NetBSD/lib/libpthread/pthread_mutex.c

460 lines
12 KiB
C

/* $NetBSD: pthread_mutex.c,v 1.14 2003/04/23 19:36:12 nathanw Exp $ */
/*-
* Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams, and by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: pthread_mutex.c,v 1.14 2003/04/23 19:36:12 nathanw Exp $");
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "pthread.h"
#include "pthread_int.h"
static int pthread_mutex_lock_slow(pthread_mutex_t *);
__strong_alias(__libc_mutex_init,pthread_mutex_init)
__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
__strong_alias(__libc_thr_once,pthread_once)
struct mutex_private {
int type;
int recursecount;
};
static const struct mutex_private mutex_private_default = {
PTHREAD_MUTEX_DEFAULT,
0,
};
struct mutexattr_private {
int type;
};
static const struct mutexattr_private mutexattr_private_default = {
PTHREAD_MUTEX_DEFAULT,
};
/*
* If the mutex does not already have private data (i.e. was statically
* initialized), then give it the default.
*/
#define GET_MUTEX_PRIVATE(mutex, mp) \
do { \
if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
/* LINTED cast away const */ \
mp = ((mutex)->ptm_private = \
(void *)&mutex_private_default); \
} \
} while (/*CONSTCOND*/0)
int
pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
{
struct mutexattr_private *map;
struct mutex_private *mp;
pthread__error(EINVAL, "Invalid mutex attribute",
(attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
if (attr != NULL && (map = attr->ptma_private) != NULL &&
memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
mp = malloc(sizeof(*mp));
if (mp == NULL)
return ENOMEM;
mp->type = map->type;
mp->recursecount = 0;
} else {
/* LINTED cast away const */
mp = (struct mutex_private *) &mutex_private_default;
}
mutex->ptm_magic = _PT_MUTEX_MAGIC;
mutex->ptm_owner = NULL;
pthread_lockinit(&mutex->ptm_lock);
pthread_lockinit(&mutex->ptm_interlock);
PTQ_INIT(&mutex->ptm_blocked);
mutex->ptm_private = mp;
return 0;
}
int
pthread_mutex_destroy(pthread_mutex_t *mutex)
{
pthread__error(EINVAL, "Invalid mutex",
mutex->ptm_magic == _PT_MUTEX_MAGIC);
pthread__error(EBUSY, "Destroying locked mutex",
mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
mutex->ptm_magic = _PT_MUTEX_DEAD;
if (mutex->ptm_private != NULL &&
mutex->ptm_private != (const void *)&mutex_private_default)
free(mutex->ptm_private);
return 0;
}
/*
* Note regarding memory visibility: Pthreads has rules about memory
* visibility and mutexes. Very roughly: Memory a thread can see when
* it unlocks a mutex can be seen by another thread that locks the
* same mutex.
*
* A memory barrier after a lock and before an unlock will provide
* this behavior. This code relies on pthread__simple_lock_try() to issue
* a barrier after obtaining a lock, and on pthread__simple_unlock() to
* issue a barrier before releasing a lock.
*/
int
pthread_mutex_lock(pthread_mutex_t *mutex)
{
int error;
PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
/*
* Note that if we get the lock, we don't have to deal with any
* non-default lock type handling.
*/
if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
error = pthread_mutex_lock_slow(mutex);
if (error)
return error;
}
/* We have the lock! */
/*
* Identifying ourselves may be slow, and this assignment is
* only needed for (a) debugging identity of the owning thread
* and (b) handling errorcheck and recursive mutexes. It's
* better to just stash our stack pointer here and let those
* slow exception cases compute the stack->thread mapping.
*/
mutex->ptm_owner = (pthread_t)pthread__sp();
return 0;
}
static int
pthread_mutex_lock_slow(pthread_mutex_t *mutex)
{
pthread_t self;
pthread__error(EINVAL, "Invalid mutex",
mutex->ptm_magic == _PT_MUTEX_MAGIC);
self = pthread__self();
PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
while (/*CONSTCOND*/1) {
if (pthread__simple_lock_try(&mutex->ptm_lock))
break; /* got it! */
/* Okay, didn't look free. Get the interlock... */
pthread_spinlock(self, &mutex->ptm_interlock);
/*
* The mutex_unlock routine will get the interlock
* before looking at the list of sleepers, so if the
* lock is held we can safely put ourselves on the
* sleep queue. If it's not held, we can try taking it
* again.
*/
if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
struct mutex_private *mp;
GET_MUTEX_PRIVATE(mutex, mp);
if (pthread__id(mutex->ptm_owner) == self) {
switch (mp->type) {
case PTHREAD_MUTEX_ERRORCHECK:
pthread_spinunlock(self,
&mutex->ptm_interlock);
return EDEADLK;
case PTHREAD_MUTEX_RECURSIVE:
/*
* It's safe to do this without
* holding the interlock, because
* we only modify it if we know we
* own the mutex.
