NetBSD/sys/dev/ic/arn9285.c
christos b787afbfb6 - remove unused variables
- move variables inside ifdef sections
- ifdef notdef unused code
- use __USE for debugging variables
2013-10-17 21:24:24 +00:00

893 lines
27 KiB
C

/* $NetBSD: arn9285.c,v 1.3 2013/10/17 21:24:24 christos Exp $ */
/* $OpenBSD: ar9285.c,v 1.19 2012/06/10 21:23:36 kettenis Exp $ */
/*-
* Copyright (c) 2009-2010 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2008-2010 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Atheros 802.11a/g/n chipsets.
* Routines for AR9285 and AR9271 chipsets.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: arn9285.c,v 1.3 2013/10/17 21:24:24 christos Exp $");
#ifndef _MODULE
#include "athn_usb.h"
#endif
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/athnreg.h>
#include <dev/ic/athnvar.h>
#include <dev/ic/arn9285.h>
#include <dev/ic/arn5008reg.h>
#include <dev/ic/arn9280reg.h>
#include <dev/ic/arn9285reg.h>
#include <dev/ic/arn5008.h>
#include <dev/ic/arn9280.h>
#include <dev/ic/arn9285.h>
#define Static static
Static int ar9285_cl_cal(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
Static void ar9285_get_pdadcs(struct athn_softc *,
struct ieee80211_channel *, int, uint8_t, uint8_t *,
uint8_t *);
Static const struct ar_spur_chan *
ar9285_get_spur_chans(struct athn_softc *, int);
Static void ar9285_init_from_rom(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
Static void ar9285_set_power_calib(struct athn_softc *,
struct ieee80211_channel *);
Static void ar9285_set_txpower(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
Static void ar9285_setup(struct athn_softc *);
Static void ar9285_swap_rom(struct athn_softc *);
PUBLIC int
ar9285_attach(struct athn_softc *sc)
{
sc->sc_eep_base = AR9285_EEP_START_LOC;
sc->sc_eep_size = sizeof(struct ar9285_eeprom);
sc->sc_def_nf = AR9285_PHY_CCA_MAX_GOOD_VALUE;
sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 12;
sc->sc_led_pin = (sc->sc_flags & ATHN_FLAG_USB) ? 15 : 1;
sc->sc_workaround = AR9285_WA_DEFAULT;
sc->sc_ops.setup = ar9285_setup;
sc->sc_ops.swap_rom = ar9285_swap_rom;
sc->sc_ops.init_from_rom = ar9285_init_from_rom;
sc->sc_ops.set_txpower = ar9285_set_txpower;
sc->sc_ops.set_synth = ar9280_set_synth;
sc->sc_ops.spur_mitigate = ar9280_spur_mitigate;
sc->sc_ops.get_spur_chans = ar9285_get_spur_chans;
#if NATHN_USB > 0
if (AR_SREV_9271(sc))
sc->sc_ini = &ar9271_ini;
else
#endif
sc->sc_ini = &ar9285_1_2_ini;
sc->sc_serdes = &ar9280_2_0_serdes;
return ar5008_attach(sc);
}
Static void
ar9285_setup(struct athn_softc *sc)
{
const struct ar9285_eeprom *eep = sc->sc_eep;
uint8_t type;
/* Select initialization values based on ROM. */
type = eep->baseEepHeader.txGainType;
DPRINTFN(DBG_TX, sc, "Tx gain type=0x%x\n", type);
#if NATHN_USB > 0
if (AR_SREV_9271(sc)) {
if (type == AR_EEP_TXGAIN_HIGH_POWER)
sc->sc_tx_gain = &ar9271_tx_gain_high_power;
else
sc->sc_tx_gain = &ar9271_tx_gain;
}
else
#endif /* NATHN_USB */
if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) { /* XE rev. */
if (type == AR_EEP_TXGAIN_HIGH_POWER)
sc->sc_tx_gain = &ar9285_2_0_tx_gain_high_power;
else
sc->sc_tx_gain = &ar9285_2_0_tx_gain;
}
else {
if (type == AR_EEP_TXGAIN_HIGH_POWER)
sc->sc_tx_gain = &ar9285_1_2_tx_gain_high_power;
else
sc->sc_tx_gain = &ar9285_1_2_tx_gain;
