NetBSD/sys/net/route.c

2396 lines
57 KiB
C

/* $NetBSD: route.c,v 1.194 2017/03/24 03:45:02 ozaki-r Exp $ */
/*-
* Copyright (c) 1998, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Kevin M. Lahey of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1980, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)route.c 8.3 (Berkeley) 1/9/95
*/
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_route.h"
#include "opt_net_mpsafe.h"
#endif
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: route.c,v 1.194 2017/03/24 03:45:02 ozaki-r Exp $");
#include <sys/param.h>
#ifdef RTFLUSH_DEBUG
#include <sys/sysctl.h>
#endif
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/kernel.h>
#include <sys/ioctl.h>
#include <sys/pool.h>
#include <sys/kauth.h>
#include <sys/workqueue.h>
#include <sys/syslog.h>
#include <sys/rwlock.h>
#include <sys/mutex.h>
#include <sys/cpu.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#ifdef RTFLUSH_DEBUG
#define rtcache_debug() __predict_false(_rtcache_debug)
#else /* RTFLUSH_DEBUG */
#define rtcache_debug() 0
#endif /* RTFLUSH_DEBUG */
#ifdef RT_DEBUG
#define RT_REFCNT_TRACE(rt) printf("%s:%d: rt=%p refcnt=%d\n", \
__func__, __LINE__, (rt), (rt)->rt_refcnt)
#else
#define RT_REFCNT_TRACE(rt) do {} while (0)
#endif
#ifdef DEBUG
#define dlog(level, fmt, args...) log(level, fmt, ##args)
#else
#define dlog(level, fmt, args...) do {} while (0)
#endif
struct rtstat rtstat;
static int rttrash; /* routes not in table but not freed */
static struct pool rtentry_pool;
static struct pool rttimer_pool;
static struct callout rt_timer_ch; /* callout for rt_timer_timer() */
static struct workqueue *rt_timer_wq;
static struct work rt_timer_wk;
static void rt_timer_init(void);
static void rt_timer_queue_remove_all(struct rttimer_queue *);
static void rt_timer_remove_all(struct rtentry *);
static void rt_timer_timer(void *);
/*
* Locking notes:
* - The routing table is protected by a global rwlock
* - API: RT_RLOCK and friends
* - rtcaches are protected by a global rwlock
* - API: RTCACHE_RLOCK and friends
* - References to a rtentry is managed by reference counting and psref
* - Reference couting is used for temporal reference when a rtentry
* is fetched from the routing table
* - psref is used for temporal reference when a rtentry is fetched
* from a rtcache
* - struct route (rtcache) has struct psref, so we cannot obtain
* a reference twice on the same struct route
* - Befere destroying or updating a rtentry, we have to wait for
* all references left (see below for details)
* - APIs
* - An obtained rtentry via rtalloc1 or rtrequest* must be
* unreferenced by rt_unref
* - An obtained rtentry via rtcache_* must be unreferenced by
* rtcache_unref
* - TODO: once we get a lockless routing table, we should use only
* psref for rtentries
* - rtentry destruction
* - A rtentry is destroyed (freed) only when we call rtrequest(RTM_DELETE)
* - If a caller of rtrequest grabs a reference of a rtentry, the caller
* has a responsibility to destroy the rtentry by itself by calling
* rt_free
* - If not, rtrequest itself does that
* - If rt_free is called in softint, the actual destruction routine is
* deferred to a workqueue
* - rtentry update
* - When updating a rtentry, RTF_UPDATING flag is set
* - If a rtentry is set RTF_UPDATING, fetching the rtentry from
* the routing table or a rtcache results in either of the following
* cases:
* - if the caller runs in softint, the caller fails to fetch
* - otherwise, the caller waits for the update completed and retries
* to fetch (probably succeed to fetch for the second time)
*/
/*
* Global locks for the routing table and rtcaches.
* Locking order: rtcache_lock => rt_lock
*/
static krwlock_t rt_lock __cacheline_aligned;
#ifdef NET_MPSAFE
#define RT_RLOCK() rw_enter(&rt_lock, RW_READER)
#define RT_WLOCK() rw_enter(&rt_lock, RW_WRITER)
#define RT_UNLOCK() rw_exit(&rt_lock)
#define RT_LOCKED() rw_lock_held(&rt_lock)
#define RT_ASSERT_WLOCK() KASSERT(rw_write_held(&rt_lock))
#else
#define RT_RLOCK() do {} while (0)
#define RT_WLOCK() do {} while (0)
#define RT_UNLOCK() do {} while (0)
#define RT_LOCKED() false
#define RT_ASSERT_WLOCK() do {} while (0)
#endif
static krwlock_t rtcache_lock __cacheline_aligned;
#ifdef NET_MPSAFE
#define RTCACHE_RLOCK() rw_enter(&rtcache_lock, RW_READER)
#define RTCACHE_WLOCK() rw_enter(&rtcache_lock, RW_WRITER)
#define RTCACHE_UNLOCK() rw_exit(&rtcache_lock)
#define RTCACHE_ASSERT_WLOCK() KASSERT(rw_write_held(&rtcache_lock))
#define RTCACHE_WLOCKED() rw_write_held(&rtcache_lock)
#else
#define RTCACHE_RLOCK() do {} while (0)
#define RTCACHE_WLOCK() do {} while (0)
#define RTCACHE_UNLOCK() do {} while (0)
#define RTCACHE_ASSERT_WLOCK() do {} while (0)
#define RTCACHE_WLOCKED() false
#endif
/*
* mutex and cv that are used to wait for references to a rtentry left
* before updating the rtentry.
*/
static struct {
kmutex_t lock;
kcondvar_t cv;
bool ongoing;
const struct lwp *lwp;
} rt_update_global __cacheline_aligned;
/*
* A workqueue and stuff that are used to defer the destruction routine
* of rtentries.
*/
static struct {
struct workqueue *wq;
struct work wk;
kmutex_t lock;
struct rtentry *queue[10];
} rt_free_global __cacheline_aligned;
/* psref for rtentry */
static struct psref_class *rt_psref_class __read_mostly;
#ifdef RTFLUSH_DEBUG
static int _rtcache_debug = 0;
#endif /* RTFLUSH_DEBUG */
static kauth_listener_t route_listener;
static int rtdeletemsg(struct rtentry *);
static void rtflushall(int);
static void rt_maskedcopy(const struct sockaddr *,
struct sockaddr *, const struct sockaddr *);
static void rtcache_clear(struct route *);
static void rtcache_clear_rtentry(int, struct rtentry *);
static void rtcache_invalidate(struct dom_rtlist *);
static void rt_ref(struct rtentry *);
static struct rtentry *
rtalloc1_locked(const struct sockaddr *, int, bool);
static struct rtentry *
rtcache_validate_locked(struct route *);
static void rtcache_free_locked(struct route *);
static int rtcache_setdst_locked(struct route *, const struct sockaddr *);
static void rtcache_ref(struct rtentry *, struct route *);
#ifdef NET_MPSAFE
static void rt_update_wait(void);
#endif
static bool rt_wait_ok(void);
static void rt_wait_refcnt(const char *, struct rtentry *, int);
static void rt_wait_psref(struct rtentry *);
#ifdef DDB
static void db_print_sa(const struct sockaddr *);
static void db_print_ifa(struct ifaddr *);
static int db_show_rtentry(struct rtentry *, void *);
#endif
#ifdef RTFLUSH_DEBUG
static void sysctl_net_rtcache_setup(struct sysctllog **);
static void
sysctl_net_rtcache_setup(struct sysctllog **clog)
{
const struct sysctlnode *rnode;
if (sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT,
CTLTYPE_NODE,
"rtcache", SYSCTL_DESCR("Route cache related settings"),
NULL, 0, NULL, 0, CTL_NET, CTL_CREATE, CTL_EOL) != 0)
return;
if (sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Debug route caches"),
NULL, 0, &_rtcache_debug, 0, CTL_CREATE, CTL_EOL) != 0)
return;
}
#endif /* RTFLUSH_DEBUG */
static inline void
rt_destroy(struct rtentry *rt)
{
if (rt->_rt_key != NULL)
sockaddr_free(rt->_rt_key);
if (rt->rt_gateway != NULL)
sockaddr_free(rt->rt_gateway);
if (rt_gettag(rt) != NULL)
sockaddr_free(rt_gettag(rt));
rt->_rt_key = rt->rt_gateway = rt->rt_tag = NULL;
}
static inline const struct sockaddr *
rt_setkey(struct rtentry *rt, const struct sockaddr *key, int flags)
{
if (rt->_rt_key == key)
goto out;
if (rt->_rt_key != NULL)
sockaddr_free(rt->_rt_key);
rt->_rt_key = sockaddr_dup(key, flags);
out:
rt->rt_nodes->rn_key = (const char *)rt->_rt_key;
return rt->_rt_key;
}
struct ifaddr *
rt_get_ifa(struct rtentry *rt)
{
struct ifaddr *ifa;
if ((ifa = rt->rt_ifa) == NULL)
return ifa;
else if (ifa->ifa_getifa == NULL)
return ifa;
#if 0
else if (ifa->ifa_seqno != NULL && *ifa->ifa_seqno == rt->rt_ifa_seqno)
return ifa;
#endif
else {
ifa = (*ifa->ifa_getifa)(ifa, rt_getkey(rt));
if (ifa == NULL)
return NULL;
rt_replace_ifa(rt, ifa);
return ifa;
}
}
static void
rt_set_ifa1(struct rtentry *rt, struct ifaddr *ifa)
{
rt->rt_ifa = ifa;
if (ifa->ifa_seqno != NULL)
rt->rt_ifa_seqno = *ifa->ifa_seqno;
}
/*
* Is this route the connected route for the ifa?