*/
pthread_spinunlock(self,
&mutex->ptm_interlock);
if (mp->recursecount == INT_MAX)
return EAGAIN;
mp->recursecount++;
return 0;
}
}
PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
/*
* Locking a mutex is not a cancellation
* point, so we don't need to do the
* test-cancellation dance. We may get woken
* up spuriously by pthread_cancel or signals,
* but it's okay since we're just going to
* retry.
*/
pthread_spinlock(self, &self->pt_statelock);
self->pt_state = PT_STATE_BLOCKED_QUEUE;
self->pt_sleepobj = mutex;
self->pt_sleepq = &mutex->ptm_blocked;
self->pt_sleeplock = &mutex->ptm_interlock;
pthread_spinunlock(self, &self->pt_statelock);
pthread__block(self, &mutex->ptm_interlock);
/* interlock is not held when we return */
} else {
pthread_spinunlock(self, &mutex->ptm_interlock);
}
/* Go around for another try. */
}
return 0;
}
int
pthread_mutex_trylock(pthread_mutex_t *mutex)
{
pthread__error(EINVAL, "Invalid mutex",
mutex->ptm_magic == _PT_MUTEX_MAGIC);
PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
struct mutex_private *mp;
GET_MUTEX_PRIVATE(mutex, mp);
/*
* These tests can be performed without holding the
* interlock because these fields are only modified
* if we know we own the mutex.
*/
if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
(pthread__id(mutex->ptm_owner) == pthread__self())) {
if (mp->recursecount == INT_MAX)
return EAGAIN;
mp->recursecount++;
return 0;
}
return EBUSY;
}
/* see comment at the end of pthread_mutex_lock() */
mutex->ptm_owner = (pthread_t)pthread__sp();
return 0;
}
int
pthread_mutex_unlock(pthread_mutex_t *mutex)
{
struct mutex_private *mp;
pthread_t self, blocked;
int weown;
pthread__error(EINVAL, "Invalid mutex",
mutex->ptm_magic == _PT_MUTEX_MAGIC);
PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
GET_MUTEX_PRIVATE(mutex, mp);
/*
* These tests can be performed without holding the
* interlock because these fields are only modified
* if we know we own the mutex.
*/
weown = (pthread__id(mutex->ptm_owner) == pthread__self());
switch (mp->type) {
case PTHREAD_MUTEX_RECURSIVE:
if (!weown)
return EPERM;
if (mp->recursecount != 0) {
mp->recursecount--;
return 0;
}
break;
case PTHREAD_MUTEX_ERRORCHECK:
if (!weown)
return EPERM;
default:
pthread__error(EPERM,
"Unlocking mutex owned by another thread", weown);
break;
}
mutex->ptm_owner = NULL;
pthread__simple_unlock(&mutex->ptm_lock);
/*
* Do a double-checked locking dance to see if there are any
* waiters. If we don't see any waiters, we can exit, because
* we've already released the lock. If we do see waiters, they
* were probably waiting on us... there's a slight chance that
* they are waiting on a different thread's ownership of the
* lock that happened between the unlock above and this
* examination of the queue; if so, no harm is done, as the
* waiter will loop and see that the mutex is still locked.
*/
if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
self = pthread__self();
pthread_spinlock(self, &mutex->ptm_interlock);
blocked = PTQ_FIRST(&mutex->ptm_blocked);
if (blocked)
PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
pthread_spinunlock(self, &mutex->ptm_interlock);
/* Give the head of the blocked queue another try. */
if (blocked) {
PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
pthread__sched(self, blocked);
}
}
return 0;
}
int
pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
struct mutexattr_private *map;
map = malloc(sizeof(*map));
if (map == NULL)
return ENOMEM;
*map = mutexattr_private_default;
attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
attr->ptma_private = map;
return 0;
}
int
pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
attr->ptma_magic = _PT_MUTEXATTR_DEAD;
if (attr->ptma_private != NULL)
free(attr->ptma_private);
return 0;
}
int
pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
{
struct mutexattr_private *map;
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
map = attr->ptma_private;
*typep = map->type;
return 0;
}
int
pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
struct mutexattr_private *map;
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
map = attr->ptma_private;
switch (type) {
case PTHREAD_MUTEX_NORMAL:
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_RECURSIVE:
map->type = type;
break;
default:
return EINVAL;
}
return 0;
}
int
pthread_once(pthread_once_t *once_control, void (*routine)(void))
{
if (once_control->pto_done == 0) {
pthread_mutex_lock(&once_control->pto_mutex);
if (once_control->pto_done == 0) {
routine();
once_control->pto_done = 1;
}
pthread_mutex_unlock(&once_control->pto_mutex);
}
return 0;
}