}
}
Static void
ar9285_swap_rom(struct athn_softc *sc)
{
struct ar9285_eeprom *eep = sc->sc_eep;
int i;
eep->modalHeader.antCtrlCommon =
bswap32(eep->modalHeader.antCtrlCommon);
eep->modalHeader.antCtrlChain =
bswap32(eep->modalHeader.antCtrlChain);
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
eep->modalHeader.spurChans[i].spurChan =
bswap16(eep->modalHeader.spurChans[i].spurChan);
}
}
Static const struct ar_spur_chan *
ar9285_get_spur_chans(struct athn_softc *sc, int is2ghz)
{
const struct ar9285_eeprom *eep = sc->sc_eep;
KASSERT(is2ghz);
return eep->modalHeader.spurChans;
}
Static void
ar9285_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
const struct ar9285_eeprom *eep = sc->sc_eep;
const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
uint32_t reg, offset = 0x1000;
uint8_t ob[5], db1[5], db2[5];
uint8_t txRxAtten;
AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0, modal->antCtrlChain);
reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalI);
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQ);
AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) {
reg = AR_READ(sc, AR_PHY_GAIN_2GHZ);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
modal->bswMargin);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
modal->bswAtten);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
modal->xatten2Margin);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
modal->xatten2Db);
AR_WRITE(sc, AR_PHY_GAIN_2GHZ, reg);
/* Duplicate values of chain 0 for chain 1. */
reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
modal->bswMargin);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
modal->bswAtten);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
modal->xatten2Margin);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
modal->xatten2Db);
AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
}
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3)
txRxAtten = modal->txRxAtten;
else /* Workaround for ROM versions < 14.3. */
txRxAtten = 23;
reg = AR_READ(sc, AR_PHY_RXGAIN);
reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
AR_WRITE(sc, AR_PHY_RXGAIN, reg);
/* Duplicate values of chain 0 for chain 1. */
reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
if (modal->version >= 3) {
/* Setup antenna diversity from ROM. */
reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);
reg = RW(reg, AR9285_PHY_ANT_DIV_CTL_ALL, 0);
reg = RW(reg, AR9285_PHY_ANT_DIV_CTL,
(modal->ob_234 >> 12) & 0x1);
reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_LNACONF,
(modal->db1_234 >> 12) & 0x3);
reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_LNACONF,
(modal->db1_234 >> 14) & 0x3);
reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_GAINTB,
(modal->ob_234 >> 13) & 0x1);
reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_GAINTB,
(modal->ob_234 >> 14) & 0x1);
AR_WRITE(sc, AR_PHY_MULTICHAIN_GAIN_CTL, reg);
reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL); /* Flush. */
reg = AR_READ(sc, AR_PHY_CCK_DETECT);
if (modal->ob_234 & (1 << 15))
reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
else
reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
reg = AR_READ(sc, AR_PHY_CCK_DETECT); /* Flush. */
}
if (modal->version >= 2) {
ob [0] = (modal->ob_01 >> 0) & 0xf;