*/
static int
rt_ifa_connected(const struct rtentry *rt, const struct ifaddr *ifa)
{
const struct sockaddr *key, *dst, *odst;
struct sockaddr_storage maskeddst;
key = rt_getkey(rt);
dst = rt->rt_flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;
if (dst == NULL ||
dst->sa_family != key->sa_family ||
dst->sa_len != key->sa_len)
return 0;
if ((rt->rt_flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
odst = dst;
dst = (struct sockaddr *)&maskeddst;
rt_maskedcopy(odst, (struct sockaddr *)&maskeddst,
ifa->ifa_netmask);
}
return (memcmp(dst, key, dst->sa_len) == 0);
}
void
rt_replace_ifa(struct rtentry *rt, struct ifaddr *ifa)
{
if (rt->rt_ifa &&
rt->rt_ifa != ifa &&
rt->rt_ifa->ifa_flags & IFA_ROUTE &&
rt_ifa_connected(rt, rt->rt_ifa))
{
RT_DPRINTF("rt->_rt_key = %p, ifa = %p, "
"replace deleted IFA_ROUTE\n",
(void *)rt->_rt_key, (void *)rt->rt_ifa);
rt->rt_ifa->ifa_flags &= ~IFA_ROUTE;
if (rt_ifa_connected(rt, ifa)) {
RT_DPRINTF("rt->_rt_key = %p, ifa = %p, "
"replace added IFA_ROUTE\n",
(void *)rt->_rt_key, (void *)ifa);
ifa->ifa_flags |= IFA_ROUTE;
}
}
ifaref(ifa);
ifafree(rt->rt_ifa);
rt_set_ifa1(rt, ifa);
}
static void
rt_set_ifa(struct rtentry *rt, struct ifaddr *ifa)
{
ifaref(ifa);
rt_set_ifa1(rt, ifa);
}
static int
route_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
void *arg0, void *arg1, void *arg2, void *arg3)
{
struct rt_msghdr *rtm;
int result;
result = KAUTH_RESULT_DEFER;
rtm = arg1;
if (action != KAUTH_NETWORK_ROUTE)
return result;
if (rtm->rtm_type == RTM_GET)
result = KAUTH_RESULT_ALLOW;
return result;
}
static void rt_free_work(struct work *, void *);
void
rt_init(void)
{
int error;
#ifdef RTFLUSH_DEBUG
sysctl_net_rtcache_setup(NULL);
#endif
mutex_init(&rt_free_global.lock, MUTEX_DEFAULT, IPL_SOFTNET);
rt_psref_class = psref_class_create("rtentry", IPL_SOFTNET);
error = workqueue_create(&rt_free_global.wq, "rt_free",
rt_free_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
if (error)
panic("%s: workqueue_create failed (%d)\n", __func__, error);
mutex_init(&rt_update_global.lock, MUTEX_DEFAULT, IPL_SOFTNET);
cv_init(&rt_update_global.cv, "rt_update");
pool_init(&rtentry_pool, sizeof(struct rtentry), 0, 0, 0, "rtentpl",
NULL, IPL_SOFTNET);
pool_init(&rttimer_pool, sizeof(struct rttimer), 0, 0, 0, "rttmrpl",
NULL, IPL_SOFTNET);
rn_init(); /* initialize all zeroes, all ones, mask table */
rtbl_init();
route_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
route_listener_cb, NULL);
}
static void
rtflushall(int family)
{
struct domain *dom;
if (rtcache_debug())
printf("%s: enter\n", __func__);
if ((dom = pffinddomain(family)) == NULL)
return;
RTCACHE_WLOCK();
rtcache_invalidate(&dom->dom_rtcache);
RTCACHE_UNLOCK();
}
static void
rtcache(struct route *ro)
{
struct domain *dom;
RTCACHE_ASSERT_WLOCK();
rtcache_invariants(ro);
KASSERT(ro->_ro_rt != NULL);
KASSERT(ro->ro_invalid == false);
KASSERT(rtcache_getdst(ro) != NULL);
if ((dom = pffinddomain(rtcache_getdst(ro)->sa_family)) == NULL)
return;
LIST_INSERT_HEAD(&dom->dom_rtcache, ro, ro_rtcache_next);
rtcache_invariants(ro);
}
#ifdef RT_DEBUG
static void
dump_rt(const struct rtentry *rt)
{
char buf[512];
aprint_normal("rt: ");
aprint_normal("p=%p ", rt);
if (rt->_rt_key == NULL) {
aprint_normal("dst=(NULL) ");
} else {
sockaddr_format(rt->_rt_key, buf, sizeof(buf));
aprint_normal("dst=%s ", buf);
}
if (rt->rt_gateway == NULL) {
aprint_normal("gw=(NULL) ");
} else {
sockaddr_format(rt->_rt_key, buf, sizeof(buf));
aprint_normal("gw=%s ", buf);
}
aprint_normal("flags=%x ", rt->rt_flags);
if (rt->rt_ifp == NULL) {
aprint_normal("if=(NULL) ");
} else {
aprint_normal("if=%s ", rt->rt_ifp->if_xname);
}
aprint_normal("\n");
}
#endif /* RT_DEBUG */
/*
* Packet routing routines. If success, refcnt of a returned rtentry
* will be incremented. The caller has to rtfree it by itself.
