid_ds *));
static int recvit32 __P((struct proc *, int, struct sparc32_msghdr *, struct iovec *, caddr_t,
register_t *));
static int dofilereadv32 __P((struct proc *, int, struct file *, struct sparc32_iovec *,
int, off_t *, int, register_t *));
static int dofilewritev32 __P((struct proc *, int, struct file *, struct sparc32_iovec *,
int, off_t *, int, register_t *));
static int change_utimes32 __P((struct vnode *, struct timeval *, struct proc *));
/* converters for structures that we need */
static __inline void
sparc32_from_timeval(tv, tv32)
struct timeval *tv;
struct sparc32_timeval *tv32;
{
tv32->tv_sec = (sparc32_long)tv->tv_sec;
tv32->tv_usec = (sparc32_long)tv->tv_usec;
}
static __inline void
sparc32_to_timeval(tv32, tv)
struct sparc32_timeval *tv32;
struct timeval *tv;
{
tv->tv_sec = (long)tv32->tv_sec;
tv->tv_usec = (long)tv32->tv_usec;
}
static __inline void
sparc32_from_itimerval(itv, itv32)
struct itimerval *itv;
struct sparc32_itimerval *itv32;
{
sparc32_from_timeval(&itv->it_interval,
&itv32->it_interval);
sparc32_from_timeval(&itv->it_value,
&itv32->it_value);
}
static __inline void
sparc32_to_itimerval(itv32, itv)
struct sparc32_itimerval *itv32;
struct itimerval *itv;
{
sparc32_to_timeval(&itv32->it_interval, &itv->it_interval);
sparc32_to_timeval(&itv32->it_value, &itv->it_value);
}
static __inline void
sparc32_to_timespec(s32p, p)
struct sparc32_timespec *s32p;
struct timespec *p;
{
p->tv_sec = s32p->tv_sec;
p->tv_nsec = (long)s32p->tv_nsec;
}
static __inline void
sparc32_from_timespec(p, s32p)
struct timespec *p;
struct sparc32_timespec *s32p;
{
s32p->tv_sec = p->tv_sec;
s32p->tv_nsec = (sparc32_long)p->tv_nsec;
}
static __inline void
sparc32_from_rusage(rup, ru32p)
struct rusage *rup;
struct sparc32_rusage *ru32p;
{
sparc32_from_timeval(&rup->ru_utime, &ru32p->ru_utime);
sparc32_from_timeval(&rup->ru_stime, &ru32p->ru_stime);
#define C(var) ru32p->var = (sparc32_long)rup->var
C(ru_maxrss);
C(ru_ixrss);
C(ru_idrss);
C(ru_isrss);
C(ru_minflt);
C(ru_majflt);
C(ru_nswap);
C(ru_inblock);
C(ru_oublock);
C(ru_msgsnd);
C(ru_msgrcv);
C(ru_nsignals);
C(ru_nvcsw);
C(ru_nivcsw);
#undef C
}
static __inline void
sparc32_to_rusage(ru32p, rup)
struct sparc32_rusage *ru32p;
struct rusage *rup;
{
sparc32_to_timeval(&ru32p->ru_utime, &rup->ru_utime);
sparc32_to_timeval(&ru32p->ru_stime, &rup->ru_stime);
#define C(var) rup->var = (long)ru32p->var
C(ru_maxrss);
C(ru_ixrss);
C(ru_idrss);
C(ru_isrss);
C(ru_minflt);
C(ru_majflt);
C(ru_nswap);
C(ru_inblock);
C(ru_oublock);
C(ru_msgsnd);
C(ru_msgrcv);
C(ru_nsignals);
C(ru_nvcsw);
C(ru_nivcsw);
#undef C
}
static __inline int
sparc32_to_iovecin(iov32p, iovp, len)
struct sparc32_iovec *iov32p;
struct iovec *iovp;
int len;
{
int i, error=0;
u_int32_t iov_base;
u_int32_t iov_len;
/*
* We could allocate an iov32p, do a copyin, and translate
* each field and then free it all up, or we could copyin
* each field separately. I'm doing the latter to reduce
* the number of MALLOC()s.
*/
printf("converting iovec at %p len %lx to %p\n", iov32p, len, iovp);
for (i = 0; i < len; i++, iovp++, iov32p++) {
if ((error = copyin((caddr_t)&iov32p->iov_base, &iov_base, sizeof(iov_base))))
return (error);
if ((error = copyin((caddr_t)&iov32p->iov_len, &iov_len, sizeof(iov_len))))
return (error);
iovp->iov_base = (void *)(u_long)iov_base;
iovp->iov_len = (size_t)iov_len;
printf("iovec slot %d base %p len %lx\n", i, iovp->iov_base, iovp->iov_len);
}
}
/* msg_iov must be done separately */
static __inline void
sparc32_to_msghdr(mhp32, mhp)
struct sparc32_msghdr *mhp32;
struct msghdr *mhp;
{
mhp->msg_name = (caddr_t)(u_long)mhp32->msg_name;
mhp->msg_namelen = mhp32->msg_namelen;
mhp->msg_iovlen = (size_t)mhp32->msg_iovlen;
mhp->msg_control = (caddr_t)(u_long)mhp32->msg_control;
mhp->msg_controllen = mhp32->msg_controllen;
mhp->msg_flags = mhp32->msg_flags;
}
/* msg_iov must be done separately */
static __inline void
sparc32_from_msghdr(mhp32, mhp)
struct sparc32_msghdr *mhp32;
struct msghdr *mhp;
{
mhp32->msg_name = mhp32->msg_name;
mhp32->msg_namelen = mhp32->msg_namelen;
mhp32->msg_iovlen = mhp32->msg_iovlen;
mhp32->msg_control = mhp32->msg_control;
mhp32->msg_controllen = mhp->msg_controllen;
mhp32->msg_flags = mhp->msg_flags;
}
static __inline void
sparc32_from_statfs(sbp, sb32p)
struct statfs *sbp;
struct sparc32_statfs *sb32p;
{
sb32p->f_type = sbp->f_type;
sb32p->f_flags = sbp->f_flags;
sb32p->f_bsize = (sparc32_long)sbp->f_bsize;
sb32p->f_iosize = (sparc32_long)sbp->f_iosize;
sb32p->f_blocks = (sparc32_long)sbp->f_blocks;
sb32p->f_bfree = (sparc32_long)sbp->f_bfree;
sb32p->f_bavail = (sparc32_long)sbp->f_bavail;
sb32p->f_files = (sparc32_long)sbp->f_files;
sb32p->f_ffree = (sparc32_long)sbp->f_ffree;
sb32p->f_fsid = sbp->f_fsid;
sb32p->f_owner = sbp->f_owner;
sb32p->f_spare[0] = 0;
sb32p->f_spare[1] = 0;
sb32p->f_spare[2] = 0;
sb32p->f_spare[3] = 0;
#if 1
/* May as well do the whole batch in one go */
memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN+MNAMELEN+MNAMELEN);
#else
/* If we want to be careful */
memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN);
memcpy(sb32p->f_mntonname, sbp->f_mntonname, MNAMELEN);
memcpy(sb32p->f_mntfromname, sbp->f_mntfromname, MNAMELEN);
#endif
}
static __inline void
sparc32_from_timex(txp, tx32p)
struct timex *txp;
struct sparc32_timex *tx32p;
{
tx32p->modes = txp->modes;
tx32p->offset = (sparc32_long)txp->offset;
tx32p->freq = (sparc32_long)txp->freq;
tx32p->maxerror = (sparc32_long)txp->maxerror;
tx32p->esterror = (sparc32_long)txp->esterror;
tx32p->status = txp->status;
tx32p->constant = (sparc32_long)txp->constant;
tx32p->precision = (sparc32_long)txp->precision;
tx32p->tolerance = (sparc32_long)txp->tolerance;
tx32p->ppsfreq = (sparc32_long)txp->ppsfreq;
tx32p->jitter = (sparc32_long)txp->jitter;
tx32p->shift = txp->shift;
tx32p->stabil = (sparc32_long)txp->stabil;
tx32p->jitcnt = (sparc32_long)txp->jitcnt;
tx32p->calcnt = (sparc32_long)txp->calcnt;
tx32p->errcnt = (sparc32_long)txp->errcnt;
tx32p->stbcnt = (sparc32_long)txp->stbcnt;
}
static __inline void
sparc32_to_timex(tx32p, txp)
struct sparc32_timex *tx32p;
struct timex *txp;
{
txp->modes = tx32p->modes;
txp->offset = (long)tx32p->offset;
txp->freq = (long)tx32p->freq;
txp->maxerror = (long)tx32p->maxerror;
txp->esterror = (long)tx32p->esterror;
txp->status = tx32p->status;
txp->constant = (long)tx32p->constant;
txp->precision = (long)tx32p->precision;
txp->tolerance = (long)tx32p->tolerance;
txp->ppsfreq = (long)tx32p->ppsfreq;
txp->jitter = (long)tx32p->jitter;
txp->shift = tx32p->shift;
txp->stabil = (long)tx32p->stabil;
txp->jitcnt = (long)tx32p->jitcnt;
txp->calcnt = (long)tx32p->calcnt;
txp->errcnt = (long)tx32p->errcnt;
txp->stbcnt = (long)tx32p->stbcnt;
}
static __inline void
sparc32_from___stat13(sbp, sb32p)
struct stat *sbp;
struct sparc32_stat *sb32p;
{
sb32p->st_dev = sbp->st_dev;
sb32p->st_ino = sbp->st_ino;
sb32p->st_mode = sbp->st_mode;
sb32p->st_nlink = sbp->st_nlink;
sb32p->st_uid = sbp->st_uid;
sb32p->st_gid = sbp->st_gid;
sb32p->st_rdev = sbp->st_rdev;
if (sbp->st_size < (quad_t)1 << 32)
sb32p->st_size = sbp->st_size;
else
sb32p->st_size = -2;
sb32p->st_atimespec.tv_sec = sbp->st_atimespec.tv_sec;
sb32p->st_atimespec.tv_nsec = (sparc32_long)sbp->st_atimespec.tv_nsec;
sb32p->st_mtimespec.tv_sec = sbp->st_mtimespec.tv_sec;
sb32p->st_mtimespec.tv_nsec = (sparc32_long)sbp->st_mtimespec.tv_nsec;
sb32p->st_ctimespec.tv_sec = sbp->st_ctimespec.tv_sec;
sb32p->st_ctimespec.tv_nsec = (sparc32_long)sbp->st_ctimespec.tv_nsec;
sb32p->st_blksize = sbp->st_blksize;
sb32p->st_blocks = sbp->st_blocks;
sb32p->st_flags = sbp->st_flags;
sb32p->st_gen = sbp->st_gen;
}
static __inline void
sparc32_to_ipc_perm(ip32p, ipp)
struct sparc32_ipc_perm *ip32p;
struct ipc_perm *ipp;
{
ipp->cuid = ip32p->cuid;
ipp->cgid = ip32p->cgid;
ipp->uid = ip32p->uid;
ipp->gid = ip32p->gid;
ipp->mode = ip32p->mode;
ipp->seq = ip32p->seq;
ipp->key = (key_t)ip32p->key;
}
static __inline void
sparc32_from_ipc_perm(ipp, ip32p)
struct ipc_perm *ipp;
struct sparc32_ipc_perm *ip32p;
{
ip32p->cuid = ipp->cuid;
ip32p->cgid = ipp->cgid;
ip32p->uid = ipp->uid;
ip32p->gid = ipp->gid;
ip32p->mode = ipp->mode;
ip32p->seq = ipp->seq;
ip32p->key = (sparc32_key_t)ipp->key;
}
static __inline void
sparc32_to_msg(m32p, mp)
struct sparc32_msg *m32p;
struct msg *mp;
{
mp->msg_next = (struct msg *)(u_long)m32p->msg_next;
mp->msg_type = (long)m32p->msg_type;
mp->msg_ts = m32p->msg_ts;
mp->msg_spot = m32p->msg_spot;
}
static __inline void
sparc32_from_msg(mp, m32p)
struct msg *mp;
struct sparc32_msg *m32p;
{
m32p->msg_next = (sparc32_msgp_t)(u_long)mp->msg_next;
m32p->msg_type = (sparc32_long)mp->msg_type;
m32p->msg_ts = mp->msg_ts;
m32p->msg_spot = mp->msg_spot;
}
static __inline void
sparc32_to_msqid_ds(ds32p, dsp)
struct sparc32_msqid_ds *ds32p;
struct msqid_ds *dsp;
{
sparc32_to_ipc_perm(&ds32p->msg_perm, &dsp->msg_perm);
sparc32_to_msg((struct sparc32_msg *)(u_long)ds32p->msg_first, dsp->msg_first);
sparc32_to_msg((struct sparc32_msg *)(u_long)ds32p->msg_last, dsp->msg_last);
dsp->msg_cbytes = (u_long)ds32p->msg_cbytes;
dsp->msg_qnum = (u_long)ds32p->msg_qnum;
dsp->msg_qbytes = (u_long)ds32p->msg_qbytes;
dsp->msg_lspid = ds32p->msg_lspid;
dsp->msg_lrpid = ds32p->msg_lrpid;
dsp->msg_rtime = (time_t)ds32p->msg_rtime;
dsp->msg_stime = (time_t)ds32p->msg_stime;
dsp->msg_ctime = (time_t)ds32p->msg_ctime;
}
static __inline void
sparc32_from_msqid_ds(dsp, ds32p)
struct msqid_ds *dsp;
struct sparc32_msqid_ds *ds32p;
{
sparc32_from_ipc_perm(&dsp->msg_perm, &ds32p->msg_perm);
sparc32_from_msg(dsp->msg_first, (struct sparc32_msg *)(u_long)ds32p->msg_first);
sparc32_from_msg(dsp->msg_last, (struct sparc32_msg *)(u_long)ds32p->msg_last);
ds32p->msg_cbytes = (sparc32_u_long)dsp->msg_cbytes;
ds32p->msg_qnum = (sparc32_u_long)dsp->msg_qnum;
ds32p->msg_qbytes = (sparc32_u_long)dsp->msg_qbytes;
ds32p->msg_lspid = dsp->msg_lspid;
ds32p->msg_lrpid = dsp->msg_lrpid;
ds32p->msg_rtime = dsp->msg_rtime;
ds32p->msg_stime = dsp->msg_stime;
ds32p->msg_ctime = dsp->msg_ctime;
}
static __inline void
sparc32_to_shmid_ds(ds32p, dsp)
struct sparc32_shmid_ds *ds32p;
struct shmid_ds *dsp;
{
sparc32_to_ipc_perm(&ds32p->shm_perm, &dsp->shm_perm);
dsp->shm_segsz = ds32p->shm_segsz;
dsp->shm_lpid = ds32p->shm_lpid;
dsp->shm_cpid = ds32p->shm_cpid;
dsp->shm_nattch = ds32p->shm_nattch;
dsp->shm_atime = (long)ds32p->shm_atime;
dsp->shm_dtime = (long)ds32p->shm_dtime;
dsp->shm_ctime = (long)ds32p->shm_ctime;
dsp->shm_internal = (void *)(u_long)ds32p->shm_internal;
}
static __inline void
sparc32_from_shmid_ds(dsp, ds32p)
struct shmid_ds *dsp;
struct sparc32_shmid_ds *ds32p;
{
sparc32_from_ipc_perm(&dsp->shm_perm, &ds32p->shm_perm);
ds32p->shm_segsz = dsp->shm_segsz;
ds32p->shm_lpid = dsp->shm_lpid;
ds32p->shm_cpid = dsp->shm_cpid;
ds32p->shm_nattch = dsp->shm_nattch;
ds32p->shm_atime = (sparc32_long)dsp->shm_atime;
ds32p->shm_dtime = (sparc32_long)dsp->shm_dtime;
ds32p->shm_ctime = (sparc32_long)dsp->shm_ctime;
ds32p->shm_internal = (sparc32_voidp)(u_long)dsp->shm_internal;
}
static __inline void
sparc32_to_semid_ds(s32dsp, dsp)
struct sparc32_semid_ds *s32dsp;
struct semid_ds *dsp;
{
sparc32_from_ipc_perm(&dsp->sem_perm, &s32dsp->sem_perm);
dsp->sem_base = (struct sem *)(u_long)s32dsp->sem_base;
dsp->sem_nsems = s32dsp->sem_nsems;
dsp->sem_otime = s32dsp->sem_otime;
dsp->sem_ctime = s32dsp->sem_ctime;
}
static __inline void
sparc32_from_semid_ds(dsp, s32dsp)
struct semid_ds *dsp;
struct sparc32_semid_ds *s32dsp;
{
sparc32_to_ipc_perm(&s32dsp->sem_perm, &dsp->sem_perm);
s32dsp->sem_base = (sparc32_semp_t)(u_long)dsp->sem_base;
s32dsp->sem_nsems = dsp->sem_nsems;
s32dsp->sem_otime = dsp->sem_otime;
s32dsp->sem_ctime = dsp->sem_ctime;
}
/*
* below are all the standard NetBSD system calls, in the 32bit
* environment, witht he necessary conversions to 64bit before
* calling the real syscall.