ob [1] = (modal->ob_01 >> 4) & 0xf;
ob [2] = (modal->ob_234 >> 0) & 0xf;
ob [3] = (modal->ob_234 >> 4) & 0xf;
ob [4] = (modal->ob_234 >> 8) & 0xf;
db1[0] = (modal->db1_01 >> 0) & 0xf;
db1[1] = (modal->db1_01 >> 4) & 0xf;
db1[2] = (modal->db1_234 >> 0) & 0xf;
db1[3] = (modal->db1_234 >> 4) & 0xf;
db1[4] = (modal->db1_234 >> 8) & 0xf;
db2[0] = (modal->db2_01 >> 0) & 0xf;
db2[1] = (modal->db2_01 >> 4) & 0xf;
db2[2] = (modal->db2_234 >> 0) & 0xf;
db2[3] = (modal->db2_234 >> 4) & 0xf;
db2[4] = (modal->db2_234 >> 8) & 0xf;
}
else if (modal->version == 1) {
ob [0] = (modal->ob_01 >> 0) & 0xf;
ob [1] = (modal->ob_01 >> 4) & 0xf;
/* Field ob_234 does not exist, use ob_01. */
ob [2] = ob [3] = ob [4] = ob [1];
db1[0] = (modal->db1_01 >> 0) & 0xf;
db1[1] = (modal->db1_01 >> 4) & 0xf;
/* Field db1_234 does not exist, use db1_01. */
db1[2] = db1[3] = db1[4] = db1[1];
db2[0] = (modal->db2_01 >> 0) & 0xf;
db2[1] = (modal->db2_01 >> 4) & 0xf;
/* Field db2_234 does not exist, use db2_01. */
db2[2] = db2[3] = db2[4] = db2[1];
}
else {
ob [0] = modal->ob_01;
ob [1] = ob [2] = ob [3] = ob [4] = ob [0];
db1[0] = modal->db1_01;
db1[1] = db1[2] = db1[3] = db1[4] = db1[0];
/* Field db2_01 does not exist, use db1_01. */
db2[0] = modal->db1_01;
db2[1] = db2[2] = db2[3] = db2[4] = db2[0];
}
#if NATHN_USB > 0
if (AR_SREV_9271(sc)) {
reg = AR_READ(sc, AR9285_AN_RF2G3);
reg = RW(reg, AR9271_AN_RF2G3_OB_CCK, ob [0]);
reg = RW(reg, AR9271_AN_RF2G3_OB_PSK, ob [1]);
reg = RW(reg, AR9271_AN_RF2G3_OB_QAM, ob [2]);
reg = RW(reg, AR9271_AN_RF2G3_DB1, db1[0]);
AR_WRITE(sc, AR9285_AN_RF2G3, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
reg = AR_READ(sc, AR9285_AN_RF2G4);
reg = RW(reg, AR9271_AN_RF2G4_DB2, db2[0]);
AR_WRITE(sc, AR9285_AN_RF2G4, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
}
else
#endif /* ATHN_USB */
{
reg = AR_READ(sc, AR9285_AN_RF2G3);
reg = RW(reg, AR9285_AN_RF2G3_OB_0, ob [0]);
reg = RW(reg, AR9285_AN_RF2G3_OB_1, ob [1]);
reg = RW(reg, AR9285_AN_RF2G3_OB_2, ob [2]);
reg = RW(reg, AR9285_AN_RF2G3_OB_3, ob [3]);
reg = RW(reg, AR9285_AN_RF2G3_OB_4, ob [4]);
reg = RW(reg, AR9285_AN_RF2G3_DB1_0, db1[0]);
reg = RW(reg, AR9285_AN_RF2G3_DB1_1, db1[1]);
reg = RW(reg, AR9285_AN_RF2G3_DB1_2, db1[2]);
AR_WRITE(sc, AR9285_AN_RF2G3, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
reg = AR_READ(sc, AR9285_AN_RF2G4);
reg = RW(reg, AR9285_AN_RF2G4_DB1_3, db1[3]);
reg = RW(reg, AR9285_AN_RF2G4_DB1_4, db1[4]);
reg = RW(reg, AR9285_AN_RF2G4_DB2_0, db2[0]);
reg = RW(reg, AR9285_AN_RF2G4_DB2_1, db2[1]);
reg = RW(reg, AR9285_AN_RF2G4_DB2_2, db2[2]);
reg = RW(reg, AR9285_AN_RF2G4_DB2_3, db2[3]);
reg = RW(reg, AR9285_AN_RF2G4_DB2_4, db2[4]);
AR_WRITE(sc, AR9285_AN_RF2G4, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
}
reg = AR_READ(sc, AR_PHY_SETTLING);
reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
AR_WRITE(sc, AR_PHY_SETTLING, reg);
reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
reg = AR_READ(sc, AR_PHY_RF_CTL3);
reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
reg = AR_READ(sc, AR_PHY_CCA(0));
reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
AR_WRITE(sc, AR_PHY_CCA(0), reg);
reg = AR_READ(sc, AR_PHY_EXT_CCA0);
reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) {
reg = AR_READ(sc, AR_PHY_RF_CTL2);