*/
struct rtentry *
rtalloc1_locked(const struct sockaddr *dst, int report, bool wait_ok)
{
rtbl_t *rtbl;
struct rtentry *rt;
int s;
#ifdef NET_MPSAFE
retry:
#endif
s = splsoftnet();
rtbl = rt_gettable(dst->sa_family);
if (rtbl == NULL)
goto miss;
rt = rt_matchaddr(rtbl, dst);
if (rt == NULL)
goto miss;
if (!ISSET(rt->rt_flags, RTF_UP))
goto miss;
#ifdef NET_MPSAFE
if (ISSET(rt->rt_flags, RTF_UPDATING) &&
/* XXX updater should be always able to acquire */
curlwp != rt_update_global.lwp) {
bool need_lock = false;
if (!wait_ok || !rt_wait_ok())
goto miss;
RT_UNLOCK();
splx(s);
/* XXX need more proper solution */
if (RTCACHE_WLOCKED()) {
RTCACHE_UNLOCK();
need_lock = true;
}
/* We can wait until the update is complete */
rt_update_wait();
if (need_lock)
RTCACHE_WLOCK();
goto retry;
}
#endif /* NET_MPSAFE */
rt_ref(rt);
RT_REFCNT_TRACE(rt);
splx(s);
return rt;
miss:
rtstat.rts_unreach++;
if (report) {
struct rt_addrinfo info;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = dst;
rt_missmsg(RTM_MISS, &info, 0, 0);
}
splx(s);
return NULL;
}
struct rtentry *
rtalloc1(const struct sockaddr *dst, int report)
{
struct rtentry *rt;
RT_RLOCK();
rt = rtalloc1_locked(dst, report, true);
RT_UNLOCK();
return rt;
}
static void
rt_ref(struct rtentry *rt)
{
KASSERT(rt->rt_refcnt >= 0);
atomic_inc_uint(&rt->rt_refcnt);
}
void
rt_unref(struct rtentry *rt)
{
KASSERT(rt != NULL);
KASSERTMSG(rt->rt_refcnt > 0, "refcnt=%d", rt->rt_refcnt);
atomic_dec_uint(&rt->rt_refcnt);
if (!ISSET(rt->rt_flags, RTF_UP) || ISSET(rt->rt_flags, RTF_UPDATING)) {
mutex_enter(&rt_free_global.lock);
cv_broadcast(&rt->rt_cv);
mutex_exit(&rt_free_global.lock);
}
}
static bool
rt_wait_ok(void)
{
KASSERT(!cpu_intr_p());
return !cpu_softintr_p();
}
void
rt_wait_refcnt(const char *title, struct rtentry *rt, int cnt)
{
mutex_enter(&rt_free_global.lock);
while (rt->rt_refcnt > cnt) {
dlog(LOG_DEBUG, "%s: %s waiting (refcnt=%d)\n",
__func__, title, rt->rt_refcnt);
cv_wait(&rt->rt_cv, &rt_free_global.lock);
dlog(LOG_DEBUG, "%s: %s waited (refcnt=%d)\n",
__func__, title, rt->rt_refcnt);
}
mutex_exit(&rt_free_global.lock);
}
void
rt_wait_psref(struct rtentry *rt)
{
psref_target_destroy(&rt->rt_psref, rt_psref_class);
psref_target_init(&rt->rt_psref, rt_psref_class);
}
static void
_rt_free(struct rtentry *rt)
{
struct ifaddr *ifa;
/*
* Need to avoid a deadlock on rt_wait_refcnt of update
* and a conflict on psref_target_destroy of update.
*/
#ifdef NET_MPSAFE
rt_update_wait();
#endif
RT_REFCNT_TRACE(rt);
KASSERTMSG(rt->rt_refcnt >= 0, "refcnt=%d", rt->rt_refcnt);
rt_wait_refcnt("free", rt, 0);
#ifdef NET_MPSAFE
psref_target_destroy(&rt->rt_psref, rt_psref_class);
#endif
rt_assert_inactive(rt);
rttrash--;
ifa = rt->rt_ifa;
rt->rt_ifa = NULL;
ifafree(ifa);
rt->rt_ifp = NULL;
cv_destroy(&rt->rt_cv);
rt_destroy(rt);
pool_put(&rtentry_pool, rt);
}
static void
rt_free_work(struct work *wk, void *arg)
{
int i;
struct rtentry *rt;
restart:
mutex_enter(&rt_free_global.lock);
for (i = 0; i < sizeof(rt_free_global.queue); i++) {
if (rt_free_global.queue[i] == NULL)
continue;
rt = rt_free_global.queue[i];
rt_free_global.queue[i] = NULL;
mutex_exit(&rt_free_global.lock);
atomic_dec_uint(&rt->rt_refcnt);
_rt_free(rt);
goto restart;
}
mutex_exit(&rt_free_global.lock);
}
void
rt_free(struct rtentry *rt)
{
KASSERT(rt->rt_refcnt > 0);
if (!rt_wait_ok()) {
int i;
mutex_enter(&rt_free_global.lock);
for (i = 0; i < sizeof(rt_free_global.queue); i++) {
if (rt_free_global.queue[i] == NULL) {
rt_free_global.queue[i] = rt;
break;
}
}
KASSERT(i < sizeof(rt_free_global.queue));
rt_ref(rt);
mutex_exit(&rt_free_global.lock);
workqueue_enqueue(rt_free_global.wq, &rt_free_global.wk, NULL);
} else {
atomic_dec_uint(&rt->rt_refcnt);
_rt_free(rt);
}
}
#ifdef NET_MPSAFE
static void
rt_update_wait(void)
{
mutex_enter(&rt_update_global.lock);
while (rt_update_global.ongoing) {
dlog(LOG_DEBUG, "%s: waiting lwp=%p\n", __func__, curlwp);
cv_wait(&rt_update_global.cv, &rt_update_global.lock);
dlog(LOG_DEBUG, "%s: waited lwp=%p\n", __func__, curlwp);
}
mutex_exit(&rt_update_global.lock);
}
#endif
int
rt_update_prepare(struct rtentry *rt)
{
dlog(LOG_DEBUG, "%s: updating rt=%p lwp=%p\n", __func__, rt, curlwp);
RTCACHE_WLOCK();
RT_WLOCK();
/* If the entry is being destroyed, don't proceed the update. */
if (!ISSET(rt->rt_flags, RTF_UP)) {
RT_UNLOCK();
RTCACHE_UNLOCK();
return -1;
}
rt->rt_flags |= RTF_UPDATING;
RT_UNLOCK();
RTCACHE_UNLOCK();
mutex_enter(&rt_update_global.lock);
while (rt_update_global.ongoing) {
dlog(LOG_DEBUG, "%s: waiting ongoing updating rt=%p lwp=%p\n",
__func__, rt, curlwp);
cv_wait(&rt_update_global.cv, &rt_update_global.lock);
dlog(LOG_DEBUG, "%s: waited ongoing updating rt=%p lwp=%p\n",
__func__, rt, curlwp);
}
rt_update_global.ongoing = true;
/* XXX need it to avoid rt_update_wait by updater itself. */
rt_update_global.lwp = curlwp;
mutex_exit(&rt_update_global.lock);
rt_wait_refcnt("update", rt, 1);
rt_wait_psref(rt);
return 0;
}
void
rt_update_finish(struct rtentry *rt)
{
RTCACHE_WLOCK();
RT_WLOCK();
rt->rt_flags &= ~RTF_UPDATING;
RT_UNLOCK();
RTCACHE_UNLOCK();
mutex_enter(&rt_update_global.lock);
rt_update_global.ongoing = false;
rt_update_global.lwp = NULL;
cv_broadcast(&rt_update_global.cv);
mutex_exit(&rt_update_global.lock);
dlog(LOG_DEBUG, "%s: updated rt=%p lwp=%p\n", __func__, rt, curlwp);
}
/*
* Force a routing table entry to the specified
* destination to go through the given gateway.
* Normally called as a result of a routing redirect
* message from the network layer.
*
* N.B.: must be called at splsoftnet
*/
void
rtredirect(const struct sockaddr *dst, const struct sockaddr *gateway,
const struct sockaddr *netmask, int flags, const struct sockaddr *src,
struct rtentry **rtp)
{
struct rtentry *rt;
int error = 0;
uint64_t *stat = NULL;
struct rt_addrinfo info;
struct ifaddr *ifa;
struct psref psref;
/* verify the gateway is directly reachable */
if ((ifa = ifa_ifwithnet_psref(gateway, &psref)) == NULL) {
error = ENETUNREACH;
goto out;
}
rt = rtalloc1(dst, 0);
/*
* If the redirect isn't from our current router for this dst,
* it's either old or wrong. If it redirects us to ourselves,
* we have a routing loop, perhaps as a result of an interface
* going down recently.