*/
int
compat_sparc32_exit(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_exit_args /* {
syscallarg(int) rval;
} */ *uap = v;
struct sys_exit_args ua;
SPARC32TO64_UAP(rval);
sys_exit(p, &ua, retval);
}
int
compat_sparc32_read(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_read_args /* {
syscallarg(int) fd;
syscallarg(sparc32_voidp) buf;
syscallarg(sparc32_size_t) nbyte;
} */ *uap = v;
struct sys_read_args ua;
SPARC32TO64_UAP(fd);
SPARC32TOP_UAP(buf, void *);
SPARC32TOX_UAP(nbyte, size_t);
return sys_read(p, &ua, retval);
}
int
compat_sparc32_write(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_write_args /* {
syscallarg(int) fd;
syscallarg(const sparc32_voidp) buf;
syscallarg(sparc32_size_t) nbyte;
} */ *uap = v;
struct sys_write_args ua;
SPARC32TO64_UAP(fd);
SPARC32TOP_UAP(buf, void *);
SPARC32TOX_UAP(nbyte, size_t);
return sys_write(p, &ua, retval);
}
int
compat_sparc32_close(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_close_args /* {
syscallarg(int) fd;
} */ *uap = v;
struct sys_close_args ua;
SPARC32TO64_UAP(fd);
return sys_write(p, &ua, retval);
}
int
compat_sparc32_open(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_open_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(int) flags;
syscallarg(mode_t) mode;
} */ *uap = v;
struct sys_open_args ua;
caddr_t sg;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(flags);
SPARC32TO64_UAP(mode);
sg = stackgap_init(p->p_emul);
SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
return (sys_open(p, &ua, retval));
}
int
compat_sparc32_wait4(q, v, retval)
struct proc *q;
void *v;
register_t *retval;
{
struct compat_sparc32_wait4_args /* {
syscallarg(int) pid;
syscallarg(sparc32_intp) status;
syscallarg(int) options;
syscallarg(sparc32_rusagep_t) rusage;
} */ *uap = v;
struct sparc32_rusage ru32;
register int nfound;
register struct proc *p, *t;
int status, error;
if (SCARG(uap, pid) == 0)
SCARG(uap, pid) = -q->p_pgid;
if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG))
return (EINVAL);
loop:
nfound = 0;
for (p = q->p_children.lh_first; p != 0; p = p->p_sibling.le_next) {
if (SCARG(uap, pid) != WAIT_ANY &&
p->p_pid != SCARG(uap, pid) &&
p->p_pgid != -SCARG(uap, pid))
continue;
nfound++;
if (p->p_stat == SZOMB) {
retval[0] = p->p_pid;
if (SCARG(uap, status)) {
status = p->p_xstat; /* convert to int */
error = copyout((caddr_t)&status,
(caddr_t)(u_long)SCARG(uap, status),
sizeof(status));
if (error)
return (error);
}
if (SCARG(uap, rusage)) {
sparc32_from_rusage(p->p_ru, &ru32);
if ((error = copyout((caddr_t)&ru32,
(caddr_t)(u_long)SCARG(uap, rusage),
sizeof(struct sparc32_rusage))))
return (error);
}
/*
* If we got the child via ptrace(2) or procfs, and
* the parent is different (meaning the process was
* attached, rather than run as a child), then we need
* to give it back to the old parent, and send the
* parent a SIGCHLD. The rest of the cleanup will be
* done when the old parent waits on the child.
*/
if ((p->p_flag & P_TRACED) &&
p->p_oppid != p->p_pptr->p_pid) {
t = pfind(p->p_oppid);
proc_reparent(p, t ? t : initproc);
p->p_oppid = 0;
p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
psignal(p->p_pptr, SIGCHLD);
wakeup((caddr_t)p->p_pptr);
return (0);
}
p->p_xstat = 0;
ruadd(&q->p_stats->p_cru, p->p_ru);
pool_put(&rusage_pool, p->p_ru);
/*
* Finally finished with old proc entry.
* Unlink it from its process group and free it.
*/
leavepgrp(p);
LIST_REMOVE(p, p_list); /* off zombproc */
LIST_REMOVE(p, p_sibling);
/*
* Decrement the count of procs running with this uid.
*/
(void)chgproccnt(p->p_cred->p_ruid, -1);
/*
* Free up credentials.
*/
if (--p->p_cred->p_refcnt == 0) {
crfree(p->p_cred->pc_ucred);
pool_put(&pcred_pool, p->p_cred);
}
/*
* Release reference to text vnode
*/
if (p->p_textvp)
vrele(p->p_textvp);
/*
* Give machine-dependent layer a chance
* to free anything that cpu_exit couldn't
* release while still running in process context.
*/
cpu_wait(p);
pool_put(&proc_pool, p);
nprocs--;
return (0);
}
if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
(p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
p->p_flag |= P_WAITED;
retval[0] = p->p_pid;
if (SCARG(uap, status)) {
status = W_STOPCODE(p->p_xstat);
error = copyout((caddr_t)&status,
(caddr_t)(u_long)SCARG(uap, status),
sizeof(status));
} else
error = 0;
return (error);
}
}
if (nfound == 0)
return (ECHILD);
if (SCARG(uap, options) & WNOHANG) {
retval[0] = 0;
return (0);
}
if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
return (error);
goto loop;
}
int
compat_sparc32_link(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_link_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(const sparc32_charp) link;
} */ *uap = v;
struct sys_link_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TOP_UAP(link, const char);
return (sys_link(p, &ua, retval));
}
int
compat_sparc32_unlink(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_unlink_args /* {
syscallarg(const sparc32_charp) path;
} */ *uap = v;
struct sys_unlink_args ua;
SPARC32TOP_UAP(path, const char);
return (sys_unlink(p, &ua, retval));
}
int
compat_sparc32_chdir(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_chdir_args /* {
syscallarg(const sparc32_charp) path;
} */ *uap = v;
struct sys_chdir_args ua;
SPARC32TOP_UAP(path, const char);
return (sys_chdir(p, &ua, retval));
}
int
compat_sparc32_fchdir(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fchdir_args /* {
syscallarg(int) fd;
} */ *uap = v;
struct sys_fchdir_args ua;
SPARC32TO64_UAP(fd);
return (sys_fchdir(p, &ua, retval));
}
int
compat_sparc32_mknod(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_mknod_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(mode_t) mode;
syscallarg(dev_t) dev;
} */ *uap = v;
struct sys_mknod_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(dev);
SPARC32TO64_UAP(mode);
return (sys_mknod(p, &ua, retval));
}
int
compat_sparc32_chmod(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_chmod_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(mode_t) mode;
} */ *uap = v;
struct sys_chmod_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(mode);
return (sys_chmod(p, &ua, retval));
}
int
compat_sparc32_chown(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_chown_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(uid_t) uid;
syscallarg(gid_t) gid;
} */ *uap = v;
struct sys_chown_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(uid);
SPARC32TO64_UAP(gid);
return (sys_chown(p, &ua, retval));
}
int
compat_sparc32_break(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_break_args /* {
syscallarg(sparc32_charp) nsize;
} */ *uap = v;
struct sys_obreak_args ua;
SCARG(&ua, nsize) = (char *)(u_long)SCARG(uap, nsize);
SPARC32TOP_UAP(nsize, char);
return (sys_obreak(p, &ua, retval));
}
int
compat_sparc32_getfsstat(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getfsstat_args /* {
syscallarg(sparc32_statfsp_t) buf;
syscallarg(sparc32_long) bufsize;
syscallarg(int) flags;
} */ *uap = v;
struct sys_getfsstat_args ua;
struct statfs sb;
struct sparc32_statfs *sb32p;
int error;
sb32p = (struct sparc32_statfs *)(u_long)SCARG(uap, buf);
if (sb32p)
SCARG(&ua, buf) = &sb;
else
SCARG(&ua, buf) = NULL;
SPARC32TOX_UAP(bufsize, long);
SPARC32TO64_UAP(flags);
error = sys_getfsstat(p, &ua, retval);
if (error)
return (error);
if (sb32p) {
struct sparc32_statfs sb32;
sparc32_from_statfs(&sb, &sb32);
if (copyout(&sb32, sb32p, sizeof(sb32)))
return EFAULT;
}
return (0);
}
int
compat_sparc32_mount(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_mount_args /* {
syscallarg(const sparc32_charp) type;
syscallarg(const sparc32_charp) path;
syscallarg(int) flags;
syscallarg(sparc32_voidp) data;
} */ *uap = v;
struct sys_mount_args ua;
SPARC32TOP_UAP(type, const char);
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(flags);
SPARC32TOP_UAP(data, void);
return (sys_mount(p, &ua, retval));
}
int
compat_sparc32_unmount(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_unmount_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(int) flags;
} */ *uap = v;
struct sys_unmount_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(flags);
return (sys_unmount(p, &ua, retval));
}
int
compat_sparc32_setuid(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setuid_args /* {
syscallarg(uid_t) uid;
} */ *uap = v;
struct sys_setuid_args ua;
SPARC32TO64_UAP(uid);
return (sys_setuid(p, &ua, retval));
}
int
compat_sparc32_ptrace(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_ptrace_args /* {
syscallarg(int) req;
syscallarg(pid_t) pid;
syscallarg(sparc32_caddr_t) addr;
syscallarg(int) data;
} */ *uap = v;
struct sys_ptrace_args ua;
SPARC32TO64_UAP(req);
SPARC32TO64_UAP(pid);
SPARC32TOX64_UAP(addr, caddr_t);
SPARC32TO64_UAP(data);
return (sys_ptrace(p, &ua, retval));
}
int
compat_sparc32_recvmsg(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_recvmsg_args /* {
syscallarg(int) s;
syscallarg(sparc32_msghdrp_t) msg;
syscallarg(int) flags;
} */ *uap = v;
struct sparc32_msghdr msg;
struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
register int error;
error = copyin((caddr_t)(u_long)SCARG(uap, msg), (caddr_t)&msg,
sizeof(msg));
/* sparc32_msghdr needs the iov pre-allocated */
if (error)
return (error);
if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
if ((u_int)msg.msg_iovlen > IOV_MAX)
return (EMSGSIZE);
MALLOC(iov, struct iovec *,
sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
M_WAITOK);
} else if ((u_int)msg.msg_iovlen > 0)
iov = aiov;
else
return (EMSGSIZE);
#ifdef COMPAT_OLDSOCK
msg.msg_flags = SCARG(uap, flags) &~ MSG_COMPAT;
#else
msg.msg_flags = SCARG(uap, flags);
#endif
uiov = (struct iovec *)(u_long)msg.msg_iov;
error = sparc32_to_iovecin((struct sparc32_iovec *)uiov,
iov, msg.msg_iovlen);
if (error)
goto done;
if ((error = recvit32(p, SCARG(uap, s), &msg, iov, (caddr_t)0, retval)) == 0) {
error = copyout((caddr_t)&msg, (caddr_t)(u_long)SCARG(uap, msg),
sizeof(msg));
}
done:
if (iov != aiov)
FREE(iov, M_IOV);
return (error);
}
int
recvit32(p, s, mp, iov, namelenp, retsize)
struct proc *p;
int s;
struct sparc32_msghdr *mp;
struct iovec *iov;
caddr_t namelenp;
register_t *retsize;
{
struct file *fp;
struct uio auio;
register int i;
int len, error;
struct mbuf *from = 0, *control = 0;
struct socket *so;
#ifdef KTRACE
struct iovec *ktriov = NULL;
#endif
if ((error = getsock(p->p_fd, s, &fp)) != 0)
return (error);
auio.uio_iov = (struct iovec *)(u_long)mp->msg_iov;
auio.uio_iovcnt = mp->msg_iovlen;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_READ;
auio.uio_procp = p;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
for (i = 0; i < mp->msg_iovlen; i++, iov++) {
#if 0
/* cannot happen iov_len is unsigned */
if (iov->iov_len < 0)
return (EINVAL);
#endif
/*
* Reads return ssize_t because -1 is returned on error.
* Therefore we must restrict the length to SSIZE_MAX to
* avoid garbage return values.
*/
auio.uio_resid += iov->iov_len;
if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX)
return (EINVAL);
}
#ifdef KTRACE
if (KTRPOINT(p, KTR_GENIO)) {
int iovlen = auio.uio_iovcnt * sizeof(struct iovec);
MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
}
#endif
len = auio.uio_resid;
so = (struct socket *)fp->f_data;
error = (*so->so_receive)(so, &from, &auio, NULL,
mp->msg_control ? &control : NULL, &mp->msg_flags);
if (error) {
if (auio.uio_resid != len && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK))
error = 0;
}
#ifdef KTRACE
if (ktriov != NULL) {
if (error == 0)
ktrgenio(p->p_tracep, s, UIO_READ,
ktriov, len - auio.uio_resid, error);
FREE(ktriov, M_TEMP);
}
#endif
if (error)
goto out;
*retsize = len - auio.uio_resid;
if (mp->msg_name) {
len = mp->msg_namelen;
if (len <= 0 || from == 0)
len = 0;
else {
#ifdef COMPAT_OLDSOCK
if (mp->msg_flags & MSG_COMPAT)
mtod(from, struct osockaddr *)->sa_family =
mtod(from, struct sockaddr *)->sa_family;
#endif
if (len > from->m_len)
len = from->m_len;
/* else if len < from->m_len ??? */
error = copyout(mtod(from, caddr_t),
(caddr_t)(u_long)mp->msg_name, (unsigned)len);
if (error)
goto out;
}
mp->msg_namelen = len;
if (namelenp &&
(error = copyout((caddr_t)&len, namelenp, sizeof(int)))) {
#ifdef COMPAT_OLDSOCK
if (mp->msg_flags & MSG_COMPAT)
error = 0; /* old recvfrom didn't check */
else
#endif
goto out;
}
}
if (mp->msg_control) {
#ifdef COMPAT_OLDSOCK
/*
* We assume that old recvmsg calls won't receive access
* rights and other control info, esp. as control info
* is always optional and those options didn't exist in 4.3.