reg = RW(reg, AR_PHY_TX_END_PA_ON,
modal->txFrameToPaOn);
reg = RW(reg, AR_PHY_TX_END_DATA_START,
modal->txFrameToDataStart);
AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
}
#ifndef IEEE80211_NO_HT
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
reg = AR_READ(sc, AR_PHY_SETTLING);
reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
AR_WRITE(sc, AR_PHY_SETTLING, reg);
}
#endif
AR_WRITE_BARRIER(sc);
}
PUBLIC void
ar9285_pa_calib(struct athn_softc *sc)
{
/* List of registers that need to be saved/restored. */
static const uint16_t regs[] = {
AR9285_AN_TOP3,
AR9285_AN_RXTXBB1,
AR9285_AN_RF2G1,
AR9285_AN_RF2G2,
AR9285_AN_TOP2,
AR9285_AN_RF2G8,
AR9285_AN_RF2G7
};
uint32_t svg[7], reg, ccomp_svg;
size_t i;
/* No PA calibration needed for high power solutions. */
if (AR_SREV_9285(sc) &&
((struct ar9285_base_eep_header *)sc->sc_eep)->txGainType ==
AR_EEP_TXGAIN_HIGH_POWER) /* XXX AR9287? */
return;
/* Save registers. */
for (i = 0; i < __arraycount(regs); i++)
svg[i] = AR_READ(sc, regs[i]);
AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
AR_SETBITS(sc, AR_PHY(2), 1 << 27);
AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
/* Power down PA drivers. */
AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
reg = AR_READ(sc, AR9285_AN_RF2G8);
reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
AR_WRITE(sc, AR9285_AN_RF2G8, reg);
reg = AR_READ(sc, AR9285_AN_RF2G7);
reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
AR_WRITE(sc, AR9285_AN_RF2G7, reg);
reg = AR_READ(sc, AR9285_AN_RF2G6);
/* Save compensation capacitor value. */
ccomp_svg = MS(reg, AR9285_AN_RF2G6_CCOMP);
/* Program compensation capacitor for dynamic PA. */
reg = RW(reg, AR9285_AN_RF2G6_CCOMP, 0xf);
AR_WRITE(sc, AR9285_AN_RF2G6, reg);
AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
AR_WRITE_BARRIER(sc);
DELAY(30);
/* Clear offsets 6-1. */
AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS_6_1);
/* Clear offset 0. */
AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
/* Set offsets 6-1. */
for (i = 6; i >= 1; i--) {
AR_SETBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i));
AR_WRITE_BARRIER(sc);
DELAY(1);
if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) {
AR_SETBITS(sc, AR9285_AN_RF2G6,
AR9285_AN_RF2G6_OFFS(i));
}
else {
AR_CLRBITS(sc, AR9285_AN_RF2G6,
AR9285_AN_RF2G6_OFFS(i));
}
}
/* Set offset 0. */
AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
AR_WRITE_BARRIER(sc);
DELAY(1);
if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9)
AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
else
AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
AR_WRITE_BARRIER(sc);
AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
/* Restore registers. */
for (i = 0; i < __arraycount(regs); i++)
AR_WRITE(sc, regs[i], svg[i]);
/* Restore compensation capacitor value. */
reg = AR_READ(sc, AR9285_AN_RF2G6);
reg = RW(reg, AR9285_AN_RF2G6_CCOMP, ccomp_svg);
AR_WRITE(sc, AR9285_AN_RF2G6, reg);
AR_WRITE_BARRIER(sc);
}
PUBLIC void
ar9271_pa_calib(struct athn_softc *sc)
{
#if NATHN_USB > 0
/* List of registers that need to be saved/restored. */
static const uint16_t regs[] = {
AR9285_AN_TOP3,
AR9285_AN_RXTXBB1,
AR9285_AN_RF2G1,
AR9285_AN_RF2G2,
AR9285_AN_TOP2,
AR9285_AN_RF2G8,
AR9285_AN_RF2G7
};