*/
if (!(flags & RTF_DONE) && rt &&
(sockaddr_cmp(src, rt->rt_gateway) != 0 || rt->rt_ifa != ifa))
error = EINVAL;
else {
int s = pserialize_read_enter();
struct ifaddr *_ifa;
_ifa = ifa_ifwithaddr(gateway);
if (_ifa != NULL)
error = EHOSTUNREACH;
pserialize_read_exit(s);
}
if (error)
goto done;
/*
* Create a new entry if we just got back a wildcard entry
* or the lookup failed. This is necessary for hosts
* which use routing redirects generated by smart gateways
* to dynamically build the routing tables.
*/
if (rt == NULL || (rt_mask(rt) && rt_mask(rt)->sa_len < 2))
goto create;
/*
* Don't listen to the redirect if it's
* for a route to an interface.
*/
if (rt->rt_flags & RTF_GATEWAY) {
if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
/*
* Changing from route to net => route to host.
* Create new route, rather than smashing route to net.
*/
create:
if (rt != NULL)
rt_unref(rt);
flags |= RTF_GATEWAY | RTF_DYNAMIC;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = dst;
info.rti_info[RTAX_GATEWAY] = gateway;
info.rti_info[RTAX_NETMASK] = netmask;
info.rti_ifa = ifa;
info.rti_flags = flags;
rt = NULL;
error = rtrequest1(RTM_ADD, &info, &rt);
if (rt != NULL)
flags = rt->rt_flags;
stat = &rtstat.rts_dynamic;
} else {
/*
* Smash the current notion of the gateway to
* this destination. Should check about netmask!!!
*/
#ifdef NET_MPSAFE
KASSERT(!cpu_softintr_p());
error = rt_update_prepare(rt);
if (error == 0) {
#endif
error = rt_setgate(rt, gateway);
if (error == 0) {
rt->rt_flags |= RTF_MODIFIED;
flags |= RTF_MODIFIED;
}
#ifdef NET_MPSAFE
rt_update_finish(rt);
} else {
/*
* If error != 0, the rtentry is being
* destroyed, so doing nothing doesn't
* matter.
*/
}
#endif
stat = &rtstat.rts_newgateway;
}
} else
error = EHOSTUNREACH;
done:
if (rt) {
if (rtp != NULL && !error)
*rtp = rt;
else
rt_unref(rt);
}
out:
if (error)
rtstat.rts_badredirect++;
else if (stat != NULL)
(*stat)++;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = dst;
info.rti_info[RTAX_GATEWAY] = gateway;
info.rti_info[RTAX_NETMASK] = netmask;
info.rti_info[RTAX_AUTHOR] = src;
rt_missmsg(RTM_REDIRECT, &info, flags, error);
ifa_release(ifa, &psref);
}
/*
* Delete a route and generate a message.
* It doesn't free a passed rt.
*/
static int
rtdeletemsg(struct rtentry *rt)
{
int error;
struct rt_addrinfo info;
struct rtentry *retrt;
/*
* Request the new route so that the entry is not actually
* deleted. That will allow the information being reported to
* be accurate (and consistent with route_output()).
*/
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = rt_getkey(rt);
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_flags = rt->rt_flags;
error = rtrequest1(RTM_DELETE, &info, &retrt);
rt_missmsg(RTM_DELETE, &info, info.rti_flags, error);
return error;
}
struct ifaddr *
ifa_ifwithroute_psref(int flags, const struct sockaddr *dst,
const struct sockaddr *gateway, struct psref *psref)
{
struct ifaddr *ifa = NULL;
if ((flags & RTF_GATEWAY) == 0) {
/*
* If we are adding a route to an interface,
* and the interface is a pt to pt link
* we should search for the destination
* as our clue to the interface. Otherwise
* we can use the local address.
*/
if ((flags & RTF_HOST) && gateway->sa_family != AF_LINK)
ifa = ifa_ifwithdstaddr_psref(dst, psref);
if (ifa == NULL)
ifa = ifa_ifwithaddr_psref(gateway, psref);
} else {
/*
* If we are adding a route to a remote net
* or host, the gateway may still be on the
* other end of a pt to pt link.
*/
ifa = ifa_ifwithdstaddr_psref(gateway, psref);
}
if (ifa == NULL)
ifa = ifa_ifwithnet_psref(gateway, psref);
if (ifa == NULL) {
int s;
struct rtentry *rt;
/* XXX we cannot call rtalloc1 if holding the rt lock */
if (RT_LOCKED())
rt = rtalloc1_locked(gateway, 0, true);
else
rt = rtalloc1(gateway, 0);
if (rt == NULL)
return NULL;
if (rt->rt_flags & RTF_GATEWAY) {
rt_unref(rt);
return NULL;
}
/*
* Just in case. May not need to do this workaround.
* Revisit when working on rtentry MP-ification.
*/
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, rt->rt_ifp) {
if (ifa == rt->rt_ifa)
break;
}
if (ifa != NULL)
ifa_acquire(ifa, psref);
pserialize_read_exit(s);
rt_unref(rt);
if (ifa == NULL)
return NULL;
}
if (ifa->ifa_addr->sa_family != dst->sa_family) {
struct ifaddr *nifa;
int s;
s = pserialize_read_enter();
nifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
if (nifa != NULL) {
ifa_release(ifa, psref);
ifa_acquire(nifa, psref);
ifa = nifa;
}
pserialize_read_exit(s);
}
return ifa;
}
/*
* If it suceeds and ret_nrt isn't NULL, refcnt of ret_nrt is incremented.
* The caller has to rtfree it by itself.
*/
int
rtrequest(int req, const struct sockaddr *dst, const struct sockaddr *gateway,
const struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
{
struct rt_addrinfo info;
memset(&info, 0, sizeof(info));
info.rti_flags = flags;
info.rti_info[RTAX_DST] = dst;
info.rti_info[RTAX_GATEWAY] = gateway;
info.rti_info[RTAX_NETMASK] = netmask;
return rtrequest1(req, &info, ret_nrt);
}
/*
* It's a utility function to add/remove a route to/from the routing table
* and tell user processes the addition/removal on success.
*/
int
rtrequest_newmsg(const int req, const struct sockaddr *dst,
const struct sockaddr *gateway, const struct sockaddr *netmask,
const int flags)
{
int error;
struct rtentry *ret_nrt = NULL;
KASSERT(req == RTM_ADD || req == RTM_DELETE);
error = rtrequest(req, dst, gateway, netmask, flags, &ret_nrt);
if (error != 0)
return error;
KASSERT(ret_nrt != NULL);
rt_newmsg(req, ret_nrt); /* tell user process */
if (req == RTM_DELETE)
rt_free(ret_nrt);
else
rt_unref(ret_nrt);
return 0;
}
struct ifnet *
rt_getifp(struct rt_addrinfo *info, struct psref *psref)
{
const struct sockaddr *ifpaddr = info->rti_info[RTAX_IFP];
if (info->rti_ifp != NULL)
return NULL;
/*
* ifp may be specified by sockaddr_dl when protocol address
* is ambiguous
*/
if (ifpaddr != NULL && ifpaddr->sa_family == AF_LINK) {
struct ifaddr *ifa;
int s = pserialize_read_enter();
ifa = ifa_ifwithnet(ifpaddr);
if (ifa != NULL)
info->rti_ifp = if_get_byindex(ifa->ifa_ifp->if_index,
psref);
pserialize_read_exit(s);
}
return info->rti_ifp;
}
struct ifaddr *
rt_getifa(struct rt_addrinfo *info, struct psref *psref)
{
struct ifaddr *ifa = NULL;
const struct sockaddr *dst = info->rti_info[RTAX_DST];
const struct sockaddr *gateway = info->rti_info[RTAX_GATEWAY];
const struct sockaddr *ifaaddr = info->rti_info[RTAX_IFA];
int flags = info->rti_flags;
const struct sockaddr *sa;
if (info->rti_ifa == NULL && ifaaddr != NULL) {
ifa = ifa_ifwithaddr_psref(ifaaddr, psref);
if (ifa != NULL)
goto got;
}
sa = ifaaddr != NULL ? ifaaddr :
(gateway != NULL ? gateway : dst);
if (sa != NULL && info->rti_ifp != NULL)
ifa = ifaof_ifpforaddr_psref(sa, info->rti_ifp, psref);
else if (dst != NULL && gateway != NULL)
ifa = ifa_ifwithroute_psref(flags, dst, gateway, psref);
else if (sa != NULL)
ifa = ifa_ifwithroute_psref(flags, sa, sa, psref);
if (ifa == NULL)
return NULL;
got:
if (ifa->ifa_getifa != NULL) {
/* FIXME ifa_getifa is NOMPSAFE */
ifa = (*ifa->ifa_getifa)(ifa, dst);
if (ifa == NULL)
return NULL;
ifa_acquire(ifa, psref);
}
info->rti_ifa = ifa;
if (info->rti_ifp == NULL)
info->rti_ifp = ifa->ifa_ifp;
return ifa;
}
/*
* If it suceeds and ret_nrt isn't NULL, refcnt of ret_nrt is incremented.