* If we receive rights, trim the cmsghdr; anything else
* is tossed.
*/
if (control && mp->msg_flags & MSG_COMPAT) {
if (mtod(control, struct cmsghdr *)->cmsg_level !=
SOL_SOCKET ||
mtod(control, struct cmsghdr *)->cmsg_type !=
SCM_RIGHTS) {
mp->msg_controllen = 0;
goto out;
}
control->m_len -= sizeof(struct cmsghdr);
control->m_data += sizeof(struct cmsghdr);
}
#endif
len = mp->msg_controllen;
if (len <= 0 || control == 0)
len = 0;
else {
struct mbuf *m = control;
caddr_t p = (caddr_t)(u_long)mp->msg_control;
do {
i = m->m_len;
if (len < i) {
mp->msg_flags |= MSG_CTRUNC;
i = len;
}
error = copyout(mtod(m, caddr_t), p,
(unsigned)i);
if (m->m_next)
i = ALIGN(i);
p += i;
len -= i;
if (error != 0 || len <= 0)
break;
} while ((m = m->m_next) != NULL);
len = p - (caddr_t)(u_long)mp->msg_control;
}
mp->msg_controllen = len;
}
out:
if (from)
m_freem(from);
if (control)
m_freem(control);
return (error);
}
int
compat_sparc32_sendmsg(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_sendmsg_args /* {
syscallarg(int) s;
syscallarg(const sparc32_msghdrp_t) msg;
syscallarg(int) flags;
} */ *uap = v;
struct msghdr msg;
struct sparc32_msghdr msg32;
struct iovec aiov[UIO_SMALLIOV], *iov;
int error;
error = copyin((caddr_t)(u_long)SCARG(uap, msg),
(caddr_t)&msg32, sizeof(msg32));
if (error)
return (error);
sparc32_to_msghdr(&msg32, &msg);
if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
if ((u_int)msg.msg_iovlen > IOV_MAX)
return (EMSGSIZE);
MALLOC(iov, struct iovec *,
sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
M_WAITOK);
} else if ((u_int)msg.msg_iovlen > 0)
iov = aiov;
else
return (EMSGSIZE);
error = sparc32_to_iovecin((struct sparc32_iovec *)msg.msg_iov,
iov, msg.msg_iovlen);
if (error)
goto done;
msg.msg_iov = iov;
#ifdef COMPAT_OLDSOCK
msg.msg_flags = 0;
#endif
/* Luckily we can use this directly */
error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval);
done:
if (iov != aiov)
FREE(iov, M_IOV);
return (error);
}
int
compat_sparc32_recvfrom(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_recvfrom_args /* {
syscallarg(int) s;
syscallarg(sparc32_voidp) buf;
syscallarg(sparc32_size_t) len;
syscallarg(int) flags;
syscallarg(sparc32_sockaddrp_t) from;
syscallarg(sparc32_intp) fromlenaddr;
} */ *uap = v;
struct sparc32_msghdr msg;
struct iovec aiov;
int error;
if (SCARG(uap, fromlenaddr)) {
error = copyin((caddr_t)(u_long)SCARG(uap, fromlenaddr),
(caddr_t)&msg.msg_namelen,
sizeof(msg.msg_namelen));
if (error)
return (error);
} else
msg.msg_namelen = 0;
msg.msg_name = SCARG(uap, from);
msg.msg_iov = NULL; /* We can't store a real pointer here */
msg.msg_iovlen = 1;
aiov.iov_base = (caddr_t)(u_long)SCARG(uap, buf);
aiov.iov_len = (u_long)SCARG(uap, len);
msg.msg_control = 0;
msg.msg_flags = SCARG(uap, flags);
return (recvit32(p, SCARG(uap, s), &msg, &aiov,
(caddr_t)(u_long)SCARG(uap, fromlenaddr), retval));
}
int
compat_sparc32_sendto(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_sendto_args /* {
syscallarg(int) s;
syscallarg(const sparc32_voidp) buf;
syscallarg(sparc32_size_t) len;
syscallarg(int) flags;
syscallarg(const sparc32_sockaddrp_t) to;
syscallarg(int) tolen;
} */ *uap = v;
struct msghdr msg;
struct iovec aiov;
msg.msg_name = (caddr_t)(u_long)SCARG(uap, to); /* XXX kills const */
msg.msg_namelen = SCARG(uap, tolen);
msg.msg_iov = &aiov;
msg.msg_iovlen = 1;
msg.msg_control = 0;
#ifdef COMPAT_OLDSOCK
msg.msg_flags = 0;
#endif
aiov.iov_base = (char *)(u_long)SCARG(uap, buf); /* XXX kills const */
aiov.iov_len = SCARG(uap, len);
return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval));
}
int
compat_sparc32_accept(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_accept_args /* {
syscallarg(int) s;
syscallarg(sparc32_sockaddrp_t) name;
syscallarg(sparc32_intp) anamelen;
} */ *uap = v;
struct sys_accept_args ua;
SPARC32TO64_UAP(s);
SPARC32TOP_UAP(name, struct sockaddr);
SPARC32TOP_UAP(anamelen, int);
return (sys_accept(p, &ua, retval));
}
int
compat_sparc32_getpeername(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getpeername_args /* {
syscallarg(int) fdes;
syscallarg(sparc32_sockaddrp_t) asa;
syscallarg(sparc32_intp) alen;
} */ *uap = v;
struct sys_getpeername_args ua;
SPARC32TO64_UAP(fdes);
SPARC32TOP_UAP(asa, struct sockaddr);
SPARC32TOP_UAP(alen, int);
/* NB: do the protocol specific sockaddrs need to be converted? */
return (sys_getpeername(p, &ua, retval));
}
int
compat_sparc32_getsockname(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getsockname_args /* {
syscallarg(int) fdes;
syscallarg(sparc32_sockaddrp_t) asa;
syscallarg(sparc32_intp) alen;
} */ *uap = v;
struct sys_getsockname_args ua;
SPARC32TO64_UAP(fdes);
SPARC32TOP_UAP(asa, struct sockaddr);
SPARC32TOP_UAP(alen, int);
return (sys_getsockname(p, &ua, retval));
}
int
compat_sparc32_access(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_access_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(int) flags;
} */ *uap = v;
struct sys_access_args ua;
caddr_t sg;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(flags);
sg = stackgap_init(p->p_emul);
SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
return (sys_access(p, &ua, retval));
}
int
compat_sparc32_chflags(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_chflags_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(sparc32_u_long) flags;
} */ *uap = v;
struct sys_chflags_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(flags);
return (sys_chflags(p, &ua, retval));
}
int
compat_sparc32_fchflags(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fchflags_args /* {
syscallarg(int) fd;
syscallarg(sparc32_u_long) flags;
} */ *uap = v;
struct sys_fchflags_args ua;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(flags);
return (sys_fchflags(p, &ua, retval));
}
int
compat_sparc32_kill(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_kill_args /* {
syscallarg(int) pid;
syscallarg(int) signum;
} */ *uap = v;
struct sys_kill_args ua;
SPARC32TO64_UAP(pid);
SPARC32TO64_UAP(signum);
return (sys_kill(p, &ua, retval));
}
int
compat_sparc32_dup(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_dup_args /* {
syscallarg(int) fd;
} */ *uap = v;
struct sys_dup_args ua;
SPARC32TO64_UAP(fd);
return (sys_dup(p, &ua, retval));
}
int
compat_sparc32_profil(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_profil_args /* {
syscallarg(sparc32_caddr_t) samples;
syscallarg(sparc32_size_t) size;
syscallarg(sparc32_u_long) offset;
syscallarg(u_int) scale;
} */ *uap = v;
struct sys_profil_args ua;
SPARC32TOX64_UAP(samples, caddr_t);
SPARC32TOX_UAP(size, size_t);
SPARC32TOX_UAP(offset, u_long);
SPARC32TO64_UAP(scale);
return (sys_profil(p, &ua, retval));
}
int
compat_sparc32_ktrace(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_ktrace_args /* {
syscallarg(const sparc32_charp) fname;
syscallarg(int) ops;
syscallarg(int) facs;
syscallarg(int) pid;
} */ *uap = v;
struct sys_ktrace_args ua;
SPARC32TOP_UAP(fname, const char);
SPARC32TO64_UAP(ops);
SPARC32TO64_UAP(facs);
SPARC32TO64_UAP(pid);
return (sys_ktrace(p, &ua, retval));
}
int
compat_sparc32_sigaction(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_sigaction_args /* {
syscallarg(int) signum;
syscallarg(const sparc32_sigactionp_t) nsa;
syscallarg(sparc32_sigactionp_t) osa;
} */ *uap = v;
struct sigaction nsa, osa;
struct sparc32_sigaction *sa32p, sa32;
int error;
if (SCARG(uap, nsa)) {
sa32p = (struct sparc32_sigaction *)(u_long)SCARG(uap, nsa);
if (copyin(sa32p, &sa32, sizeof(sa32)))
return EFAULT;
nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
nsa.sa_mask = sa32.sa_mask;
nsa.sa_flags = sa32.sa_flags;
}
error = sigaction1(p, SCARG(uap, signum),
SCARG(uap, nsa) ? &nsa : 0,
SCARG(uap, osa) ? &osa : 0);
if (error)
return (error);
if (SCARG(uap, osa)) {
sa32.sa_handler = (sparc32_sigactionp_t)(u_long)osa.sa_handler;
sa32.sa_mask = osa.sa_mask;
sa32.sa_flags = osa.sa_flags;
sa32p = (struct sparc32_sigaction *)(u_long)SCARG(uap, osa);
if (copyout(&sa32, sa32p, sizeof(sa32)))
return EFAULT;
}
return (0);
}
int
compat_sparc32___getlogin(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___getlogin_args /* {
syscallarg(sparc32_charp) namebuf;
syscallarg(u_int) namelen;
} */ *uap = v;
struct sys___getlogin_args ua;
SPARC32TOP_UAP(namebuf, char);
SPARC32TO64_UAP(namelen);
return (sys___getlogin(p, &ua, retval));
}
int
compat_sparc32_setlogin(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setlogin_args /* {
syscallarg(const sparc32_charp) namebuf;
} */ *uap = v;
struct sys_setlogin_args ua;
SPARC32TOP_UAP(namebuf, char);
return (sys_setlogin(p, &ua, retval));
}
int
compat_sparc32_acct(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_acct_args /* {
syscallarg(const sparc32_charp) path;
} */ *uap = v;
struct sys_acct_args ua;
SPARC32TOP_UAP(path, const char);
return (sys_acct(p, &ua, retval));
}
int
compat_sparc32_revoke(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_revoke_args /* {
syscallarg(const sparc32_charp) path;
} */ *uap = v;
struct sys_revoke_args ua;
caddr_t sg;
SPARC32TOP_UAP(path, const char);
sg = stackgap_init(p->p_emul);
SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
return (sys_revoke(p, &ua, retval));
}
int
compat_sparc32_symlink(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_symlink_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(const sparc32_charp) link;
} */ *uap = v;
struct sys_symlink_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TOP_UAP(link, const char);
return (sys_symlink(p, &ua, retval));
}
int
compat_sparc32_readlink(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_readlink_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(sparc32_charp) buf;
syscallarg(sparc32_size_t) count;
} */ *uap = v;
struct sys_readlink_args ua;
caddr_t sg;
SPARC32TOP_UAP(path, const char);
SPARC32TOP_UAP(buf, char);
SPARC32TOX_UAP(count, size_t);
sg = stackgap_init(p->p_emul);
SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
return (sys_readlink(p, &ua, retval));
}
int
compat_sparc32_execve(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_execve_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(sparc32_charpp) argp;
syscallarg(sparc32_charpp) envp;
} */ *uap = v;
struct sys_execve_args ua;
caddr_t sg;
SPARC32TOP_UAP(path, const char);
SPARC32TOP_UAP(argp, char *);
SPARC32TOP_UAP(envp, char *);
sg = stackgap_init(p->p_emul);
SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
return (sys_execve(p, &ua, retval));
}
int
compat_sparc32_umask(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_umask_args /* {
syscallarg(mode_t) newmask;
} */ *uap = v;
struct sys_umask_args ua;
SPARC32TO64_UAP(newmask);
return (sys_umask(p, &ua, retval));
}
int
compat_sparc32_chroot(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_chroot_args /* {
syscallarg(const sparc32_charp) path;
} */ *uap = v;
struct sys_chroot_args ua;
SPARC32TOP_UAP(path, const char);
return (sys_chroot(p, &ua, retval));
}
int
compat_sparc32_sbrk(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_sbrk_args /* {
syscallarg(int) incr;
} */ *uap = v;
struct sys_sbrk_args ua;
SPARC32TO64_UAP(incr);
return (sys_sbrk(p, &ua, retval));
}
int
compat_sparc32_sstk(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_sstk_args /* {
syscallarg(int) incr;
} */ *uap = v;
struct sys_sstk_args ua;
SPARC32TO64_UAP(incr);
return (sys_sstk(p, &ua, retval));
}
int
compat_sparc32_munmap(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_munmap_args /* {
syscallarg(sparc32_voidp) addr;
syscallarg(sparc32_size_t) len;
} */ *uap = v;
struct sys_munmap_args ua;
SPARC32TOP_UAP(addr, void);
SPARC32TOX_UAP(len, size_t);
return (sys_munmap(p, &ua, retval));
}
int
compat_sparc32_mprotect(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_mprotect_args /* {
syscallarg(sparc32_voidp) addr;
syscallarg(sparc32_size_t) len;
syscallarg(int) prot;
} */ *uap = v;
struct sys_mprotect_args ua;
SPARC32TOP_UAP(addr, void);
SPARC32TOX_UAP(len, size_t);
SPARC32TO64_UAP(prot);
return (sys_mprotect(p, &ua, retval));
}
int
compat_sparc32_madvise(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_madvise_args /* {
syscallarg(sparc32_voidp) addr;
syscallarg(sparc32_size_t) len;
syscallarg(int) behav;
} */ *uap = v;
struct sys_madvise_args ua;
SPARC32TOP_UAP(addr, void);
SPARC32TOX_UAP(len, size_t);
SPARC32TO64_UAP(behav);
return (sys_madvise(p, &ua, retval));
}
int
compat_sparc32_mincore(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_mincore_args /* {
syscallarg(sparc32_caddr_t) addr;
syscallarg(sparc32_size_t) len;
syscallarg(sparc32_charp) vec;
} */ *uap = v;
struct sys_mincore_args ua;
SPARC32TOX64_UAP(addr, caddr_t);
SPARC32TOX_UAP(len, size_t);
SPARC32TOP_UAP(vec, char);
return (sys_mincore(p, &ua, retval));
}
int
compat_sparc32_getgroups(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getgroups_args /* {
syscallarg(int) gidsetsize;
syscallarg(sparc32_gid_tp) gidset;
} */ *uap = v;
register struct pcred *pc = p->p_cred;
register int ngrp;
int error;
ngrp = SCARG(uap, gidsetsize);
if (ngrp == 0) {
*retval = pc->pc_ucred->cr_ngroups;
return (0);
}
if (ngrp < pc->pc_ucred->cr_ngroups)
return (EINVAL);
ngrp = pc->pc_ucred->cr_ngroups;
/* Should convert gid_t to sparc32_gid_t, but they're the same */
error = copyout((caddr_t)pc->pc_ucred->cr_groups,
(caddr_t)(u_long)SCARG(uap, gidset),
ngrp * sizeof(gid_t));
if (error)
return (error);
*retval = ngrp;
return (0);
}
int
compat_sparc32_setgroups(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setgroups_args /* {
syscallarg(int) gidsetsize;
syscallarg(const sparc32_gid_tp) gidset;
} */ *uap = v;
struct sys_setgroups_args ua;
SPARC32TO64_UAP(gidsetsize);
SPARC32TOP_UAP(gidset, gid_t);
return (sys_setgroups(p, &ua, retval));
}
int
compat_sparc32_setpgid(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setpgid_args /* {
syscallarg(int) pid;
syscallarg(int) pgid;
} */ *uap = v;
struct sys_setpgid_args ua;
SPARC32TO64_UAP(pid);
SPARC32TO64_UAP(pgid);
return (sys_setpgid(p, &ua, retval));
}
int
compat_sparc32_setitimer(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setitimer_args /* {
syscallarg(int) which;
syscallarg(const sparc32_itimervalp_t) itv;
syscallarg(sparc32_itimervalp_t) oitv;
} */ *uap = v;
struct sparc32_itimerval s32it, *itvp;
int which = SCARG(uap, which);
struct compat_sparc32_getitimer_args getargs;
struct itimerval aitv;
int s, error;
if ((u_int)which > ITIMER_PROF)
return (EINVAL);
itvp = (struct sparc32_itimerval *)(u_long)SCARG(uap, itv);
if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
return (error);
sparc32_to_itimerval(&s32it, &aitv);
if (SCARG(uap, oitv) != NULL) {
SCARG(&getargs, which) = which;
SCARG(&getargs, itv) = SCARG(uap, oitv);
if ((error = compat_sparc32_getitimer(p, &getargs, retval)) != 0)
return (error);
}
if (itvp == 0)
return (0);
if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
return (EINVAL);
s = splclock();
if (which == ITIMER_REAL) {
untimeout(realitexpire, p);
if (timerisset(&aitv.it_value)) {
timeradd(&aitv.it_value, &time, &aitv.it_value);
timeout(realitexpire, p, hzto(&aitv.it_value));
}
p->p_realtimer = aitv;
} else
p->p_stats->p_timer[which] = aitv;
splx(s);
return (0);
}
int
compat_sparc32_getitimer(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getitimer_args /* {
syscallarg(int) which;
syscallarg(sparc32_itimervalp_t) itv;
} */ *uap = v;
int which = SCARG(uap, which);
struct sparc32_itimerval s32it;
struct itimerval aitv;
int s;
if ((u_int)which > ITIMER_PROF)
return (EINVAL);
s = splclock();
if (which == ITIMER_REAL) {
/*
* Convert from absolute to relative time in .it_value
* part of real time timer. If time for real time timer
* has passed return 0, else return difference between
* current time and time for the timer to go off.