uint32_t svg[7], reg, rf2g3_svg;
size_t i;
/* Save registers. */
for (i = 0; i < __arraycount(regs); i++)
svg[i] = AR_READ(sc, regs[i]);
AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
AR_SETBITS(sc, AR_PHY(2), 1 << 27);
AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
/* Power down PA drivers. */
AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
reg = AR_READ(sc, AR9285_AN_RF2G8);
reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
AR_WRITE(sc, AR9285_AN_RF2G8, reg);
reg = AR_READ(sc, AR9285_AN_RF2G7);
reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
AR_WRITE(sc, AR9285_AN_RF2G7, reg);
/* Save compensation capacitor value. */
reg = rf2g3_svg = AR_READ(sc, AR9285_AN_RF2G3);
/* Program compensation capacitor for dynamic PA. */
reg = RW(reg, AR9271_AN_RF2G3_CCOMP, 0xfff);
AR_WRITE(sc, AR9285_AN_RF2G3, reg);
AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
AR_WRITE_BARRIER(sc);
DELAY(30);
/* Clear offsets 6-0. */
AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS_6_0);
/* Set offsets 6-1. */
for (i = 6; i >= 1; i--) {
reg = AR_READ(sc, AR9285_AN_RF2G6);
reg |= AR9271_AN_RF2G6_OFFS(i);
AR_WRITE(sc, AR9285_AN_RF2G6, reg);
AR_WRITE_BARRIER(sc);
DELAY(1);
if (!(AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9))
reg &= ~AR9271_AN_RF2G6_OFFS(i);
AR_WRITE(sc, AR9285_AN_RF2G6, reg);
}
AR_WRITE_BARRIER(sc);
AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
/* Restore registers. */
for (i = 0; i < __arraycount(regs); i++)
AR_WRITE(sc, regs[i], svg[i]);
/* Restore compensation capacitor value. */
AR_WRITE(sc, AR9285_AN_RF2G3, rf2g3_svg);
AR_WRITE_BARRIER(sc);
#endif /* NATHN_USB */
}
/*
* Carrier Leakage Calibration.
*/
int
ar9285_cl_cal(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
int ntries;
AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
#ifndef IEEE80211_NO_HT
if (0 && extc == NULL) { /* XXX IS_CHAN_HT20!! */
AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
AR_SETBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_FLTR_CAL);
AR_CLRBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
for (ntries = 0; ntries < 10000; ntries++) {
if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_CAL))
break;
DELAY(10);
}
if (ntries == 10000)
return ETIMEDOUT;
AR_CLRBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
}
#endif
AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
AR_SETBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
for (ntries = 0; ntries < 10000; ntries++) {
if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_CAL))
break;
DELAY(10);
}
if (ntries == 10000)
return ETIMEDOUT;
AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
AR_WRITE_BARRIER(sc);
return 0;
}
PUBLIC void
ar9271_load_ani(struct athn_softc *sc)
{
#if NATHN_USB > 0
/* Write ANI registers. */
AR_WRITE(sc, AR_PHY_DESIRED_SZ, 0x6d4000e2);
AR_WRITE(sc, AR_PHY_AGC_CTL1, 0x3139605e);
AR_WRITE(sc, AR_PHY_FIND_SIG, 0x7ec84d2e);
AR_WRITE(sc, AR_PHY_SFCORR_LOW, 0x06903881);
AR_WRITE(sc, AR_PHY_SFCORR, 0x5ac640d0);
AR_WRITE(sc, AR_PHY_CCK_DETECT, 0x803e68c8);
AR_WRITE(sc, AR_PHY_TIMING5, 0xd00a8007);
AR_WRITE(sc, AR_PHY_SFCORR_EXT, 0x05eea6d4);
AR_WRITE_BARRIER(sc);
#endif /* NATHN_USB */
}
int
ar9285_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint32_t reg, mask, clcgain, rf2g5_svg;
