e75fa0930a
- cpu_load_pmap: use atomic kcpuset(9) operations; fixes rare crashes. - Add kcpuset_copybits(9) and replace xen_kcpuset2bits(). Avoids incorrect ncpu problem in early boot. Also, micro-optimises xen_mcast_invlpg() and xen_mcast_tlbflush() routines. Tested by chs@.
463 lines
11 KiB
C
463 lines
11 KiB
C
/* $NetBSD: subr_kcpuset.c,v 1.6 2012/06/06 22:22:41 rmind Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2011 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Mindaugas Rasiukevicius.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Kernel CPU set implementation.
|
|
*
|
|
* Interface can be used by kernel subsystems as a unified dynamic CPU
|
|
* bitset implementation handling many CPUs. Facility also supports early
|
|
* use by MD code on boot, as it fixups bitsets on further boot.
|
|
*
|
|
* TODO:
|
|
* - Handle "reverse" bitset on fixup/grow.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.6 2012/06/06 22:22:41 rmind Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/atomic.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/kcpuset.h>
|
|
#include <sys/pool.h>
|
|
|
|
/* Number of CPUs to support. */
|
|
#define KC_MAXCPUS roundup2(MAXCPUS, 32)
|
|
|
|
/*
|
|
* Structure of dynamic CPU set in the kernel.
|
|
*/
|
|
struct kcpuset {
|
|
uint32_t bits[0];
|
|
};
|
|
|
|
typedef struct kcpuset_impl {
|
|
/* Reference count. */
|
|
u_int kc_refcnt;
|
|
/* Next to free, if non-NULL (used when multiple references). */
|
|
struct kcpuset * kc_next;
|
|
/* Actual variable-sized field of bits. */
|
|
struct kcpuset kc_field;
|
|
} kcpuset_impl_t;
|
|
|
|
#define KC_BITS_OFF (offsetof(struct kcpuset_impl, kc_field))
|
|
#define KC_GETSTRUCT(b) ((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
|
|
|
|
/* Sizes of a single bitset. */
|
|
#define KC_SHIFT 5
|
|
#define KC_MASK 31
|
|
|
|
/* An array of noted early kcpuset creations and data. */
|
|
#define KC_SAVE_NITEMS 8
|
|
|
|
/* Structures for early boot mechanism (must be statically initialised). */
|
|
static kcpuset_t ** kc_noted_early[KC_SAVE_NITEMS];
|
|
static uint32_t kc_bits_early[KC_SAVE_NITEMS];
|
|
static int kc_last_idx = 0;
|
|
static bool kc_initialised = false;
|
|
|
|
#define KC_BITSIZE_EARLY sizeof(kc_bits_early[0])
|
|
#define KC_NFIELDS_EARLY 1
|
|
|
|
/*
|
|
* The size of whole bitset fields and amount of fields.
|
|
* The whole size must statically initialise for early case.
|
|
*/
|
|
static size_t kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
|
|
static size_t kc_nfields __read_mostly = KC_NFIELDS_EARLY;
|
|
|
|
static pool_cache_t kc_cache __read_mostly;
|
|
|
|
static kcpuset_t * kcpuset_create_raw(bool);
|
|
|
|
/*
|
|
* kcpuset_sysinit: initialize the subsystem, transfer early boot cases
|
|
* to dynamically allocated sets.
|
|
*/
|
|
void
|
|
kcpuset_sysinit(void)
|
|
{
|
|
kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
|
|
int i, s;
|
|
|
|
/* Set a kcpuset_t sizes. */
|
|
kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
|
|
kc_bitsize = sizeof(uint32_t) * kc_nfields;
|
|
KASSERT(kc_nfields != 0 && kc_bitsize != 0);
|
|
|
|
kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
|
|
coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
|
|
|
|
/* First, pre-allocate kcpuset entries. */
|
|
for (i = 0; i < kc_last_idx; i++) {
|
|
kcp = kcpuset_create_raw(true);
|
|
kc_dynamic[i] = kcp;
|
|
}
|
|
|
|
/*
|
|
* Prepare to convert all early noted kcpuset uses to dynamic sets.
|
|
* All processors, except the one we are currently running (primary),
|
|
* must not be spinned yet. Since MD facilities can use kcpuset,
|
|
* raise the IPL to high.
|
|
*/
|
|
KASSERT(mp_online == false);
|
|
|
|
s = splhigh();
|
|
for (i = 0; i < kc_last_idx; i++) {
|
|
/*
|
|
* Transfer the bits from early static storage to the kcpuset.
|
|
*/
|
|
KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
|
|
memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
|
|
|
|
/*
|
|
* Store the new pointer, pointing to the allocated kcpuset.