*/
aitv = p->p_realtimer;
if (timerisset(&aitv.it_value)) {
if (timercmp(&aitv.it_value, &time, <))
timerclear(&aitv.it_value);
else
timersub(&aitv.it_value, &time, &aitv.it_value);
}
} else
aitv = p->p_stats->p_timer[which];
splx(s);
sparc32_from_itimerval(&aitv, &s32it);
return (copyout(&s32it, (caddr_t)(u_long)SCARG(uap, itv), sizeof(s32it)));
}
int
compat_sparc32_fcntl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fcntl_args /* {
syscallarg(int) fd;
syscallarg(int) cmd;
syscallarg(sparc32_voidp) arg;
} */ *uap = v;
struct sys_fcntl_args ua;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(cmd);
SPARC32TOP_UAP(arg, void);
/* XXXX we can do this 'cause flock doesn't change */
return (sys_fcntl(p, &ua, retval));
}
int
compat_sparc32_dup2(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_dup2_args /* {
syscallarg(int) from;
syscallarg(int) to;
} */ *uap = v;
struct sys_dup2_args ua;
SPARC32TO64_UAP(from);
SPARC32TO64_UAP(to);
return (sys_dup2(p, &ua, retval));
}
int
compat_sparc32_select(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_select_args /* {
syscallarg(int) nd;
syscallarg(sparc32_fd_setp_t) in;
syscallarg(sparc32_fd_setp_t) ou;
syscallarg(sparc32_fd_setp_t) ex;
syscallarg(sparc32_timevalp_t) tv;
} */ *uap = v;
/* This one must be done in-line 'cause of the timeval */
struct sparc32_timeval tv32;
caddr_t bits;
char smallbits[howmany(FD_SETSIZE, NFDBITS) * sizeof(fd_mask) * 6];
struct timeval atv;
int s, ncoll, error = 0, timo;
size_t ni;
extern int selwait, nselcoll;
extern int selscan __P((struct proc *, fd_mask *, fd_mask *, int, register_t *));
if (SCARG(uap, nd) < 0)
return (EINVAL);
if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {
/* forgiving; slightly wrong */
SCARG(uap, nd) = p->p_fd->fd_nfiles;
}
ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);
if (ni * 6 > sizeof(smallbits))
bits = malloc(ni * 6, M_TEMP, M_WAITOK);
else
bits = smallbits;
#define getbits(name, x) \
if (SCARG(uap, name)) { \
error = copyin((caddr_t)(u_long)SCARG(uap, name), bits + ni * x, ni); \
if (error) \
goto done; \
} else \
memset(bits + ni * x, 0, ni);
getbits(in, 0);
getbits(ou, 1);
getbits(ex, 2);
#undef getbits
if (SCARG(uap, tv)) {
error = copyin((caddr_t)(u_long)SCARG(uap, tv), (caddr_t)&tv32,
sizeof(tv32));
if (error)
goto done;
sparc32_to_timeval(&tv32, &atv);
if (itimerfix(&atv)) {
error = EINVAL;
goto done;
}
s = splclock();
timeradd(&atv, &time, &atv);
timo = hzto(&atv);
/*
* Avoid inadvertently sleeping forever.
*/
if (timo == 0)
timo = 1;
splx(s);
} else
timo = 0;
retry:
ncoll = nselcoll;
p->p_flag |= P_SELECT;
error = selscan(p, (fd_mask *)(bits + ni * 0),
(fd_mask *)(bits + ni * 3), SCARG(uap, nd), retval);
if (error || *retval)
goto done;
s = splhigh();
if (timo && timercmp(&time, &atv, >=)) {
splx(s);
goto done;
}
if ((p->p_flag & P_SELECT) == 0 || nselcoll != ncoll) {
splx(s);
goto retry;
}
p->p_flag &= ~P_SELECT;
error = tsleep((caddr_t)&selwait, PSOCK | PCATCH, "select", timo);
splx(s);
if (error == 0)
goto retry;
done:
p->p_flag &= ~P_SELECT;
/* select is not restarted after signals... */
if (error == ERESTART)
error = EINTR;
if (error == EWOULDBLOCK)
error = 0;
if (error == 0) {
#define putbits(name, x) \
if (SCARG(uap, name)) { \
error = copyout(bits + ni * x, (caddr_t)(u_long)SCARG(uap, name), ni); \
if (error) \
goto out; \
}
putbits(in, 3);
putbits(ou, 4);
putbits(ex, 5);
#undef putbits
}
out:
if (ni * 6 > sizeof(smallbits))
free(bits, M_TEMP);
return (error);
}
int
compat_sparc32_fsync(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fsync_args /* {
syscallarg(int) fd;
} */ *uap = v;
struct sys_fsync_args ua;
SPARC32TO64_UAP(fd);
return (sys_fsync(p, &ua, retval));
}
int
compat_sparc32_setpriority(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setpriority_args /* {
syscallarg(int) which;
syscallarg(int) who;
syscallarg(int) prio;
} */ *uap = v;
struct sys_setpriority_args ua;
SPARC32TO64_UAP(which);
SPARC32TO64_UAP(who);
SPARC32TO64_UAP(prio);
return (sys_setpriority(p, &ua, retval));
}
int
compat_sparc32_socket(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_socket_args /* {
syscallarg(int) domain;
syscallarg(int) type;
syscallarg(int) protocol;
} */ *uap = v;
struct sys_socket_args ua;
SPARC32TO64_UAP(domain);
SPARC32TO64_UAP(type);
SPARC32TO64_UAP(protocol);
return (sys_socket(p, &ua, retval));
}
int
compat_sparc32_connect(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_connect_args /* {
syscallarg(int) s;
syscallarg(const sparc32_sockaddrp_t) name;
syscallarg(int) namelen;
} */ *uap = v;
struct sys_connect_args ua;
SPARC32TO64_UAP(s);
SPARC32TOP_UAP(name, struct sockaddr);
SPARC32TO64_UAP(namelen);
return (sys_connect(p, &ua, retval));
}
int
compat_sparc32_getpriority(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getpriority_args /* {
syscallarg(int) which;
syscallarg(int) who;
} */ *uap = v;
struct sys_getpriority_args ua;
SPARC32TO64_UAP(which);
SPARC32TO64_UAP(who);
return (sys_getpriority(p, &ua, retval));
}
#undef DEBUG
int
compat_sparc32_sigreturn(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_sigreturn_args /* {
syscallarg(struct sparc32_sigcontext *) sigcntxp;
} */ *uap = v;
struct sparc32_sigcontext *scp;
struct sparc32_sigcontext sc;
register struct trapframe *tf;
struct rwindow32 *rwstack, *kstack;
sigset_t mask;
/* First ensure consistent stack state (see sendsig). */
write_user_windows();
if (rwindow_save(p)) {
#ifdef DEBUG
printf("sigreturn: rwindow_save(%p) failed, sending SIGILL\n", p);
Debugger();
#endif
sigexit(p, SIGILL);
}
#ifdef DEBUG
if (sigdebug & SDB_FOLLOW) {
printf("sigreturn: %s[%d], sigcntxp %p\n",
p->p_comm, p->p_pid, SCARG(uap, sigcntxp));
if (sigdebug & SDB_DDB) Debugger();
}
#endif
scp = (struct sparc32_sigcontext *)(u_long)SCARG(uap, sigcntxp);
if ((vaddr_t)scp & 3 || (copyin((caddr_t)scp, &sc, sizeof sc) != 0))
#ifdef DEBUG
{
printf("sigreturn: copyin failed\n");
Debugger();
return (EINVAL);
}
#else
return (EINVAL);
#endif
tf = p->p_md.md_tf;
/*
* Only the icc bits in the psr are used, so it need not be
* verified. pc and npc must be multiples of 4. This is all
* that is required; if it holds, just do it.
*/
if (((sc.sc_pc | sc.sc_npc) & 3) != 0)
#ifdef DEBUG
{
printf("sigreturn: pc %p or npc %p invalid\n", sc.sc_pc, sc.sc_npc);
Debugger();
return (EINVAL);
}
#else
return (EINVAL);
#endif
/* take only psr ICC field */
tf->tf_tstate = (int64_t)(tf->tf_tstate & ~TSTATE_CCR) | PSRCC_TO_TSTATE(sc.sc_psr);
tf->tf_pc = (int64_t)sc.sc_pc;
tf->tf_npc = (int64_t)sc.sc_npc;
tf->tf_global[1] = (int64_t)sc.sc_g1;
tf->tf_out[0] = (int64_t)sc.sc_o0;
tf->tf_out[6] = (int64_t)sc.sc_sp;
rwstack = (struct rwindow32 *)tf->tf_out[6];
kstack = (struct rwindow32 *)(((caddr_t)tf)-CCFSZ);
#ifdef DEBUG
if (sigdebug & SDB_FOLLOW) {
printf("sys_sigreturn: return trapframe pc=%p sp=%p tstate=%x\n",
(int)tf->tf_pc, (int)tf->tf_out[6], (int)tf->tf_tstate);
if (sigdebug & SDB_DDB) Debugger();
}
#endif
if (scp->sc_onstack & SS_ONSTACK)
p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
else
p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
/* Restore signal mask */
native_sigset13_to_sigset(&scp->sc_mask, &mask);
(void) sigprocmask1(p, SIG_SETMASK, &mask, 0);
return (EJUSTRETURN);
}
int
compat_sparc32_bind(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_bind_args /* {
syscallarg(int) s;
syscallarg(const sparc32_sockaddrp_t) name;
syscallarg(int) namelen;
} */ *uap = v;
struct sys_bind_args ua;
SPARC32TO64_UAP(s);
SPARC32TOP_UAP(name, struct sockaddr);
SPARC32TO64_UAP(namelen);
return (sys_bind(p, &ua, retval));
}
int
compat_sparc32_setsockopt(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setsockopt_args /* {
syscallarg(int) s;
syscallarg(int) level;
syscallarg(int) name;
syscallarg(const sparc32_voidp) val;
syscallarg(int) valsize;
} */ *uap = v;
struct sys_setsockopt_args ua;
SPARC32TO64_UAP(s);
SPARC32TO64_UAP(level);
SPARC32TO64_UAP(name);
SPARC32TOP_UAP(val, void);
SPARC32TO64_UAP(valsize);
/* may be more efficient to do this inline. */
return (sys_setsockopt(p, &ua, retval));
}
int
compat_sparc32_listen(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_listen_args /* {
syscallarg(int) s;
syscallarg(int) backlog;
} */ *uap = v;
struct sys_listen_args ua;
SPARC32TO64_UAP(s);
SPARC32TO64_UAP(backlog);
return (sys_listen(p, &ua, retval));
}
int
compat_sparc32_vtrace(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#ifdef TRACE
struct compat_sparc32_vtrace_args /* {
syscallarg(int) request;
syscallarg(int) value;
} */ *uap = v;
struct sys_vtrace_args ua;
SPARC32TO64_UAP(request);
SPARC32TO64_UAP(value);
return (vtrace(p, &ua, retval));
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_gettimeofday(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_gettimeofday_args /* {
syscallarg(sparc32_timevalp_t) tp;
syscallarg(sparc32_timezonep_t) tzp;
} */ *uap = v;
struct timeval atv;
struct sparc32_timeval tv32;
int error = 0;
struct sparc32_timezone tzfake;
if (SCARG(uap, tp)) {
microtime(&atv);
sparc32_from_timeval(&atv, &tv32);
error = copyout(&tv32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tv32));
if (error)
return (error);
}
if (SCARG(uap, tzp)) {
/*
* NetBSD has no kernel notion of time zone, so we just
* fake up a timezone struct and return it if demanded.