* The caller has to rtfree it by itself.
*/
int
rtrequest1(int req, struct rt_addrinfo *info, struct rtentry **ret_nrt)
{
int s = splsoftnet(), ss;
int error = 0, rc;
struct rtentry *rt;
rtbl_t *rtbl;
struct ifaddr *ifa = NULL;
struct sockaddr_storage maskeddst;
const struct sockaddr *dst = info->rti_info[RTAX_DST];
const struct sockaddr *gateway = info->rti_info[RTAX_GATEWAY];
const struct sockaddr *netmask = info->rti_info[RTAX_NETMASK];
int flags = info->rti_flags;
struct psref psref_ifp, psref_ifa;
int bound = 0;
struct ifnet *ifp = NULL;
bool need_to_release_ifa = true;
bool need_unlock = true;
#define senderr(x) { error = x ; goto bad; }
RT_WLOCK();
bound = curlwp_bind();
if ((rtbl = rt_gettable(dst->sa_family)) == NULL)
senderr(ESRCH);
if (flags & RTF_HOST)
netmask = NULL;
switch (req) {
case RTM_DELETE:
if (netmask) {
rt_maskedcopy(dst, (struct sockaddr *)&maskeddst,
netmask);
dst = (struct sockaddr *)&maskeddst;
}
if ((rt = rt_lookup(rtbl, dst, netmask)) == NULL)
senderr(ESRCH);
if ((rt = rt_deladdr(rtbl, dst, netmask)) == NULL)
senderr(ESRCH);
rt->rt_flags &= ~RTF_UP;
if ((ifa = rt->rt_ifa)) {
if (ifa->ifa_flags & IFA_ROUTE &&
rt_ifa_connected(rt, ifa)) {
RT_DPRINTF("rt->_rt_key = %p, ifa = %p, "
"deleted IFA_ROUTE\n",
(void *)rt->_rt_key, (void *)ifa);
ifa->ifa_flags &= ~IFA_ROUTE;
}
if (ifa->ifa_rtrequest)
ifa->ifa_rtrequest(RTM_DELETE, rt, info);
ifa = NULL;
}
rttrash++;
if (ret_nrt) {
*ret_nrt = rt;
rt_ref(rt);
RT_REFCNT_TRACE(rt);
}
RT_UNLOCK();
need_unlock = false;
rt_timer_remove_all(rt);
rtcache_clear_rtentry(dst->sa_family, rt);
if (ret_nrt == NULL) {
/* Adjust the refcount */
rt_ref(rt);
RT_REFCNT_TRACE(rt);
rt_free(rt);
}
break;
case RTM_ADD:
if (info->rti_ifa == NULL) {
ifp = rt_getifp(info, &psref_ifp);
ifa = rt_getifa(info, &psref_ifa);
if (ifa == NULL)
senderr(ENETUNREACH);
} else {
/* Caller should have a reference of ifa */
ifa = info->rti_ifa;
need_to_release_ifa = false;
}
rt = pool_get(&rtentry_pool, PR_NOWAIT);
if (rt == NULL)
senderr(ENOBUFS);
memset(rt, 0, sizeof(*rt));
rt->rt_flags = RTF_UP | flags;
LIST_INIT(&rt->rt_timer);
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
if (netmask) {
rt_maskedcopy(dst, (struct sockaddr *)&maskeddst,
netmask);
rt_setkey(rt, (struct sockaddr *)&maskeddst, M_NOWAIT);
} else {
rt_setkey(rt, dst, M_NOWAIT);
}
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
if (rt_getkey(rt) == NULL ||
rt_setgate(rt, gateway) != 0) {
pool_put(&rtentry_pool, rt);
senderr(ENOBUFS);
}
rt_set_ifa(rt, ifa);
if (info->rti_info[RTAX_TAG] != NULL) {
const struct sockaddr *tag;
tag = rt_settag(rt, info->rti_info[RTAX_TAG]);
if (tag == NULL)
senderr(ENOBUFS);
}
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
ss = pserialize_read_enter();
if (info->rti_info[RTAX_IFP] != NULL) {
struct ifaddr *ifa2;
ifa2 = ifa_ifwithnet(info->rti_info[RTAX_IFP]);
if (ifa2 != NULL)
rt->rt_ifp = ifa2->ifa_ifp;
else
rt->rt_ifp = ifa->ifa_ifp;
} else
rt->rt_ifp = ifa->ifa_ifp;
pserialize_read_exit(ss);
cv_init(&rt->rt_cv, "rtentry");
psref_target_init(&rt->rt_psref, rt_psref_class);
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
rc = rt_addaddr(rtbl, rt, netmask);
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
if (rc != 0) {
ifafree(ifa); /* for rt_set_ifa above */
cv_destroy(&rt->rt_cv);
rt_destroy(rt);
pool_put(&rtentry_pool, rt);
senderr(rc);
}
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
if (ifa->ifa_rtrequest)
ifa->ifa_rtrequest(req, rt, info);
if (need_to_release_ifa)
ifa_release(ifa, &psref_ifa);
ifa = NULL;
if_put(ifp, &psref_ifp);
ifp = NULL;
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
if (ret_nrt) {
*ret_nrt = rt;
rt_ref(rt);
RT_REFCNT_TRACE(rt);
}
RT_UNLOCK();
need_unlock = false;
rtflushall(dst->sa_family);
break;
case RTM_GET:
if (netmask != NULL) {
rt_maskedcopy(dst, (struct sockaddr *)&maskeddst,
netmask);
dst = (struct sockaddr *)&maskeddst;
}
if ((rt = rt_lookup(rtbl, dst, netmask)) == NULL)
senderr(ESRCH);
if (ret_nrt != NULL) {
*ret_nrt = rt;
rt_ref(rt);
RT_REFCNT_TRACE(rt);
}
break;
}
bad:
if (need_to_release_ifa)
ifa_release(ifa, &psref_ifa);
if_put(ifp, &psref_ifp);
curlwp_bindx(bound);
if (need_unlock)
RT_UNLOCK();
splx(s);
return error;
}
int
rt_setgate(struct rtentry *rt, const struct sockaddr *gate)
{
struct sockaddr *new, *old;
KASSERT(rt->_rt_key != NULL);
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
new = sockaddr_dup(gate, M_ZERO | M_NOWAIT);
if (new == NULL)
return ENOMEM;
old = rt->rt_gateway;
rt->rt_gateway = new;
if (old != NULL)
sockaddr_free(old);
KASSERT(rt->_rt_key != NULL);
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
if (rt->rt_flags & RTF_GATEWAY) {
struct rtentry *gwrt;
/* XXX we cannot call rtalloc1 if holding the rt lock */
if (RT_LOCKED())
gwrt = rtalloc1_locked(gate, 1, false);
else
gwrt = rtalloc1(gate, 1);
/*
* If we switched gateways, grab the MTU from the new
* gateway route if the current MTU, if the current MTU is
* greater than the MTU of gateway.