|
|
* Note: we are not in an interrupt context and it is the only
|
|
* CPU running - thus store is safe (e.g. no need for pointer
|
|
* variable to be volatile).
|
|
*/
|
|
*kc_noted_early[i] = kc_dynamic[i];
|
|
}
|
|
kc_initialised = true;
|
|
kc_last_idx = 0;
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* kcpuset_early_ptr: note an early boot use by saving the pointer and
|
|
* returning a pointer to a static, temporary bit field.
|
|
*/
|
|
static kcpuset_t *
|
|
kcpuset_early_ptr(kcpuset_t **kcptr)
|
|
{
|
|
kcpuset_t *kcp;
|
|
int s;
|
|
|
|
s = splhigh();
|
|
if (kc_last_idx < KC_SAVE_NITEMS) {
|
|
/*
|
|
* Save the pointer, return pointer to static early field.
|
|
* Need to zero it out.
|
|
*/
|
|
kc_noted_early[kc_last_idx] = kcptr;
|
|
kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
|
|
kc_last_idx++;
|
|
memset(kcp, 0, KC_BITSIZE_EARLY);
|
|
KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
|
|
} else {
|
|
panic("kcpuset(9): all early-use entries exhausted; "
|
|
"increase KC_SAVE_NITEMS\n");
|
|
}
|
|
splx(s);
|
|
|
|
return kcp;
|
|
}
|
|
|
|
/*
|
|
* Routines to create or destroy the CPU set.
|
|
* Early boot case is handled.
|
|
*/
|
|
|
|
static kcpuset_t *
|
|
kcpuset_create_raw(bool zero)
|
|
{
|
|
kcpuset_impl_t *kc;
|
|
|
|
kc = pool_cache_get(kc_cache, PR_WAITOK);
|
|
kc->kc_refcnt = 1;
|
|
kc->kc_next = NULL;
|
|
|
|
if (zero) {
|
|
memset(&kc->kc_field, 0, kc_bitsize);
|
|
}
|
|
|
|
/* Note: return pointer to the actual field of bits. */
|
|
KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
|
|
return &kc->kc_field;
|
|
}
|
|
|
|
void
|
|
kcpuset_create(kcpuset_t **retkcp, bool zero)
|
|
{
|
|
if (__predict_false(!kc_initialised)) {
|
|
/* Early boot use - special case. */
|
|
*retkcp = kcpuset_early_ptr(retkcp);
|
|
return;
|
|
}
|
|
*retkcp = kcpuset_create_raw(zero);
|
|
}
|
|
|
|
void
|
|
kcpuset_destroy(kcpuset_t *kcp)
|
|
{
|
|
kcpuset_impl_t *kc;
|
|
|
|
KASSERT(kc_initialised);
|
|
KASSERT(kcp != NULL);
|
|
|
|
do {
|
|
kc = KC_GETSTRUCT(kcp);
|
|
kcp = kc->kc_next;
|
|
pool_cache_put(kc_cache, kc);
|
|
} while (kcp);
|
|
}
|
|
|
|
/*
|
|
* Routines to reference/unreference the CPU set.
|
|
* Note: early boot case is not supported by these routines.
|
|
*/
|
|
|
|
void
|
|
kcpuset_use(kcpuset_t *kcp)
|
|
{
|
|
kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
|
|
|
|
KASSERT(kc_initialised);
|
|
atomic_inc_uint(&kc->kc_refcnt);
|
|
}
|
|
|
|
void
|
|
kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
|
|
{
|
|
kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
|
|
|
|
KASSERT(kc_initialised);
|
|
KASSERT(kc->kc_refcnt > 0);
|
|
|
|
if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
|
|
return;
|
|
}
|
|
KASSERT(kc->kc_next == NULL);
|
|
if (lst == NULL) {
|
|
kcpuset_destroy(kcp);
|
|
return;
|
|
}
|
|
kc->kc_next = *lst;
|
|
*lst = kcp;
|
|
}
|
|
|
|
/*
|
|
* Routines to transfer the CPU set from / to userspace.
|
|
* Note: early boot case is not supported by these routines.