*/
tzfake.tz_minuteswest = 0;
tzfake.tz_dsttime = 0;
error = copyout(&tzfake, (caddr_t)(u_long)SCARG(uap, tzp), sizeof(tzfake));
}
return (error);
}
static int settime __P((struct timeval *));
/* This function is used by clock_settime and settimeofday */
static int
settime(tv)
struct timeval *tv;
{
struct timeval delta;
int s;
/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
s = splclock();
timersub(tv, &time, &delta);
if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
return (EPERM);
#ifdef notyet
if ((delta.tv_sec < 86400) && securelevel > 0)
return (EPERM);
#endif
time = *tv;
(void) splsoftclock();
timeradd(&boottime, &delta, &boottime);
timeradd(&runtime, &delta, &runtime);
# if defined(NFS) || defined(NFSSERVER)
nqnfs_lease_updatetime(delta.tv_sec);
# endif
splx(s);
resettodr();
return (0);
}
int
compat_sparc32_settimeofday(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_settimeofday_args /* {
syscallarg(const sparc32_timevalp_t) tv;
syscallarg(const sparc32_timezonep_t) tzp;
} */ *uap = v;
struct sparc32_timeval atv32;
struct timeval atv;
struct sparc32_timezone atz;
int error;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
/* Verify all parameters before changing time. */
if (SCARG(uap, tv) && (error = copyin((caddr_t)(u_long)SCARG(uap, tv),
&atv32, sizeof(atv32))))
return (error);
sparc32_to_timeval(&atv32, &atv);
/* XXX since we don't use tz, probably no point in doing copyin. */
if (SCARG(uap, tzp) && (error = copyin((caddr_t)(u_long)SCARG(uap, tzp),
&atz, sizeof(atz))))
return (error);
if (SCARG(uap, tv))
if ((error = settime(&atv)))
return (error);
/*
* NetBSD has no kernel notion of time zone, and only an
* obsolete program would try to set it, so we log a warning.
*/
if (SCARG(uap, tzp))
printf("pid %d attempted to set the "
"(obsolete) kernel time zone\n", p->p_pid);
return (0);
}
int
compat_sparc32_fchown(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fchown_args /* {
syscallarg(int) fd;
syscallarg(uid_t) uid;
syscallarg(gid_t) gid;
} */ *uap = v;
struct sys_fchown_args ua;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(uid);
SPARC32TO64_UAP(gid);
return (sys_fchown(p, &ua, retval));
}
int
compat_sparc32_fchmod(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fchmod_args /* {
syscallarg(int) fd;
syscallarg(mode_t) mode;
} */ *uap = v;
struct sys_fchmod_args ua;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(mode);
return (sys_fchmod(p, &ua, retval));
}
int
compat_sparc32_setreuid(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setreuid_args /* {
syscallarg(uid_t) ruid;
syscallarg(uid_t) euid;
} */ *uap = v;
struct sys_setreuid_args ua;
SPARC32TO64_UAP(ruid);
SPARC32TO64_UAP(euid);
return (sys_setreuid(p, &ua, retval));
}
int
compat_sparc32_setregid(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setregid_args /* {
syscallarg(gid_t) rgid;
syscallarg(gid_t) egid;
} */ *uap = v;
struct sys_setregid_args ua;
SPARC32TO64_UAP(rgid);
SPARC32TO64_UAP(egid);
return (sys_setregid(p, &ua, retval));
}
int
compat_sparc32_getrusage(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getrusage_args /* {
syscallarg(int) who;
syscallarg(sparc32_rusagep_t) rusage;
} */ *uap = v;
struct rusage *rup;
struct sparc32_rusage ru;
switch (SCARG(uap, who)) {
case RUSAGE_SELF:
rup = &p->p_stats->p_ru;
calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
break;
case RUSAGE_CHILDREN:
rup = &p->p_stats->p_cru;
break;
default:
return (EINVAL);
}
sparc32_from_rusage(rup, &ru);
return (copyout(&ru, (caddr_t)(u_long)SCARG(uap, rusage), sizeof(ru)));
}
int
compat_sparc32_getsockopt(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getsockopt_args /* {
syscallarg(int) s;
syscallarg(int) level;
syscallarg(int) name;
syscallarg(sparc32_voidp) val;
syscallarg(sparc32_intp) avalsize;
} */ *uap = v;
struct sys_getsockopt_args ua;
SPARC32TO64_UAP(s);
SPARC32TO64_UAP(level);
SPARC32TO64_UAP(name);
SPARC32TOP_UAP(val, void);
SPARC32TOP_UAP(avalsize, int);
return (sys_getsockopt(p, &ua, retval));
}
int
compat_sparc32_readv(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_readv_args /* {
syscallarg(int) fd;
syscallarg(const sparc32_iovecp_t) iovp;
syscallarg(int) iovcnt;
} */ *uap = v;
int fd = SCARG(uap, fd);
register struct file *fp;
register struct filedesc *fdp = p->p_fd;
if ((u_int)fd >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[fd]) == NULL ||
(fp->f_flag & FREAD) == 0)
return (EBADF);
return (dofilereadv32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp),
SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
}
/* Damn thing copies in the iovec! */
int
dofilereadv32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
struct proc *p;
int fd;
struct file *fp;
struct sparc32_iovec *iovp;
int iovcnt;
off_t *offset;
int flags;
register_t *retval;
{
struct uio auio;
register struct iovec *iov;
struct iovec *needfree;
struct iovec aiov[UIO_SMALLIOV];
long i, cnt, error = 0;
u_int iovlen;
#ifdef KTRACE
struct iovec *ktriov = NULL;
#endif
/* note: can't use iovlen until iovcnt is validated */
iovlen = iovcnt * sizeof(struct iovec);
if ((u_int)iovcnt > UIO_SMALLIOV) {
if ((u_int)iovcnt > IOV_MAX)
return (EINVAL);
MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
needfree = iov;
} else if ((u_int)iovcnt > 0) {
iov = aiov;
needfree = NULL;
} else
return (EINVAL);
auio.uio_iov = iov;
auio.uio_iovcnt = iovcnt;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_procp = p;
error = sparc32_to_iovecin(iovp, iov, iovcnt);
if (error)
goto done;
auio.uio_resid = 0;
for (i = 0; i < iovcnt; i++) {
auio.uio_resid += iov->iov_len;
/*
* Reads return ssize_t because -1 is returned on error.
* Therefore we must restrict the length to SSIZE_MAX to
* avoid garbage return values.
*/
if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
error = EINVAL;
goto done;
}
iov++;
}
#ifdef KTRACE
/*
* if tracing, save a copy of iovec
*/
if (KTRPOINT(p, KTR_GENIO)) {
MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
}
#endif
cnt = auio.uio_resid;
error = (*fp->f_ops->fo_read)(fp, offset, &auio, fp->f_cred, flags);
if (error)
if (auio.uio_resid != cnt && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK))
error = 0;
cnt -= auio.uio_resid;
#ifdef KTRACE
if (KTRPOINT(p, KTR_GENIO))
if (error == 0) {
ktrgenio(p->p_tracep, fd, UIO_READ, ktriov, cnt,
error);
FREE(ktriov, M_TEMP);
}
#endif
*retval = cnt;
done:
if (needfree)
FREE(needfree, M_IOV);
return (error);
}
int
compat_sparc32_writev(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_writev_args /* {
syscallarg(int) fd;
syscallarg(const sparc32_iovecp_t) iovp;
syscallarg(int) iovcnt;
} */ *uap = v;
int fd = SCARG(uap, fd);
register struct file *fp;
register struct filedesc *fdp = p->p_fd;
if ((u_int)fd >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[fd]) == NULL ||
(fp->f_flag & FWRITE) == 0)
return (EBADF);
return (dofilewritev32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp),
SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
}
int
dofilewritev32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
struct proc *p;
int fd;
struct file *fp;
struct sparc32_iovec *iovp;
int iovcnt;
off_t *offset;
int flags;
register_t *retval;
{
struct uio auio;
register struct iovec *iov;
struct iovec *needfree;
struct iovec aiov[UIO_SMALLIOV];
long i, cnt, error = 0;
u_int iovlen;
#ifdef KTRACE
struct iovec *ktriov = NULL;
#endif
/* note: can't use iovlen until iovcnt is validated */
iovlen = iovcnt * sizeof(struct iovec);
if ((u_int)iovcnt > UIO_SMALLIOV) {
if ((u_int)iovcnt > IOV_MAX)
return (EINVAL);
MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
needfree = iov;
} else if ((u_int)iovcnt > 0) {
iov = aiov;
needfree = NULL;
} else
return (EINVAL);
auio.uio_iov = iov;
auio.uio_iovcnt = iovcnt;
auio.uio_rw = UIO_WRITE;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_procp = p;
error = sparc32_to_iovecin(iovp, iov, iovcnt);
if (error)
goto done;
auio.uio_resid = 0;
for (i = 0; i < iovcnt; i++) {
auio.uio_resid += iov->iov_len;
/*
* Writes return ssize_t because -1 is returned on error.
* Therefore we must restrict the length to SSIZE_MAX to
* avoid garbage return values.
*/
if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
error = EINVAL;
goto done;
}
iov++;
}
#ifdef KTRACE
/*
* if tracing, save a copy of iovec
*/
if (KTRPOINT(p, KTR_GENIO)) {
MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
}
#endif
cnt = auio.uio_resid;
error = (*fp->f_ops->fo_write)(fp, offset, &auio, fp->f_cred, flags);
if (error) {
if (auio.uio_resid != cnt && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK))
error = 0;
if (error == EPIPE)
psignal(p, SIGPIPE);
}
cnt -= auio.uio_resid;
#ifdef KTRACE
if (KTRPOINT(p, KTR_GENIO))
if (error == 0) {
ktrgenio(p->p_tracep, fd, UIO_WRITE, ktriov, cnt,
error);
FREE(ktriov, M_TEMP);
}
#endif
*retval = cnt;
done:
if (needfree)
FREE(needfree, M_IOV);
return (error);
}
int
compat_sparc32_rename(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_rename_args /* {
syscallarg(const sparc32_charp) from;
syscallarg(const sparc32_charp) to;
} */ *uap = v;
struct sys_rename_args ua;
SPARC32TOP_UAP(from, const char *);
SPARC32TOP_UAP(to, const char *)
return (sys_rename(p, &ua, retval));
}
int
compat_sparc32_flock(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_flock_args /* {
syscallarg(int) fd;
syscallarg(int) how;
} */ *uap = v;
struct sys_flock_args ua;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(how)
return (sys_flock(p, &ua, retval));
}
int
compat_sparc32_mkfifo(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_mkfifo_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(mode_t) mode;
} */ *uap = v;
struct sys_mkfifo_args ua;
SPARC32TOP_UAP(path, const char)
SPARC32TO64_UAP(mode);
return (sys_mkfifo(p, &ua, retval));
}
int
compat_sparc32_shutdown(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_shutdown_args /* {
syscallarg(int) s;
syscallarg(int) how;
} */ *uap = v;
struct sys_shutdown_args ua;
SPARC32TO64_UAP(s)
SPARC32TO64_UAP(how);
return (sys_shutdown(p, &ua, retval));
}
int
compat_sparc32_socketpair(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_socketpair_args /* {
syscallarg(int) domain;
syscallarg(int) type;
syscallarg(int) protocol;
syscallarg(sparc32_intp) rsv;
} */ *uap = v;
struct sys_socketpair_args ua;
SPARC32TO64_UAP(domain);
SPARC32TO64_UAP(type);
SPARC32TO64_UAP(protocol);
SPARC32TOP_UAP(rsv, int);
/* Since we're just copying out two `int's we can do this */
return (sys_socketpair(p, &ua, retval));
}
int
compat_sparc32_mkdir(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_mkdir_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(mode_t) mode;
} */ *uap = v;
struct sys_mkdir_args ua;
SPARC32TOP_UAP(path, const char)
SPARC32TO64_UAP(mode);
return (sys_mkdir(p, &ua, retval));
}
int
compat_sparc32_rmdir(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_rmdir_args /* {
syscallarg(const sparc32_charp) path;
} */ *uap = v;
struct sys_rmdir_args ua;
SPARC32TOP_UAP(path, const char);
return (sys_rmdir(p, &ua, retval));
}
int
compat_sparc32_utimes(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_utimes_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(const sparc32_timevalp_t) tptr;
} */ *uap = v;
int error;
struct nameidata nd;
NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
if ((error = namei(&nd)) != 0)
return (error);
error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
vrele(nd.ni_vp);
return (error);
}
/*
* Common routine to set access and modification times given a vnode.
*/
static int
change_utimes32(vp, tptr, p)
struct vnode *vp;
struct timeval *tptr;
struct proc *p;
{
struct sparc32_timeval tv32[2];
struct timeval tv[2];
struct vattr vattr;
int error;
VATTR_NULL(&vattr);
if (tptr == NULL) {
microtime(&tv[0]);
tv[1] = tv[0];
vattr.va_vaflags |= VA_UTIMES_NULL;
} else {
error = copyin(tptr, tv, sizeof(tv));
if (error)
return (error);
}
sparc32_to_timeval(&tv32[0], &tv[0]);
sparc32_to_timeval(&tv32[1], &tv[1]);
VOP_LEASE(vp, p, p->p_ucred, LEASE_WRITE);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
vattr.va_atime.tv_sec = tv[0].tv_sec;
vattr.va_atime.tv_nsec = tv[0].tv_usec * 1000;
vattr.va_mtime.tv_sec = tv[1].tv_sec;
vattr.va_mtime.tv_nsec = tv[1].tv_usec * 1000;
error = VOP_SETATTR(vp, &vattr, p->p_ucred, p);
VOP_UNLOCK(vp, 0);
return (error);
}
int
compat_sparc32_adjtime(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_adjtime_args /* {
syscallarg(const sparc32_timevalp_t) delta;
syscallarg(sparc32_timevalp_t) olddelta;
} */ *uap = v;
struct sparc32_timeval atv;
int32_t ndelta, ntickdelta, odelta;
int s, error;
extern long bigadj, timedelta;
extern int tickdelta;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
error = copyin((caddr_t)(u_long)SCARG(uap, delta), &atv, sizeof(struct timeval));
if (error)
return (error);
/*
* Compute the total correction and the rate at which to apply it.
* Round the adjustment down to a whole multiple of the per-tick
* delta, so that after some number of incremental changes in
* hardclock(), tickdelta will become zero, lest the correction
* overshoot and start taking us away from the desired final time.
*/
ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
if (ndelta > bigadj)
ntickdelta = 10 * tickadj;
else
ntickdelta = tickadj;
if (ndelta % ntickdelta)
ndelta = ndelta / ntickdelta * ntickdelta;
/*
* To make hardclock()'s job easier, make the per-tick delta negative
* if we want time to run slower; then hardclock can simply compute
* tick + tickdelta, and subtract tickdelta from timedelta.