* Note that, if the MTU of gateway is 0, we will reset the
* MTU of the route to run PMTUD again from scratch. XXX
*/
if (gwrt != NULL) {
KASSERT(gwrt->_rt_key != NULL);
RT_DPRINTF("gwrt->_rt_key = %p\n", gwrt->_rt_key);
if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
rt->rt_rmx.rmx_mtu &&
rt->rt_rmx.rmx_mtu > gwrt->rt_rmx.rmx_mtu) {
rt->rt_rmx.rmx_mtu = gwrt->rt_rmx.rmx_mtu;
}
rt_unref(gwrt);
}
}
KASSERT(rt->_rt_key != NULL);
RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
return 0;
}
static void
rt_maskedcopy(const struct sockaddr *src, struct sockaddr *dst,
const struct sockaddr *netmask)
{
const char *netmaskp = &netmask->sa_data[0],
*srcp = &src->sa_data[0];
char *dstp = &dst->sa_data[0];
const char *maskend = (char *)dst + MIN(netmask->sa_len, src->sa_len);
const char *srcend = (char *)dst + src->sa_len;
dst->sa_len = src->sa_len;
dst->sa_family = src->sa_family;
while (dstp < maskend)
*dstp++ = *srcp++ & *netmaskp++;
if (dstp < srcend)
memset(dstp, 0, (size_t)(srcend - dstp));
}
/*
* Inform the routing socket of a route change.
*/
void
rt_newmsg(const int cmd, const struct rtentry *rt)
{
struct rt_addrinfo info;
memset((void *)&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
if (rt->rt_ifp) {
info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
}
rt_missmsg(cmd, &info, rt->rt_flags, 0);
}
/*
* Set up or tear down a routing table entry, normally
* for an interface.
*/
int
rtinit(struct ifaddr *ifa, int cmd, int flags)
{
struct rtentry *rt;
struct sockaddr *dst, *odst;
struct sockaddr_storage maskeddst;
struct rtentry *nrt = NULL;
int error;
struct rt_addrinfo info;
dst = flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;
if (cmd == RTM_DELETE) {
if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
/* Delete subnet route for this interface */
odst = dst;
dst = (struct sockaddr *)&maskeddst;
rt_maskedcopy(odst, dst, ifa->ifa_netmask);
}
if ((rt = rtalloc1(dst, 0)) != NULL) {
if (rt->rt_ifa != ifa) {
rt_unref(rt);
return (flags & RTF_HOST) ? EHOSTUNREACH
: ENETUNREACH;
}
rt_unref(rt);
}
}
memset(&info, 0, sizeof(info));
info.rti_ifa = ifa;
info.rti_flags = flags | ifa->ifa_flags;
info.rti_info[RTAX_DST] = dst;
info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
/*
* XXX here, it seems that we are assuming that ifa_netmask is NULL
* for RTF_HOST. bsdi4 passes NULL explicitly (via intermediate
* variable) when RTF_HOST is 1. still not sure if i can safely
* change it to meet bsdi4 behavior.
*/
if (cmd != RTM_LLINFO_UPD)
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
error = rtrequest1((cmd == RTM_LLINFO_UPD) ? RTM_GET : cmd, &info,
&nrt);
if (error != 0)
return error;
rt = nrt;
RT_REFCNT_TRACE(rt);
switch (cmd) {
case RTM_DELETE:
rt_newmsg(cmd, rt);
rt_free(rt);
break;
case RTM_LLINFO_UPD:
if (cmd == RTM_LLINFO_UPD && ifa->ifa_rtrequest != NULL)
ifa->ifa_rtrequest(RTM_LLINFO_UPD, rt, &info);
rt_newmsg(RTM_CHANGE, rt);
rt_unref(rt);
break;
case RTM_ADD:
/*
* XXX it looks just reverting rt_ifa replaced by ifa_rtrequest
* called via rtrequest1. Can we just prevent the replacement
* somehow and remove the following code? And also doesn't
* calling ifa_rtrequest(RTM_ADD) replace rt_ifa again?
*/
if (rt->rt_ifa != ifa) {
printf("rtinit: wrong ifa (%p) was (%p)\n", ifa,
rt->rt_ifa);
#ifdef NET_MPSAFE
KASSERT(!cpu_softintr_p());
error = rt_update_prepare(rt);
if (error == 0) {
#endif
if (rt->rt_ifa->ifa_rtrequest != NULL) {
rt->rt_ifa->ifa_rtrequest(RTM_DELETE,
rt, &info);
}
rt_replace_ifa(rt, ifa);
rt->rt_ifp = ifa->ifa_ifp;
if (ifa->ifa_rtrequest != NULL)
ifa->ifa_rtrequest(RTM_ADD, rt, &info);
#ifdef NET_MPSAFE
rt_update_finish(rt);
} else {
/*
* If error != 0, the rtentry is being
* destroyed, so doing nothing doesn't
* matter.
*/
}
#endif
}
rt_newmsg(cmd, rt);
rt_unref(rt);
RT_REFCNT_TRACE(rt);
break;
}
return error;
}
/*
* Create a local route entry for the address.
* Announce the addition of the address and the route to the routing socket.
*/
int
rt_ifa_addlocal(struct ifaddr *ifa)
{
struct rtentry *rt;
int e;
/* If there is no loopback entry, allocate one. */
rt = rtalloc1(ifa->ifa_addr, 0);
#ifdef RT_DEBUG
if (rt != NULL)
dump_rt(rt);
#endif
if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
(rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
{
struct rt_addrinfo info;
struct rtentry *nrt;
memset(&info, 0, sizeof(info));
info.rti_flags = RTF_HOST | RTF_LOCAL;
if (!(ifa->ifa_ifp->if_flags & (IFF_LOOPBACK|IFF_POINTOPOINT)))
info.rti_flags |= RTF_LLDATA;
info.rti_info[RTAX_DST] = ifa->ifa_addr;
info.rti_info[RTAX_GATEWAY] =
(const struct sockaddr *)ifa->ifa_ifp->if_sadl;
info.rti_ifa = ifa;
nrt = NULL;
e = rtrequest1(RTM_ADD, &info, &nrt);
if (nrt && ifa != nrt->rt_ifa)
rt_replace_ifa(nrt, ifa);
rt_newaddrmsg(RTM_ADD, ifa, e, nrt);
if (nrt != NULL) {
#ifdef RT_DEBUG
dump_rt(nrt);
#endif
rt_unref(nrt);
RT_REFCNT_TRACE(nrt);
}
} else {
e = 0;
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
}
if (rt != NULL)
rt_unref(rt);
return e;
}
/*
* Remove the local route entry for the address.
* Announce the removal of the address and the route to the routing socket.
*/
int
rt_ifa_remlocal(struct ifaddr *ifa, struct ifaddr *alt_ifa)
{
struct rtentry *rt;
int e = 0;
rt = rtalloc1(ifa->ifa_addr, 0);
/*
* Before deleting, check if a corresponding loopbacked
* host route surely exists. With this check, we can avoid
* deleting an interface direct route whose destination is
* the same as the address being removed. This can happen
* when removing a subnet-router anycast address on an
* interface attached to a shared medium.
*/
if (rt != NULL &&
(rt->rt_flags & RTF_HOST) &&
(rt->rt_ifp->if_flags & IFF_LOOPBACK))
{
/* If we cannot replace the route's ifaddr with the equivalent
* ifaddr of another interface, I believe it is safest to
* delete the route.