|
|
*/
|
|
|
|
int
|
|
kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
|
|
{
|
|
kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
|
|
|
|
KASSERT(kc_initialised);
|
|
KASSERT(kc->kc_refcnt > 0);
|
|
KASSERT(kc->kc_next == NULL);
|
|
|
|
if (len > kc_bitsize) { /* XXX */
|
|
return EINVAL;
|
|
}
|
|
return copyin(ucp, kcp, len);
|
|
}
|
|
|
|
int
|
|
kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
|
|
{
|
|
kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
|
|
|
|
KASSERT(kc_initialised);
|
|
KASSERT(kc->kc_refcnt > 0);
|
|
KASSERT(kc->kc_next == NULL);
|
|
|
|
if (len > kc_bitsize) { /* XXX */
|
|
return EINVAL;
|
|
}
|
|
return copyout(kcp, ucp, len);
|
|
}
|
|
|
|
void
|
|
kcpuset_copybits(const kcpuset_t *kcp, void *bitfield, size_t len)
|
|
{
|
|
size_t rlen = MIN(kc_bitsize, len);
|
|
|
|
KASSERT(kcp != NULL);
|
|
memcpy(bitfield, kcp->bits, rlen);
|
|
}
|
|
|
|
/*
|
|
* Routines to change bit field - zero, fill, copy, set, unset, etc.
|
|
*/
|
|
|
|
void
|
|
kcpuset_zero(kcpuset_t *kcp)
|
|
{
|
|
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
|
|
memset(kcp, 0, kc_bitsize);
|
|
}
|
|
|
|
void
|
|
kcpuset_fill(kcpuset_t *kcp)
|
|
{
|
|
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
|
|
memset(kcp, ~0, kc_bitsize);
|
|
}
|
|
|
|
void
|
|
kcpuset_copy(kcpuset_t *dkcp, kcpuset_t *skcp)
|
|
{
|
|
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
|
|
memcpy(dkcp, skcp, kc_bitsize);
|
|
}
|
|
|
|
void
|
|
kcpuset_set(kcpuset_t *kcp, cpuid_t i)
|
|
{
|
|
const size_t j = i >> KC_SHIFT;
|
|
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
|
|
KASSERT(j < kc_nfields);
|
|
|
|
kcp->bits[j] |= 1 << (i & KC_MASK);
|
|
}
|
|
|
|
void
|
|
kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
|
|
{
|
|
const size_t j = i >> KC_SHIFT;
|
|
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
|
|
KASSERT(j < kc_nfields);
|
|
|
|
kcp->bits[j] &= ~(1 << (i & KC_MASK));
|
|
}
|
|
|
|
bool
|
|
kcpuset_isset(kcpuset_t *kcp, cpuid_t i)
|
|
{
|
|
const size_t j = i >> KC_SHIFT;
|
|
|
|
KASSERT(kcp != NULL);
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
|
|
KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
|
|
KASSERT(j < kc_nfields);
|
|
|
|
return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0;
|
|
}
|
|
|
|
bool
|
|
kcpuset_isotherset(kcpuset_t *kcp, cpuid_t i)
|
|
{
|
|
const size_t j2 = i >> KC_SHIFT;
|
|
const uint32_t mask = ~(1 << (i & KC_MASK));
|
|
|
|
for (size_t j = 0; j < kc_nfields; j++) {
|
|
const uint32_t bits = kcp->bits[j];
|
|
if (bits && (j != j2 || (bits & mask) != 0)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
kcpuset_iszero(kcpuset_t *kcp)
|
|
{
|
|
|
|
for (size_t j = 0; j < kc_nfields; j++) {
|
|
if (kcp->bits[j] != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
|
|
{
|
|
|
|
return memcmp(kcp1, kcp2, kc_bitsize) == 0;
|
|
}
|
|
|
|
void
|
|
kcpuset_merge(kcpuset_t *kcp1, kcpuset_t *kcp2)
|
|
{
|
|
|
|
for (size_t j = 0; j < kc_nfields; j++) {
|
|
kcp1->bits[j] |= kcp2->bits[j];
|
|
}
|
|
}
|
|
|
|
void
|
|
kcpuset_intersect(kcpuset_t *kcp1, kcpuset_t *kcp2)
|
|
{
|
|
|
|
for (size_t j = 0; j < kc_nfields; j++) {
|
|
kcp1->bits[j] &= kcp2->bits[j];
|
|
}
|
|
}
|
|
|
|
int
|
|
kcpuset_countset(kcpuset_t *kcp)
|
|
{
|
|
int count = 0;
|
|
|
|
for (size_t j = 0; j < kc_nfields; j++) {
|
|
count += popcount32(kcp->bits[j]);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Routines to set/clear the flags atomically.
|
|
*/
|
|
|
|
void
|
|
kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
|
|
{
|
|
const size_t j = i >> KC_SHIFT;
|
|
|
|
KASSERT(j < kc_nfields);
|
|
atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK));
|
|
}
|
|
|
|
void
|
|
kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
|
|
{
|
|
const size_t j = i >> KC_SHIFT;
|
|
|
|
KASSERT(j < kc_nfields);
|
|
atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK)));
|
|
}
|