*/
if (ndelta < 0)
ntickdelta = -ntickdelta;
s = splclock();
odelta = timedelta;
timedelta = ndelta;
tickdelta = ntickdelta;
splx(s);
if (SCARG(uap, olddelta)) {
atv.tv_sec = odelta / 1000000;
atv.tv_usec = odelta % 1000000;
(void) copyout(&atv, (caddr_t)(u_long)SCARG(uap, olddelta),
sizeof(struct timeval));
}
return (0);
}
int
compat_sparc32_quotactl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_quotactl_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(int) cmd;
syscallarg(int) uid;
syscallarg(sparc32_caddr_t) arg;
} */ *uap = v;
struct sys_quotactl_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(cmd);
SPARC32TO64_UAP(uid);
SPARC32TOX64_UAP(arg, caddr_t);
return (sys_quotactl(p, &ua, retval));
}
#if defined(NFS) || defined(NFSSERVER)
int
compat_sparc32_nfssvc(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_nfssvc_args /* {
syscallarg(int) flag;
syscallarg(sparc32_voidp) argp;
} */ *uap = v;
struct sys_nfssvc_args ua;
SPARC32TO64_UAP(flag);
SPARC32TOP_UAP(argp, void);
return (sys_nfssvc(p, &ua, retval));
#else
/* Why would we want to support a 32-bit nfsd? */
return (ENOSYS);
#endif
}
#endif
int
compat_sparc32_statfs(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_statfs_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(sparc32_statfsp_t) buf;
} */ *uap = v;
register struct mount *mp;
register struct statfs *sp;
struct sparc32_statfs s32;
int error;
struct nameidata nd;
NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
if ((error = namei(&nd)) != 0)
return (error);
mp = nd.ni_vp->v_mount;
sp = &mp->mnt_stat;
vrele(nd.ni_vp);
if ((error = VFS_STATFS(mp, sp, p)) != 0)
return (error);
sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
sparc32_from_statfs(sp, &s32);
return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
}
int
compat_sparc32_fstatfs(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fstatfs_args /* {
syscallarg(int) fd;
syscallarg(sparc32_statfsp_t) buf;
} */ *uap = v;
struct file *fp;
register struct mount *mp;
register struct statfs *sp;
struct sparc32_statfs s32;
int error;
if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
return (error);
mp = ((struct vnode *)fp->f_data)->v_mount;
sp = &mp->mnt_stat;
if ((error = VFS_STATFS(mp, sp, p)) != 0)
return (error);
sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
sparc32_from_statfs(sp, &s32);
return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
}
#if defined(NFS) || defined(NFSSERVER)
int
compat_sparc32_getfh(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getfh_args /* {
syscallarg(const sparc32_charp) fname;
syscallarg(sparc32_fhandlep_t) fhp;
} */ *uap = v;
struct sys_getfh_args ua;
SPARC32TOP_UAP(fname, const char);
SPARC32TOP_UAP(fhp, struct fhandle);
/* Lucky for us a fhandlep_t doesn't change sizes */
return (sys_getfh(p, &ua, retval));
}
#endif
int
compat_sparc32_sysarch(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_sysarch_args /* {
syscallarg(int) op;
syscallarg(sparc32_voidp) parms;
} */ *uap = v;
switch (SCARG(uap, op)) {
default:
printf("(sparc64) compat_sparc32_sysarch(%d)\n", SCARG(uap, op));
return EINVAL;
}
}
int
compat_sparc32_pread(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_pread_args /* {
syscallarg(int) fd;
syscallarg(sparc32_voidp) buf;
syscallarg(sparc32_size_t) nbyte;
syscallarg(int) pad;
syscallarg(off_t) offset;
} */ *uap = v;
struct sys_pread_args ua;
ssize_t rt;
int error;
SPARC32TO64_UAP(fd);
SPARC32TOP_UAP(buf, void);
SPARC32TOX_UAP(nbyte, size_t);
SPARC32TO64_UAP(pad);
SPARC32TO64_UAP(offset);
error = sys_pread(p, &ua, (register_t *)&rt);
*(sparc32_ssize_t *)retval = rt;
return (error);
}
int
compat_sparc32_pwrite(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_pwrite_args /* {
syscallarg(int) fd;
syscallarg(const sparc32_voidp) buf;
syscallarg(sparc32_size_t) nbyte;
syscallarg(int) pad;
syscallarg(off_t) offset;
} */ *uap = v;
struct sys_pwrite_args ua;
ssize_t rt;
int error;
SPARC32TO64_UAP(fd);
SPARC32TOP_UAP(buf, void);
SPARC32TOX_UAP(nbyte, size_t);
SPARC32TO64_UAP(pad);
SPARC32TO64_UAP(offset);
error = sys_pwrite(p, &ua, (register_t *)&rt);
*(sparc32_ssize_t *)retval = rt;
return (error);
}
#ifdef NTP
int
compat_sparc32_ntp_gettime(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_ntp_gettime_args /* {
syscallarg(sparc32_ntptimevalp_t) ntvp;
} */ *uap = v;
struct sparc32_ntptimeval ntv32;
struct timeval atv;
struct ntptimeval ntv;
int error = 0;
int s;
/* The following are NTP variables */
extern long time_maxerror;
extern long time_esterror;
extern int time_status;
extern int time_state; /* clock state */
extern int time_status; /* clock status bits */
if (SCARG(uap, ntvp)) {
s = splclock();
#ifdef EXT_CLOCK
/*
* The microtime() external clock routine returns a
* status code. If less than zero, we declare an error
* in the clock status word and return the kernel
* (software) time variable. While there are other
* places that call microtime(), this is the only place
* that matters from an application point of view.
*/
if (microtime(&atv) < 0) {
time_status |= STA_CLOCKERR;
ntv.time = time;
} else
time_status &= ~STA_CLOCKERR;
#else /* EXT_CLOCK */
microtime(&atv);
#endif /* EXT_CLOCK */
ntv.time = atv;
ntv.maxerror = time_maxerror;
ntv.esterror = time_esterror;
(void) splx(s);
sparc32_from_timeval(&ntv.time, &ntv32.time);
ntv32.maxerror = (sparc32_long)ntv.maxerror;
ntv32.esterror = (sparc32_long)ntv.esterror;
error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, ntvp),
sizeof(ntv32));
}
if (!error) {
/*
* Status word error decode. If any of these conditions
* occur, an error is returned, instead of the status
* word. Most applications will care only about the fact
* the system clock may not be trusted, not about the
* details.
*
* Hardware or software error
*/
if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
/*
* PPS signal lost when either time or frequency
* synchronization requested
*/
(time_status & (STA_PPSFREQ | STA_PPSTIME) &&
!(time_status & STA_PPSSIGNAL)) ||
/*
* PPS jitter exceeded when time synchronization
* requested
*/
(time_status & STA_PPSTIME &&
time_status & STA_PPSJITTER) ||
/*
* PPS wander exceeded or calibration error when
* frequency synchronization requested
*/
(time_status & STA_PPSFREQ &&
time_status & (STA_PPSWANDER | STA_PPSERROR)))
*retval = TIME_ERROR;
else
*retval = (register_t)time_state;
}
return(error);
}
int
compat_sparc32_ntp_adjtime(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_ntp_adjtime_args /* {
syscallarg(sparc32_timexp_t) tp;
} */ *uap = v;
struct sparc32_timex ntv32;
struct timex ntv;
int error = 0;
int modes;
int s;
extern long time_freq; /* frequency offset (scaled ppm) */
extern long time_maxerror;
extern long time_esterror;
extern int time_state; /* clock state */
extern int time_status; /* clock status bits */
extern long time_constant; /* pll time constant */
extern long time_offset; /* time offset (us) */
extern long time_tolerance; /* frequency tolerance (scaled ppm) */
extern long time_precision; /* clock precision (us) */
if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), (caddr_t)&ntv32,
sizeof(ntv32))))
return (error);
sparc32_to_timex(&ntv32, &ntv);
/*
* Update selected clock variables - only the superuser can
* change anything. Note that there is no error checking here on
* the assumption the superuser should know what it is doing.
*/
modes = ntv.modes;
if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
return (error);
s = splclock();
if (modes & MOD_FREQUENCY)
#ifdef PPS_SYNC
time_freq = ntv.freq - pps_freq;
#else /* PPS_SYNC */
time_freq = ntv.freq;
#endif /* PPS_SYNC */
if (modes & MOD_MAXERROR)
time_maxerror = ntv.maxerror;
if (modes & MOD_ESTERROR)
time_esterror = ntv.esterror;
if (modes & MOD_STATUS) {
time_status &= STA_RONLY;
time_status |= ntv.status & ~STA_RONLY;
}
if (modes & MOD_TIMECONST)
time_constant = ntv.constant;
if (modes & MOD_OFFSET)
hardupdate(ntv.offset);
/*
* Retrieve all clock variables
*/
if (time_offset < 0)
ntv.offset = -(-time_offset >> SHIFT_UPDATE);
else
ntv.offset = time_offset >> SHIFT_UPDATE;
#ifdef PPS_SYNC
ntv.freq = time_freq + pps_freq;
#else /* PPS_SYNC */
ntv.freq = time_freq;
#endif /* PPS_SYNC */
ntv.maxerror = time_maxerror;
ntv.esterror = time_esterror;
ntv.status = time_status;
ntv.constant = time_constant;
ntv.precision = time_precision;
ntv.tolerance = time_tolerance;
#ifdef PPS_SYNC
ntv.shift = pps_shift;
ntv.ppsfreq = pps_freq;
ntv.jitter = pps_jitter >> PPS_AVG;
ntv.stabil = pps_stabil;
ntv.calcnt = pps_calcnt;
ntv.errcnt = pps_errcnt;
ntv.jitcnt = pps_jitcnt;
ntv.stbcnt = pps_stbcnt;
#endif /* PPS_SYNC */
(void)splx(s);
sparc32_from_timeval(&ntv, &ntv32);
error = copyout((caddr_t)&ntv32, (caddr_t)SCARG(uap, tp), sizeof(ntv32));
if (!error) {
/*
* Status word error decode. See comments in
* ntp_gettime() routine.
*/
if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
(time_status & (STA_PPSFREQ | STA_PPSTIME) &&
!(time_status & STA_PPSSIGNAL)) ||
(time_status & STA_PPSTIME &&
time_status & STA_PPSJITTER) ||
(time_status & STA_PPSFREQ &&
time_status & (STA_PPSWANDER | STA_PPSERROR)))
*retval = TIME_ERROR;
else
*retval = (register_t)time_state;
}
return error;
}
#endif
int
compat_sparc32_setgid(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setgid_args /* {
syscallarg(gid_t) gid;
} */ *uap = v;
struct sys_setgid_args ua;
SPARC32TO64_UAP(gid);
return (sys_setgid(p, v, retval));
}
int
compat_sparc32_setegid(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setegid_args /* {
syscallarg(gid_t) egid;
} */ *uap = v;
struct sys_setegid_args ua;
SPARC32TO64_UAP(egid);
return (sys_setegid(p, v, retval));
}
int
compat_sparc32_seteuid(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_seteuid_args /* {
syscallarg(gid_t) euid;
} */ *uap = v;
struct sys_seteuid_args ua;
SPARC32TO64_UAP(euid);
return (sys_seteuid(p, v, retval));
}
#ifdef LFS
int
compat_sparc32_lfs_bmapv(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_lfs_bmapv_args /* {
syscallarg(sparc32_fsid_tp_t) fsidp;
syscallarg(sparc32_block_infop_t) blkiov;
syscallarg(int) blkcnt;
} */ *uap = v;
struct sys_lfs_bmapv_args ua;
SPARC32TOP_UAP(fdidp, struct fsid);
SPARC32TO64_UAP(blkcnt);
/* XXX finish me */
#else
return (ENOSYS); /* XXX */
#endif
}
int
compat_sparc32_lfs_markv(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_lfs_markv_args /* {
syscallarg(sparc32_fsid_tp_t) fsidp;
syscallarg(sparc32_block_infop_t) blkiov;
syscallarg(int) blkcnt;
} */ *uap = v;
return (ENOSYS); /* XXX */
}
int
compat_sparc32_lfs_segclean(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_lfs_segclean_args /* {
syscallarg(sparc32_fsid_tp_t) fsidp;
syscallarg(sparc32_u_long) segment;
} */ *uap = v;
return (ENOSYS); /* XXX */
}
int
compat_sparc32_lfs_segwait(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_lfs_segwait_args /* {
syscallarg(sparc32_fsid_tp_t) fsidp;
syscallarg(sparc32_timevalp_t) tv;
} */ *uap = v;
return (ENOSYS); /* XXX */
}
#endif
int
compat_sparc32_pathconf(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_pathconf_args /* {
syscallarg(int) fd;
syscallarg(int) name;
} */ *uap = v;
struct sys_pathconf_args ua;
long rt;
int error;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(name);
error = sys_pathconf(p, &ua, (register_t *)&rt);
*(sparc32_long *)retval = (sparc32_long)rt;
return (error);
}
int
compat_sparc32_fpathconf(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fpathconf_args /* {
syscallarg(int) fd;
syscallarg(int) name;
} */ *uap = v;
struct sys_fpathconf_args ua;
long rt;
int error;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(name);
error = sys_fpathconf(p, &ua, (register_t *)&rt);
*(sparc32_long *)retval = (sparc32_long)rt;
return (error);
}
int
compat_sparc32_getrlimit(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getrlimit_args /* {
syscallarg(int) which;
syscallarg(sparc32_rlimitp_t) rlp;
} */ *uap = v;
int which = SCARG(uap, which);
if ((u_int)which >= RLIM_NLIMITS)
return (EINVAL);
return (copyout(&p->p_rlimit[which], (caddr_t)(u_long)SCARG(uap, rlp),
sizeof(struct rlimit)));
}
int
compat_sparc32_setrlimit(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_setrlimit_args /* {
syscallarg(int) which;
syscallarg(const sparc32_rlimitp_t) rlp;
} */ *uap = v;
int which = SCARG(uap, which);
struct rlimit alim;
int error;
error = copyin((caddr_t)(u_long)SCARG(uap, rlp), &alim, sizeof(struct rlimit));
if (error)
return (error);
return (dosetrlimit(p, which, &alim));
}
int
compat_sparc32_mmap(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_mmap_args /* {
syscallarg(sparc32_voidp) addr;
syscallarg(sparc32_size_t) len;
syscallarg(int) prot;
syscallarg(int) flags;
syscallarg(int) fd;
syscallarg(sparc32_long) pad;
syscallarg(off_t) pos;
} */ *uap = v;
struct sys_mmap_args ua;
void *rt;
int error;
SPARC32TOP_UAP(addr, void);
SPARC32TOX_UAP(len, size_t);
SPARC32TO64_UAP(prot);
SPARC32TO64_UAP(flags);
SPARC32TO64_UAP(fd);
SPARC32TOX_UAP(pad, long);
SPARC32TOX_UAP(pos, off_t);
error = sys_mmap(p, &ua, (register_t *)&rt);
if ((long)rt > (long)UINT_MAX)
printf("compat_sparc32_mmap: retval out of range: 0x%qx",
rt);
*retval = (sparc32_voidp)(u_long)rt;
return (error);
}
int
compat_sparc32_lseek(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_lseek_args /* {
syscallarg(int) fd;
syscallarg(int) pad;
syscallarg(off_t) offset;
syscallarg(int) whence;
} */ *uap = v;
struct sys_lseek_args ua;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(pad);
SPARC32TO64_UAP(offset);
SPARC32TO64_UAP(whence);
return (sys_lseek(p, &ua, retval));
}
int
compat_sparc32_truncate(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_truncate_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(int) pad;
syscallarg(off_t) length;
} */ *uap = v;
struct sys_truncate_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(pad);
SPARC32TO64_UAP(length);
return (sys_truncate(p, &ua, retval));
}
int
compat_sparc32_ftruncate(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_ftruncate_args /* {
syscallarg(int) fd;
syscallarg(int) pad;
syscallarg(off_t) length;
} */ *uap = v;
struct sys_ftruncate_args ua;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(pad);
SPARC32TO64_UAP(length);
return (sys_ftruncate(p, &ua, retval));
}
int
compat_sparc32___sysctl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___sysctl_args /* {
syscallarg(sparc32_intp) name;
syscallarg(u_int) namelen;
syscallarg(sparc32_voidp) old;
syscallarg(sparc32_size_tp) oldlenp;
syscallarg(sparc32_voidp) new;
syscallarg(sparc32_size_t) newlen;
} */ *uap = v;
int error, dolock = 1;
sparc32_size_t savelen = 0;
size_t oldlen = 0;
sysctlfn *fn;
int name[CTL_MAXNAME];
/*
* Some of these sysctl functions do their own copyin/copyout.