*/
if (alt_ifa == NULL) {
e = rtdeletemsg(rt);
if (e == 0) {
rt_unref(rt);
rt_free(rt);
rt = NULL;
}
rt_newaddrmsg(RTM_DELADDR, ifa, 0, NULL);
} else {
rt_replace_ifa(rt, alt_ifa);
rt_newmsg(RTM_CHANGE, rt);
}
} else
rt_newaddrmsg(RTM_DELADDR, ifa, 0, NULL);
if (rt != NULL)
rt_unref(rt);
return e;
}
/*
* Route timer routines. These routes allow functions to be called
* for various routes at any time. This is useful in supporting
* path MTU discovery and redirect route deletion.
*
* This is similar to some BSDI internal functions, but it provides
* for multiple queues for efficiency's sake...
*/
LIST_HEAD(, rttimer_queue) rttimer_queue_head;
static int rt_init_done = 0;
/*
* Some subtle order problems with domain initialization mean that
* we cannot count on this being run from rt_init before various
* protocol initializations are done. Therefore, we make sure
* that this is run when the first queue is added...
*/
static void rt_timer_work(struct work *, void *);
static void
rt_timer_init(void)
{
int error;
assert(rt_init_done == 0);
/* XXX should be in rt_init */
rw_init(&rt_lock);
rw_init(&rtcache_lock);
LIST_INIT(&rttimer_queue_head);
callout_init(&rt_timer_ch, CALLOUT_MPSAFE);
error = workqueue_create(&rt_timer_wq, "rt_timer",
rt_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
if (error)
panic("%s: workqueue_create failed (%d)\n", __func__, error);
callout_reset(&rt_timer_ch, hz, rt_timer_timer, NULL);
rt_init_done = 1;
}
struct rttimer_queue *
rt_timer_queue_create(u_int timeout)
{
struct rttimer_queue *rtq;
if (rt_init_done == 0)
rt_timer_init();
R_Malloc(rtq, struct rttimer_queue *, sizeof *rtq);
if (rtq == NULL)
return NULL;
memset(rtq, 0, sizeof(*rtq));
rtq->rtq_timeout = timeout;
TAILQ_INIT(&rtq->rtq_head);
RT_WLOCK();
LIST_INSERT_HEAD(&rttimer_queue_head, rtq, rtq_link);
RT_UNLOCK();
return rtq;
}
void
rt_timer_queue_change(struct rttimer_queue *rtq, long timeout)
{
rtq->rtq_timeout = timeout;
}
static void
rt_timer_queue_remove_all(struct rttimer_queue *rtq)
{
struct rttimer *r;
RT_ASSERT_WLOCK();
while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) {
LIST_REMOVE(r, rtt_link);
TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
rt_ref(r->rtt_rt); /* XXX */
RT_REFCNT_TRACE(r->rtt_rt);
RT_UNLOCK();
(*r->rtt_func)(r->rtt_rt, r);
pool_put(&rttimer_pool, r);
RT_WLOCK();
if (rtq->rtq_count > 0)
rtq->rtq_count--;
else
printf("rt_timer_queue_remove_all: "
"rtq_count reached 0\n");
}
}
void
rt_timer_queue_destroy(struct rttimer_queue *rtq)
{
RT_WLOCK();
rt_timer_queue_remove_all(rtq);
LIST_REMOVE(rtq, rtq_link);
RT_UNLOCK();
/*
* Caller is responsible for freeing the rttimer_queue structure.
*/
}
unsigned long
rt_timer_count(struct rttimer_queue *rtq)
{
return rtq->rtq_count;
}
static void
rt_timer_remove_all(struct rtentry *rt)
{
struct rttimer *r;
RT_WLOCK();
while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) {
LIST_REMOVE(r, rtt_link);
TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
if (r->rtt_queue->rtq_count > 0)
r->rtt_queue->rtq_count--;
else
printf("rt_timer_remove_all: rtq_count reached 0\n");
pool_put(&rttimer_pool, r);
}
RT_UNLOCK();
}
int
rt_timer_add(struct rtentry *rt,
void (*func)(struct rtentry *, struct rttimer *),
struct rttimer_queue *queue)
{
struct rttimer *r;
KASSERT(func != NULL);
RT_WLOCK();
/*
* If there's already a timer with this action, destroy it before
* we add a new one.
*/
LIST_FOREACH(r, &rt->rt_timer, rtt_link) {
if (r->rtt_func == func)
break;
}
if (r != NULL) {
LIST_REMOVE(r, rtt_link);
TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
if (r->rtt_queue->rtq_count > 0)
r->rtt_queue->rtq_count--;
else
printf("rt_timer_add: rtq_count reached 0\n");
} else {
r = pool_get(&rttimer_pool, PR_NOWAIT);
if (r == NULL) {
RT_UNLOCK();
return ENOBUFS;
}
}
memset(r, 0, sizeof(*r));
r->rtt_rt = rt;
r->rtt_time = time_uptime;
r->rtt_func = func;
r->rtt_queue = queue;
LIST_INSERT_HEAD(&rt->rt_timer, r, rtt_link);
TAILQ_INSERT_TAIL(&queue->rtq_head, r, rtt_next);
r->rtt_queue->rtq_count++;
RT_UNLOCK();
return 0;
}
static void
rt_timer_work(struct work *wk, void *arg)
{
struct rttimer_queue *rtq;
struct rttimer *r;
RT_WLOCK();
LIST_FOREACH(rtq, &rttimer_queue_head, rtq_link) {
while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL &&
(r->rtt_time + rtq->rtq_timeout) < time_uptime) {
LIST_REMOVE(r, rtt_link);
TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
rt_ref(r->rtt_rt); /* XXX */
RT_REFCNT_TRACE(r->rtt_rt);
RT_UNLOCK();
(*r->rtt_func)(r->rtt_rt, r);
pool_put(&rttimer_pool, r);
RT_WLOCK();
if (rtq->rtq_count > 0)
rtq->rtq_count--;
else
printf("rt_timer_timer: rtq_count reached 0\n");
}
}
RT_UNLOCK();
callout_reset(&rt_timer_ch, hz, rt_timer_timer, NULL);
}
static void
rt_timer_timer(void *arg)
{
workqueue_enqueue(rt_timer_wq, &rt_timer_wk, NULL);
}
static struct rtentry *
_rtcache_init(struct route *ro, int flag)
{
struct rtentry *rt;
rtcache_invariants(ro);
KASSERT(ro->_ro_rt == NULL);
RTCACHE_ASSERT_WLOCK();
if (rtcache_getdst(ro) == NULL)
return NULL;
ro->ro_invalid = false;
rt = rtalloc1(rtcache_getdst(ro), flag);
if (rt != NULL && ISSET(rt->rt_flags, RTF_UP)) {
ro->_ro_rt = rt;
KASSERT(!ISSET(rt->rt_flags, RTF_UPDATING));
rtcache_ref(rt, ro);
rt_unref(rt);
rtcache(ro);
} else if (rt != NULL)
rt_unref(rt);
rtcache_invariants(ro);
return ro->_ro_rt;
}
struct rtentry *
rtcache_init(struct route *ro)
{
struct rtentry *rt;
RTCACHE_WLOCK();
rt = _rtcache_init(ro, 1);
RTCACHE_UNLOCK();
return rt;
}
struct rtentry *