int i, maxgain, nclcs, thresh, error;
/* Do carrier leakage calibration. */
if ((error = ar9285_cl_cal(sc, c, extc)) != 0)
return error;
/* Workaround for high temperature is not applicable on AR9271. */
if (AR_SREV_9271(sc))
return 0;
mask = 0;
nclcs = 0;
reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7);
maxgain = MS(reg, AR_PHY_TX_PWRCTRL_TX_GAIN_TAB_MAX);
for (i = 0; i <= maxgain; i++) {
reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i));
clcgain = MS(reg, AR_PHY_TX_GAIN_CLC);
/* NB: clcgain <= 0xf. */
if (!(mask & (1 << clcgain))) {
mask |= 1 << clcgain;
nclcs++;
}
}
thresh = 0;
for (i = 0; i < nclcs; i++) {
reg = AR_READ(sc, AR_PHY_CLC_TBL(i));
if (MS(reg, AR_PHY_CLC_I0) == 0)
thresh++;
if (MS(reg, AR_PHY_CLC_Q0) == 0)
thresh++;
}
if (thresh <= AR9285_CL_CAL_REDO_THRESH)
return 0; /* No need to redo. */
/* Threshold reached, redo carrier leakage calibration. */
DPRINTFN(DBG_INIT, sc, "CLC threshold=%d\n", thresh);
rf2g5_svg = reg = AR_READ(sc, AR9285_AN_RF2G5);
if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) /* XE rev. */
reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x5);
else
reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x4);
AR_WRITE(sc, AR9285_AN_RF2G5, reg);
AR_WRITE_BARRIER(sc);
error = ar9285_cl_cal(sc, c, extc);
AR_WRITE(sc, AR9285_AN_RF2G5, rf2g5_svg);
AR_WRITE_BARRIER(sc);
return error;
}
Static void
ar9285_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
{
const struct ar9285_eeprom *eep = sc->sc_eep;
const struct ar9285_cal_data_per_freq *pierdata;
const uint8_t *pierfreq;
struct athn_pier lopier, hipier;
uint8_t fbin;
int i, lo, hi, npiers;
pierfreq = eep->calFreqPier2G;
pierdata = eep->calPierData2G;
npiers = AR9285_NUM_2G_CAL_PIERS;
/* Find channel in ROM pier table. */
fbin = athn_chan2fbin(c);
athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
lopier.fbin = pierfreq[lo];
hipier.fbin = pierfreq[hi];
for (i = 0; i < nxpdgains; i++) {
lopier.pwr[i] = pierdata[lo].pwrPdg[i];
lopier.vpd[i] = pierdata[lo].vpdPdg[i];
hipier.pwr[i] = pierdata[lo].pwrPdg[i];
hipier.vpd[i] = pierdata[lo].vpdPdg[i];
}
ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
AR9285_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);
}
Static void
ar9285_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
{
const struct ar9285_eeprom *eep = sc->sc_eep;
uint8_t boundaries[AR_PD_GAINS_IN_MASK];
uint8_t pdadcs[AR_NUM_PDADC_VALUES];
uint8_t xpdgains[AR9285_NUM_PD_GAINS];
uint8_t overlap;
uint32_t reg;
int i, nxpdgains;
if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) {
overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
}
else
overlap = eep->modalHeader.pdGainOverlap;
nxpdgains = 0;
memset(xpdgains, 0, sizeof(xpdgains));
for (i = AR9285_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
if (nxpdgains >= AR9285_NUM_PD_GAINS)
break;
if (eep->modalHeader.xpdGain & (1 << i))
xpdgains[nxpdgains++] = i;
}
reg = AR_READ(sc, AR_PHY_TPCRG1);
reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
AR_WRITE(sc, AR_PHY_TPCRG1, reg);
/* NB: No open loop power control for AR9285. */
ar9285_get_pdadcs(sc, c, nxpdgains, overlap, boundaries, pdadcs);
/* Write boundaries. */
reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]);
AR_WRITE(sc, AR_PHY_TPCRG5, reg);