* We need to disable or emulate the ones that need their
* arguments converted.
*/
if (SCARG(uap, new) != NULL &&
(error = suser(p->p_ucred, &p->p_acflag)))
return (error);
/*
* all top-level sysctl names are non-terminal
*/
if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
return (EINVAL);
error = copyin((caddr_t)(u_long)SCARG(uap, name), &name,
SCARG(uap, namelen) * sizeof(int));
if (error)
return (error);
switch (name[0]) {
case CTL_KERN:
fn = kern_sysctl;
if (name[2] != KERN_VNODE) /* XXX */
dolock = 0;
break;
case CTL_HW:
fn = hw_sysctl;
break;
case CTL_VM:
#if defined(UVM)
fn = uvm_sysctl;
#else
fn = vm_sysctl;
#endif
break;
case CTL_NET:
fn = net_sysctl;
break;
case CTL_VFS:
fn = vfs_sysctl;
break;
case CTL_MACHDEP:
fn = cpu_sysctl;
break;
#ifdef DEBUG
case CTL_DEBUG:
fn = debug_sysctl;
break;
#endif
#ifdef DDB
case CTL_DDB:
fn = ddb_sysctl;
break;
#endif
default:
return (EOPNOTSUPP);
}
if (SCARG(uap, oldlenp) &&
(error = copyin((caddr_t)(u_long)SCARG(uap, oldlenp), &savelen, sizeof(savelen))))
return (error);
if (SCARG(uap, old) != NULL) {
#if defined(UVM)
if (!uvm_useracc((caddr_t)(u_long)SCARG(uap, old), savelen, B_WRITE))
#else
if (!useracc(SCARG(uap, old), savelen, B_WRITE))
#endif
return (EFAULT);
#if 0 /* XXXXXXXX */
while (memlock.sl_lock) {
memlock.sl_want = 1;
sleep((caddr_t)&memlock, PRIBIO+1);
memlock.sl_locked++;
}
memlock.sl_lock = 1;
#endif /* XXXXXXXX */
if (dolock)
#if defined(UVM)
uvm_vslock(p, SCARG(uap, old), savelen);
#else
vslock(p, SCARG(uap, old), savelen);
#endif
oldlen = savelen;
}
error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
&oldlen, SCARG(uap, new), SCARG(uap, newlen), p);
if (SCARG(uap, old) != NULL) {
if (dolock)
#if defined(UVM)
uvm_vsunlock(p, SCARG(uap, old), savelen);
#else
vsunlock(p, SCARG(uap, old), savelen);
#endif
#if 0 /* XXXXXXXXXXX */
memlock.sl_lock = 0;
if (memlock.sl_want) {
memlock.sl_want = 0;
wakeup((caddr_t)&memlock);
}
#endif /* XXXXXXXXX */
}
savelen = oldlen;
if (error)
return (error);
if (SCARG(uap, oldlenp))
error = copyout(&savelen, (caddr_t)(u_long)SCARG(uap, oldlenp), sizeof(savelen));
return (error);
}
int
compat_sparc32_mlock(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_mlock_args /* {
syscallarg(const sparc32_voidp) addr;
syscallarg(sparc32_size_t) len;
} */ *uap = v;
struct sys_mlock_args ua;
SPARC32TOP_UAP(addr, const void);
SPARC32TO64_UAP(len);
return (sys_mlock(p, &ua, retval));
}
int
compat_sparc32_munlock(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_munlock_args /* {
syscallarg(const sparc32_voidp) addr;
syscallarg(sparc32_size_t) len;
} */ *uap = v;
struct sys_munlock_args ua;
SPARC32TOP_UAP(addr, const void);
SPARC32TO64_UAP(len);
return (sys_munlock(p, &ua, retval));
}
int
compat_sparc32_undelete(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_undelete_args /* {
syscallarg(const sparc32_charp) path;
} */ *uap = v;
struct sys_undelete_args ua;
SPARC32TOP_UAP(path, const char);
return (sys_undelete(p, &ua, retval));
}
int
compat_sparc32_futimes(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_futimes_args /* {
syscallarg(int) fd;
syscallarg(const sparc32_timevalp_t) tptr;
} */ *uap = v;
int error;
struct file *fp;
if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
return (error);
return (change_utimes32((struct vnode *)fp->f_data,
(struct timeval *)(u_long)SCARG(uap, tptr), p));
}
int
compat_sparc32_getpgid(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getpgid_args /* {
syscallarg(pid_t) pid;
} */ *uap = v;
struct sys_getpgid_args ua;
SPARC32TO64_UAP(pid);
return (sys_getpgid(p, &ua, retval));
}
int
compat_sparc32_reboot(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_reboot_args /* {
syscallarg(int) opt;
syscallarg(sparc32_charp) bootstr;
} */ *uap = v;
struct sys_reboot_args ua;
SPARC32TO64_UAP(opt);
SPARC32TOP_UAP(bootstr, char);
return (sys_reboot(p, &ua, retval));
}
int
compat_sparc32_poll(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_poll_args /* {
syscallarg(sparc32_pollfdp_t) fds;
syscallarg(u_int) nfds;
syscallarg(int) timeout;
} */ *uap = v;
struct sys_poll_args ua;
SPARC32TOP_UAP(fds, struct pollfd);
SPARC32TO64_UAP(nfds);
SPARC32TO64_UAP(timeout);
return (sys_poll(p, &ua, retval));
}
/*
* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*
* This is BSD. We won't support System V IPC.
* Too much work.
*
* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
int
compat_sparc32___semctl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32___semctl_args /* {
syscallarg(int) semid;
syscallarg(int) semnum;
syscallarg(int) cmd;
syscallarg(sparc32_semunu_t) arg;
} */ *uap = v;
union sparc32_semun sem32;
int semid = SCARG(uap, semid);
int semnum = SCARG(uap, semnum);
int cmd = SCARG(uap, cmd);
union sparc32_semun *arg = (void*)(u_long)SCARG(uap, arg);
union sparc32_semun real_arg;
struct ucred *cred = p->p_ucred;
int i, rval, eval;
struct sparc32_semid_ds sbuf;
register struct semid_ds *semaptr;
semlock(p);
semid = IPCID_TO_IX(semid);
if (semid < 0 || semid >= seminfo.semmsl)
return(EINVAL);
semaptr = &sema[semid];
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
return(EINVAL);
eval = 0;
rval = 0;
switch (cmd) {
case IPC_RMID:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
return(eval);
semaptr->sem_perm.cuid = cred->cr_uid;
semaptr->sem_perm.uid = cred->cr_uid;
semtot -= semaptr->sem_nsems;
for (i = semaptr->sem_base - sem; i < semtot; i++)
sem[i] = sem[i + semaptr->sem_nsems];
for (i = 0; i < seminfo.semmni; i++) {
if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
sema[i].sem_base > semaptr->sem_base)
sema[i].sem_base -= semaptr->sem_nsems;
}
semaptr->sem_perm.mode = 0;
semundo_clear(semid, -1);
wakeup((caddr_t)semaptr);
break;
case IPC_SET:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
return(eval);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
if ((eval = copyin((caddr_t)(u_long)real_arg.buf, (caddr_t)&sbuf,
sizeof(sbuf))) != 0)
return(eval);
semaptr->sem_perm.uid = sbuf.sem_perm.uid;
semaptr->sem_perm.gid = sbuf.sem_perm.gid;
semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
(sbuf.sem_perm.mode & 0777);
semaptr->sem_ctime = time.tv_sec;
break;
case IPC_STAT:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
return(eval);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
eval = copyout((caddr_t)semaptr, (caddr_t)(u_long)real_arg.buf,
sizeof(struct semid_ds));
break;
case GETNCNT:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
rval = semaptr->sem_base[semnum].semncnt;
break;
case GETPID:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
rval = semaptr->sem_base[semnum].sempid;
break;
case GETVAL:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
rval = semaptr->sem_base[semnum].semval;
break;
case GETALL:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
return(eval);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
for (i = 0; i < semaptr->sem_nsems; i++) {
eval = copyout((caddr_t)&semaptr->sem_base[i].semval,
&real_arg.array[i], sizeof(real_arg.array[0]));
if (eval != 0)
break;
}
break;
case GETZCNT:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
rval = semaptr->sem_base[semnum].semzcnt;
break;
case SETVAL:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
semaptr->sem_base[semnum].semval = real_arg.val;
semundo_clear(semid, semnum);
wakeup((caddr_t)semaptr);
break;
case SETALL:
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
return(eval);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
for (i = 0; i < semaptr->sem_nsems; i++) {
eval = copyin(&real_arg.array[i],
(caddr_t)&semaptr->sem_base[i].semval,
sizeof(real_arg.array[0]));
if (eval != 0)
break;
}
semundo_clear(semid, -1);
wakeup((caddr_t)semaptr);
break;
default:
return(EINVAL);
}
if (eval == 0)
*retval = rval;
return(eval);
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_semget(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_semget_args /* {
syscallarg(sparc32_key_t) key;
syscallarg(int) nsems;
syscallarg(int) semflg;
} */ *uap = v;
struct sys_semget_args ua;
SPARC32TOX_UAP(key, key_t);
SPARC32TO64_UAP(nsems);
SPARC32TO64_UAP(semflg);
return (sys_semget(p, &ua, retval));
}
int
compat_sparc32_semop(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_semop_args /* {
syscallarg(int) semid;
syscallarg(sparc32_sembufp_t) sops;
syscallarg(sparc32_size_t) nsops;
} */ *uap = v;
struct sys_semop_args ua;
SPARC32TO64_UAP(semid);
SPARC32TOP_UAP(sops, struct sembuf);
SPARC32TOX_UAP(nsops, size_t);
return (sys_semop(p, &ua, retval));
}
int
compat_sparc32_semconfig(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_semconfig_args /* {
syscallarg(int) flag;
} */ *uap = v;
struct sys_semconfig_args ua;
SPARC32TO64_UAP(flag);
return (sys_semconfig(p, &ua, retval));
}
int
compat_sparc32_msgctl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_msgctl_args /* {
syscallarg(int) msqid;
syscallarg(int) cmd;
syscallarg(sparc32_msqid_dsp_t) buf;
} */ *uap = v;
struct sys_msgctl_args ua;
struct msqid_ds ds;
struct sparc32_msqid_ds *ds32p;
int error;
SPARC32TO64_UAP(msqid);
SPARC32TO64_UAP(cmd);
ds32p = (struct sparc32_msqid_ds *)(u_long)SCARG(uap, buf);
if (ds32p) {
SCARG(&ua, buf) = NULL;
sparc32_to_msqid_ds(ds32p, &ds);
} else
SCARG(&ua, buf) = NULL;
error = sys_msgctl(p, &ua, retval);
if (error)
return (error);
if (ds32p)
sparc32_from_msqid_ds(&ds, ds32p);
return (0);
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_msgget(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_msgget_args /* {
syscallarg(sparc32_key_t) key;
syscallarg(int) msgflg;
} */ *uap = v;
struct sys_msgget_args ua;
SPARC32TOX_UAP(key, key_t);
SPARC32TO64_UAP(msgflg);
return (sys_msgget(p, &ua, retval));
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_msgsnd(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_msgsnd_args /* {
syscallarg(int) msqid;
syscallarg(const sparc32_voidp) msgp;
syscallarg(sparc32_size_t) msgsz;
syscallarg(int) msgflg;
} */ *uap = v;
struct sys_msgsnd_args ua;
SPARC32TO64_UAP(msqid);
SPARC32TOP_UAP(msgp, void);
SPARC32TOX_UAP(msgsz, size_t);
SPARC32TO64_UAP(msgflg);
return (sys_msgsnd(p, &ua, retval));
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_msgrcv(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_msgrcv_args /* {
syscallarg(int) msqid;
syscallarg(sparc32_voidp) msgp;
syscallarg(sparc32_size_t) msgsz;
syscallarg(sparc32_long) msgtyp;
syscallarg(int) msgflg;
} */ *uap = v;
struct sys_msgrcv_args ua;
ssize_t rt;
int error;
SPARC32TO64_UAP(msqid);
SPARC32TOP_UAP(msgp, void);
SPARC32TOX_UAP(msgsz, size_t);
SPARC32TOX_UAP(msgtyp, long);
SPARC32TO64_UAP(msgflg);
error = sys_msgrcv(p, &ua, (register_t *)&rt);
*(sparc32_ssize_t *)retval = rt;
return (error);
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_shmat(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_shmat_args /* {
syscallarg(int) shmid;
syscallarg(const sparc32_voidp) shmaddr;
syscallarg(int) shmflg;
} */ *uap = v;
struct sys_shmat_args ua;
void *rt;
int error;
SPARC32TO64_UAP(shmid);
SPARC32TOP_UAP(shmaddr, void);
SPARC32TO64_UAP(shmflg);
error = sys_shmat(p, &ua, (register_t *)&rt);
*retval = (sparc32_voidp)(u_long)rt;
return (error);
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_shmctl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_shmctl_args /* {
syscallarg(int) shmid;
syscallarg(int) cmd;
syscallarg(sparc32_shmid_dsp_t) buf;
} */ *uap = v;
struct sys_shmctl_args ua;
struct shmid_ds ds;
struct sparc32_shmid_ds *ds32p;
int error;
SPARC32TO64_UAP(shmid);
SPARC32TO64_UAP(cmd);
ds32p = (struct sparc32_shmid_ds *)(u_long)SCARG(uap, buf);
if (ds32p) {
SCARG(&ua, buf) = NULL;
sparc32_to_shmid_ds(ds32p, &ds);
} else
SCARG(&ua, buf) = NULL;
error = sys_shmctl(p, &ua, retval);
if (error)
return (error);
if (ds32p)
sparc32_from_shmid_ds(&ds, ds32p);
return (0);
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_shmdt(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_shmdt_args /* {
syscallarg(const sparc32_voidp) shmaddr;
} */ *uap = v;
struct sys_shmdt_args ua;
SPARC32TOP_UAP(shmaddr, const char);
return (sys_shmdt(p, &ua, retval));
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_shmget(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct compat_sparc32_shmget_args /* {
syscallarg(sparc32_key_t) key;
syscallarg(sparc32_size_t) size;
syscallarg(int) shmflg;
} */ *uap = v;
struct sys_shmget_args ua;
SPARC32TOX_UAP(key, key_t)
SPARC32TOX_UAP(size, size_t)
SPARC32TO64_UAP(shmflg);
return (sys_shmget(p, &ua, retval));
#else
return (ENOSYS);
#endif
}
int
compat_sparc32_clock_gettime(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_clock_gettime_args /* {
syscallarg(sparc32_clockid_t) clock_id;
syscallarg(sparc32_timespecp_t) tp;
} */ *uap = v;
clockid_t clock_id;
struct timeval atv;
struct timespec ats;
struct sparc32_timespec ts32;
clock_id = SCARG(uap, clock_id);
if (clock_id != CLOCK_REALTIME)
return (EINVAL);
microtime(&atv);