/* Write PDADC values. */
for (i = 0; i < AR_NUM_PDADC_VALUES; i += 4) {
AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + i,
pdadcs[i + 0] << 0 |
pdadcs[i + 1] << 8 |
pdadcs[i + 2] << 16 |
pdadcs[i + 3] << 24);
}
AR_WRITE_BARRIER(sc);
}
Static void
ar9285_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
const struct ar9285_eeprom *eep = sc->sc_eep;
#ifdef notyet
const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
#endif
uint8_t tpow_cck[4], tpow_ofdm[4];
#ifndef IEEE80211_NO_HT
uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
uint8_t tpow_ht20[8], tpow_ht40[8];
uint8_t ht40inc;
#endif
int16_t power[ATHN_POWER_COUNT];
int i;
ar9285_set_power_calib(sc, c);
#ifdef notyet
/* Compute transmit power reduction due to antenna gain. */
uint16_t max_ant_gain = modal->antennaGain;
/* XXX */
#endif
/* Get CCK target powers. */
ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
AR9285_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
/* Get OFDM target powers. */
ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
AR9285_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
#ifndef IEEE80211_NO_HT
/* Get HT-20 target powers. */
ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20,
AR9285_NUM_2G_20_TARGET_POWERS, tpow_ht20);
if (extc != NULL) {
/* Get HT-40 target powers. */
ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
eep->calTargetPower2GHT40, AR9285_NUM_2G_40_TARGET_POWERS,
tpow_ht40);
/* Get secondary channel CCK target powers. */
ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
eep->calTargetPowerCck, AR9285_NUM_2G_CCK_TARGET_POWERS,
tpow_cck_ext);
/* Get secondary channel OFDM target powers. */
ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
eep->calTargetPower2G, AR9285_NUM_2G_20_TARGET_POWERS,
tpow_ofdm_ext);
}
#endif
memset(power, 0, sizeof(power));
/* Shuffle target powers accross transmit rates. */
power[ATHN_POWER_OFDM6 ] =
power[ATHN_POWER_OFDM9 ] =
power[ATHN_POWER_OFDM12 ] =
power[ATHN_POWER_OFDM18 ] =
power[ATHN_POWER_OFDM24 ] = tpow_ofdm[0];
power[ATHN_POWER_OFDM36 ] = tpow_ofdm[1];
power[ATHN_POWER_OFDM48 ] = tpow_ofdm[2];
power[ATHN_POWER_OFDM54 ] = tpow_ofdm[3];
power[ATHN_POWER_XR ] = tpow_ofdm[0];
power[ATHN_POWER_CCK1_LP ] = tpow_cck[0];
power[ATHN_POWER_CCK2_LP ] =
power[ATHN_POWER_CCK2_SP ] = tpow_cck[1];
power[ATHN_POWER_CCK55_LP] =
power[ATHN_POWER_CCK55_SP] = tpow_cck[2];
power[ATHN_POWER_CCK11_LP] =
power[ATHN_POWER_CCK11_SP] = tpow_cck[3];
#ifndef IEEE80211_NO_HT
for (i = 0; i < __arraycount(tpow_ht20); i++)
power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
if (extc != NULL) {
/* Correct PAR difference between HT40 and HT20/Legacy. */
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
ht40inc = modal->ht40PowerIncForPdadc;
else
ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
for (i = 0; i < __arraycount(tpow_ht40); i++)
power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0];
power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
power[ATHN_POWER_CCK_EXT ] = tpow_cck_ext[0];
}
#endif
for (i = 0; i < ATHN_POWER_COUNT; i++) {
power[i] -= AR_PWR_TABLE_OFFSET_DB * 2; /* In half dB. */
if (power[i] > AR_MAX_RATE_POWER)
power[i] = AR_MAX_RATE_POWER;
}
/* Commit transmit power values to hardware. */
ar5008_write_txpower(sc, power);
}