TIMEVAL_TO_TIMESPEC(&atv,&ats);
sparc32_from_timespec(&ats, &ts32);
return copyout(&ts32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts32));
}
int
compat_sparc32_clock_settime(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_clock_settime_args /* {
syscallarg(sparc32_clockid_t) clock_id;
syscallarg(const sparc32_timespecp_t) tp;
} */ *uap = v;
struct sparc32_timespec ts32;
clockid_t clock_id;
struct timeval atv;
struct timespec ats;
int error;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
clock_id = SCARG(uap, clock_id);
if (clock_id != CLOCK_REALTIME)
return (EINVAL);
if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), &ts32, sizeof(ts32))) != 0)
return (error);
sparc32_to_timespec(&ts32, &ats);
TIMESPEC_TO_TIMEVAL(&atv,&ats);
if ((error = settime(&atv)))
return (error);
return 0;
}
int
compat_sparc32_clock_getres(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_clock_getres_args /* {
syscallarg(sparc32_clockid_t) clock_id;
syscallarg(sparc32_timespecp_t) tp;
} */ *uap = v;
struct sparc32_timespec ts32;
clockid_t clock_id;
struct timespec ts;
int error = 0;
clock_id = SCARG(uap, clock_id);
if (clock_id != CLOCK_REALTIME)
return (EINVAL);
if (SCARG(uap, tp)) {
ts.tv_sec = 0;
ts.tv_nsec = 1000000000 / hz;
sparc32_from_timespec(&ts, &ts32);
error = copyout(&ts, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts));
}
return error;
}
int
compat_sparc32_nanosleep(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_nanosleep_args /* {
syscallarg(const sparc32_timespecp_t) rqtp;
syscallarg(sparc32_timespecp_t) rmtp;
} */ *uap = v;
static int nanowait;
struct sparc32_timespec ts32;
struct timespec rqt;
struct timespec rmt;
struct timeval atv, utv;
int error, s, timo;
error = copyin((caddr_t)(u_long)SCARG(uap, rqtp), (caddr_t)&ts32,
sizeof(ts32));
if (error)
return (error);
sparc32_to_timespec(&ts32, &rqt);
TIMESPEC_TO_TIMEVAL(&atv,&rqt)
if (itimerfix(&atv))
return (EINVAL);
s = splclock();
timeradd(&atv,&time,&atv);
timo = hzto(&atv);
/*
* Avoid inadvertantly sleeping forever
*/
if (timo == 0)
timo = 1;
splx(s);
error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
if (error == ERESTART)
error = EINTR;
if (error == EWOULDBLOCK)
error = 0;
if (SCARG(uap, rmtp)) {
int error;
s = splclock();
utv = time;
splx(s);
timersub(&atv, &utv, &utv);
if (utv.tv_sec < 0)
timerclear(&utv);
TIMEVAL_TO_TIMESPEC(&utv,&rmt);
sparc32_from_timespec(&rmt, &ts32);
error = copyout((caddr_t)&ts32, (caddr_t)(u_long)SCARG(uap,rmtp),
sizeof(ts32));
if (error)
return (error);
}
return error;
}
int
compat_sparc32_fdatasync(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fdatasync_args /* {
syscallarg(int) fd;
} */ *uap = v;
struct sys_fdatasync_args ua;
SPARC32TO64_UAP(fd);
return (sys_fdatasync(p, &ua, retval));
}
int
compat_sparc32___posix_rename(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___posix_rename_args /* {
syscallarg(const sparc32_charp) from;
syscallarg(const sparc32_charp) to;
} */ *uap = v;
struct sys___posix_rename_args ua;
SPARC32TOP_UAP(from, const char *);
SPARC32TOP_UAP(to, const char *);
return (sys___posix_rename(p, &ua, retval));
}
int
compat_sparc32_swapctl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_swapctl_args /* {
syscallarg(int) cmd;
syscallarg(const sparc32_voidp) arg;
syscallarg(int) misc;
} */ *uap = v;
struct sys_swapctl_args ua;
SPARC32TO64_UAP(cmd);
SPARC32TOP_UAP(arg, const void);
SPARC32TO64_UAP(misc);
return (sys_swapctl(p, &ua, retval));
}
int
compat_sparc32_getdents(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getdents_args /* {
syscallarg(int) fd;
syscallarg(sparc32_charp) buf;
syscallarg(sparc32_size_t) count;
} */ *uap = v;
struct file *fp;
int error, done;
if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
return (error);
if ((fp->f_flag & FREAD) == 0)
return (EBADF);
error = vn_readdir(fp, (caddr_t)(u_long)SCARG(uap, buf), UIO_USERSPACE,
SCARG(uap, count), &done, p, 0, 0);
*retval = done;
return (error);
}
int
compat_sparc32_minherit(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_minherit_args /* {
syscallarg(sparc32_voidp) addr;
syscallarg(sparc32_size_t) len;
syscallarg(int) inherit;
} */ *uap = v;
struct sys_minherit_args ua;
SPARC32TOP_UAP(addr, void);
SPARC32TOX_UAP(len, size_t);
SPARC32TO64_UAP(inherit);
return (sys_minherit(p, &ua, retval));
}
int
compat_sparc32_lchmod(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_lchmod_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(mode_t) mode;
} */ *uap = v;
struct sys_lchmod_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(mode);
return (sys_lchmod(p, &ua, retval));
}
int
compat_sparc32_lchown(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_lchown_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(uid_t) uid;
syscallarg(gid_t) gid;
} */ *uap = v;
struct sys_lchown_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(uid);
SPARC32TO64_UAP(gid);
return (sys_lchown(p, &ua, retval));
}
int
compat_sparc32_lutimes(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_lutimes_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(const sparc32_timevalp_t) tptr;
} */ *uap = v;
int error;
struct nameidata nd;
NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, (caddr_t)(u_long)SCARG(uap, path), p);
if ((error = namei(&nd)) != 0)
return (error);
error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
vrele(nd.ni_vp);
return (error);
}
int
compat_sparc32___msync13(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___msync13_args /* {
syscallarg(sparc32_voidp) addr;
syscallarg(sparc32_size_t) len;
syscallarg(int) flags;
} */ *uap = v;
struct sys___msync13_args ua;
SPARC32TOP_UAP(addr, void);
SPARC32TOX_UAP(len, size_t);
SPARC32TO64_UAP(flags);
return (sys___msync13(p, &ua, retval));
}
int
compat_sparc32___stat13(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___stat13_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(sparc32_statp_t) ub;
} */ *uap = v;
struct sparc32_stat sb32;
struct stat sb;
int error;
struct nameidata nd;
NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE,
(caddr_t)(u_long)SCARG(uap, path), p);
if ((error = namei(&nd)) != 0)
return (error);
error = vn_stat(nd.ni_vp, &sb, p);
vput(nd.ni_vp);
if (error)
return (error);
sparc32_from___stat13(&sb, &sb32);
error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
return (error);
}
int
compat_sparc32___fstat13(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___fstat13_args /* {
syscallarg(int) fd;
syscallarg(sparc32_statp_t) sb;
} */ *uap = v;
int fd = SCARG(uap, fd);
register struct filedesc *fdp = p->p_fd;
register struct file *fp;
struct sparc32_stat sb32;
struct stat ub;
int error = 0;
if ((u_int)fd >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[fd]) == NULL)
return (EBADF);
switch (fp->f_type) {
case DTYPE_VNODE:
error = vn_stat((struct vnode *)fp->f_data, &ub, p);
break;
case DTYPE_SOCKET:
error = soo_stat((struct socket *)fp->f_data, &ub);
break;
default:
panic("fstat");
/*NOTREACHED*/
}
if (error == 0) {
sparc32_from___stat13(&ub, &sb32);
error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, sb), sizeof(sb32));
}
return (error);
}
int
compat_sparc32___lstat13(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___lstat13_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(sparc32_statp_t) ub;
} */ *uap = v;
struct sparc32_stat sb32;
struct stat sb;
int error;
struct nameidata nd;
NDINIT(&nd, LOOKUP, NOFOLLOW | LOCKLEAF, UIO_USERSPACE,
(caddr_t)(u_long)SCARG(uap, path), p);
if ((error = namei(&nd)) != 0)
return (error);
error = vn_stat(nd.ni_vp, &sb, p);
vput(nd.ni_vp);
if (error)
return (error);
sparc32_from___stat13(&sb, &sb32);
error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
return (error);
}
int
compat_sparc32___sigaltstack14(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___sigaltstack14_args /* {
syscallarg(const sparc32_sigaltstackp_t) nss;
syscallarg(sparc32_sigaltstackp_t) oss;
} */ *uap = v;
struct sparc32_sigaltstack s32;
struct sigaltstack nss, oss;
int error;
if (SCARG(uap, nss)) {
error = copyin((caddr_t)(u_long)SCARG(uap, nss), &s32, sizeof(s32));
if (error)
return (error);
nss.ss_sp = (void *)(u_long)s32.ss_sp;
nss.ss_size = (size_t)s32.ss_size;
nss.ss_flags = s32.ss_flags;
}
error = sigaltstack1(p,
SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
if (error)
return (error);
if (SCARG(uap, oss)) {
s32.ss_sp = (sparc32_voidp)(u_long)oss.ss_sp;
s32.ss_size = (sparc32_size_t)oss.ss_size;
s32.ss_flags = oss.ss_flags;
error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, oss), sizeof(s32));
if (error)
return (error);
}
return (0);
}
int
compat_sparc32___posix_chown(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___posix_chown_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(uid_t) uid;
syscallarg(gid_t) gid;
} */ *uap = v;
struct sys___posix_chown_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(uid);
SPARC32TO64_UAP(gid);
return (sys___posix_chown(p, &ua, retval));
}
int
compat_sparc32___posix_fchown(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___posix_fchown_args /* {
syscallarg(int) fd;
syscallarg(uid_t) uid;
syscallarg(gid_t) gid;
} */ *uap = v;
struct sys___posix_fchown_args ua;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(uid);
SPARC32TO64_UAP(gid);
return (sys___posix_fchown(p, &ua, retval));
}
int
compat_sparc32___posix_lchown(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32___posix_lchown_args /* {
syscallarg(const sparc32_charp) path;
syscallarg(uid_t) uid;
syscallarg(gid_t) gid;
} */ *uap = v;
struct sys___posix_lchown_args ua;
SPARC32TOP_UAP(path, const char);
SPARC32TO64_UAP(uid);
SPARC32TO64_UAP(gid);
return (sys___posix_lchown(p, &ua, retval));
}
int
compat_sparc32_getsid(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_getsid_args /* {
syscallarg(pid_t) pid;
} */ *uap = v;
struct sys_getsid_args ua;
SPARC32TO64_UAP(pid);
return (sys_getsid(p, &ua, retval));
}
int
compat_sparc32_fktrace(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_fktrace_args /* {
syscallarg(const int) fd;
syscallarg(int) ops;
syscallarg(int) facs;
syscallarg(int) pid;
} */ *uap = v;
struct sys_fktrace_args ua;
SPARC32TO64_UAP(fd);
SPARC32TO64_UAP(ops);
SPARC32TO64_UAP(facs);
SPARC32TO64_UAP(pid);
return (sys_fktrace(p, &ua, retval));
}
int
compat_sparc32_preadv(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_preadv_args /* {
syscallarg(int) fd;
syscallarg(const sparc32_iovecp_t) iovp;
syscallarg(int) iovcnt;
syscallarg(int) pad;
syscallarg(off_t) offset;
} */ *uap = v;
struct filedesc *fdp = p->p_fd;
struct file *fp;
struct vnode *vp;
off_t offset;
int error, fd = SCARG(uap, fd);
if ((u_int)fd >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[fd]) == NULL ||
(fp->f_flag & FREAD) == 0)
return (EBADF);
vp = (struct vnode *)fp->f_data;
if (fp->f_type != DTYPE_VNODE
|| vp->v_type == VFIFO)
return (ESPIPE);
offset = SCARG(uap, offset);
/*
* XXX This works because no file systems actually
* XXX take any action on the seek operation.
*/
if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
return (error);
return (dofilereadv32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
&offset, 0, retval));
}
int
compat_sparc32_pwritev(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct compat_sparc32_pwritev_args /* {
syscallarg(int) fd;
syscallarg(const sparc32_iovecp_t) iovp;
syscallarg(int) iovcnt;
syscallarg(int) pad;
syscallarg(off_t) offset;
} */ *uap = v;
struct filedesc *fdp = p->p_fd;
struct file *fp;
struct vnode *vp;
off_t offset;
int error, fd = SCARG(uap, fd);
if ((u_int)fd >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[fd]) == NULL ||
(fp->f_flag & FWRITE) == 0)
return (EBADF);
vp = (struct vnode *)fp->f_data;
if (fp->f_type != DTYPE_VNODE
|| vp->v_type == VFIFO)
return (ESPIPE);
offset = SCARG(uap, offset);
/*
* XXX This works because no file systems actually
* XXX take any action on the seek operation.
*/
if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
return (error);
return (dofilewritev32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
&offset, 0, retval));
}
int
compat_13_compat_sparc32_sigprocmask(p, v, retval)
register struct proc *p;
void *v;
register_t *retval;
{
struct compat_13_compat_sparc32_sigprocmask_args /* {
syscallarg(int) how;
syscallarg(int) mask;
} */ *uap = v;
sigset13_t ness, oess;
sigset_t nbss, obss;
int error;
ness = SCARG(uap, mask);
native_sigset13_to_sigset(&ness, &nbss);
error = sigprocmask1(p, SCARG(uap, how), &nbss, &obss);
if (error)
return (error);
native_sigset_to_sigset13(&obss, &oess);
*retval = oess;
return (0);
}
int
compat_13_compat_sparc32_sigsuspend(p, v, retval)
register struct proc *p;
void *v;
register_t *retval;
{
struct compat_13_compat_sparc32_sigsuspend_args /* {
syscallarg(sigset13_t) mask;
} */ *uap = v;
sigset13_t ess;
sigset_t bss;
ess = SCARG(uap, mask);
native_sigset13_to_sigset(&ess, &bss);
return (sigsuspend1(p, &bss));
}