rtcache_init_noclone(struct route *ro)
{
struct rtentry *rt;
RTCACHE_WLOCK();
rt = _rtcache_init(ro, 0);
RTCACHE_UNLOCK();
return rt;
}
struct rtentry *
rtcache_update(struct route *ro, int clone)
{
struct rtentry *rt;
RTCACHE_WLOCK();
rtcache_clear(ro);
rt = _rtcache_init(ro, clone);
RTCACHE_UNLOCK();
return rt;
}
void
rtcache_copy(struct route *new_ro, struct route *old_ro)
{
struct rtentry *rt;
int ret;
KASSERT(new_ro != old_ro);
rtcache_invariants(new_ro);
rtcache_invariants(old_ro);
rt = rtcache_validate(old_ro);
if (rtcache_getdst(old_ro) == NULL)
goto out;
ret = rtcache_setdst(new_ro, rtcache_getdst(old_ro));
if (ret != 0)
goto out;
RTCACHE_WLOCK();
new_ro->ro_invalid = false;
if ((new_ro->_ro_rt = rt) != NULL)
rtcache(new_ro);
rtcache_invariants(new_ro);
RTCACHE_UNLOCK();
out:
rtcache_unref(rt, old_ro);
return;
}
static struct dom_rtlist invalid_routes = LIST_HEAD_INITIALIZER(dom_rtlist);
#if defined(RT_DEBUG) && defined(NET_MPSAFE)
static void
rtcache_trace(const char *func, struct rtentry *rt, struct route *ro)
{
char dst[64];
sockaddr_format(ro->ro_sa, dst, 64);
printf("trace: %s:\tdst=%s cpu=%d lwp=%p psref=%p target=%p\n", func, dst,
cpu_index(curcpu()), curlwp, &ro->ro_psref, &rt->rt_psref);
}
#define RTCACHE_PSREF_TRACE(rt, ro) rtcache_trace(__func__, (rt), (ro))
#else
#define RTCACHE_PSREF_TRACE(rt, ro) do {} while (0)
#endif
static void
rtcache_ref(struct rtentry *rt, struct route *ro)
{
KASSERT(rt != NULL);
#ifdef NET_MPSAFE
RTCACHE_PSREF_TRACE(rt, ro);
ro->ro_bound = curlwp_bind();
psref_acquire(&ro->ro_psref, &rt->rt_psref, rt_psref_class);
#endif
}
void
rtcache_unref(struct rtentry *rt, struct route *ro)
{
if (rt == NULL)
return;
#ifdef NET_MPSAFE
psref_release(&ro->ro_psref, &rt->rt_psref, rt_psref_class);
curlwp_bindx(ro->ro_bound);
RTCACHE_PSREF_TRACE(rt, ro);
#endif
}
static struct rtentry *
rtcache_validate_locked(struct route *ro)
{
struct rtentry *rt = NULL;
#ifdef NET_MPSAFE
retry:
#endif
rt = ro->_ro_rt;
rtcache_invariants(ro);
if (ro->ro_invalid) {
rt = NULL;
goto out;
}
RT_RLOCK();
if (rt != NULL && (rt->rt_flags & RTF_UP) != 0 && rt->rt_ifp != NULL) {
#ifdef NET_MPSAFE
if (ISSET(rt->rt_flags, RTF_UPDATING)) {
if (rt_wait_ok()) {
RT_UNLOCK();
RTCACHE_UNLOCK();
/* We can wait until the update is complete */
rt_update_wait();
RTCACHE_RLOCK();
goto retry;
} else {
rt = NULL;
}
} else
#endif
rtcache_ref(rt, ro);
} else
rt = NULL;
RT_UNLOCK();
out:
return rt;
}
struct rtentry *
rtcache_validate(struct route *ro)
{
struct rtentry *rt;
RTCACHE_RLOCK();
rt = rtcache_validate_locked(ro);
RTCACHE_UNLOCK();
return rt;
}
static void
rtcache_invalidate(struct dom_rtlist *rtlist)
{
struct route *ro;
RTCACHE_ASSERT_WLOCK();
while ((ro = LIST_FIRST(rtlist)) != NULL) {
rtcache_invariants(ro);
KASSERT(ro->_ro_rt != NULL);
ro->ro_invalid = true;
LIST_REMOVE(ro, ro_rtcache_next);
LIST_INSERT_HEAD(&invalid_routes, ro, ro_rtcache_next);
rtcache_invariants(ro);
}
}
static void
rtcache_clear_rtentry(int family, struct rtentry *rt)
{
struct domain *dom;
struct route *ro, *nro;
if ((dom = pffinddomain(family)) == NULL)
return;
RTCACHE_WLOCK();
LIST_FOREACH_SAFE(ro, &dom->dom_rtcache, ro_rtcache_next, nro) {
if (ro->_ro_rt == rt)
rtcache_clear(ro);
}
RTCACHE_UNLOCK();
}
static void
rtcache_clear(struct route *ro)
{
RTCACHE_ASSERT_WLOCK();
rtcache_invariants(ro);
if (ro->_ro_rt == NULL)
return;
LIST_REMOVE(ro, ro_rtcache_next);
ro->_ro_rt = NULL;
ro->ro_invalid = false;
rtcache_invariants(ro);
}
struct rtentry *
rtcache_lookup2(struct route *ro, const struct sockaddr *dst,
int clone, int *hitp)
{
const struct sockaddr *odst;
struct rtentry *rt = NULL;
RTCACHE_RLOCK();
odst = rtcache_getdst(ro);
if (odst == NULL) {
RTCACHE_UNLOCK();
RTCACHE_WLOCK();
goto miss;
}
if (sockaddr_cmp(odst, dst) != 0) {
RTCACHE_UNLOCK();
RTCACHE_WLOCK();
rtcache_free_locked(ro);
goto miss;
}
rt = rtcache_validate_locked(ro);
if (rt == NULL) {
RTCACHE_UNLOCK();
RTCACHE_WLOCK();
rtcache_clear(ro);
goto miss;
}
rtcache_invariants(ro);
RTCACHE_UNLOCK();
if (hitp != NULL)
*hitp = 1;
return rt;
miss:
if (hitp != NULL)
*hitp = 0;
if (rtcache_setdst_locked(ro, dst) == 0)
rt = _rtcache_init(ro, clone);
rtcache_invariants(ro);
RTCACHE_UNLOCK();
return rt;
}
static void
rtcache_free_locked(struct route *ro)
{
RTCACHE_ASSERT_WLOCK();
rtcache_clear(ro);
if (ro->ro_sa != NULL) {
sockaddr_free(ro->ro_sa);
ro->ro_sa = NULL;
}
rtcache_invariants(ro);
}
void
rtcache_free(struct route *ro)
{
RTCACHE_WLOCK();
rtcache_free_locked(ro);
RTCACHE_UNLOCK();
}
static int
rtcache_setdst_locked(struct route *ro, const struct sockaddr *sa)
{
KASSERT(sa != NULL);
RTCACHE_ASSERT_WLOCK();
rtcache_invariants(ro);
if (ro->ro_sa != NULL) {
if (ro->ro_sa->sa_family == sa->sa_family) {
rtcache_clear(ro);
sockaddr_copy(ro->ro_sa, ro->ro_sa->sa_len, sa);
rtcache_invariants(ro);
return 0;
}
/* free ro_sa, wrong family */
rtcache_free_locked(ro);
}
KASSERT(ro->_ro_rt == NULL);
if ((ro->ro_sa = sockaddr_dup(sa, M_ZERO | M_NOWAIT)) == NULL) {
rtcache_invariants(ro);
return ENOMEM;
}
rtcache_invariants(ro);
return 0;
}
int
rtcache_setdst(struct route *ro, const struct sockaddr *sa)
{
int error;
RTCACHE_WLOCK();
error = rtcache_setdst_locked(ro, sa);
RTCACHE_UNLOCK();
return error;
}
const struct sockaddr *
rt_settag(struct rtentry *rt, const struct sockaddr *tag)
{
if (rt->rt_tag != tag) {
if (rt->rt_tag != NULL)
sockaddr_free(rt->rt_tag);
rt->rt_tag = sockaddr_dup(tag, M_ZERO | M_NOWAIT);
}
return rt->rt_tag;
}
struct sockaddr *
rt_gettag(const struct rtentry *rt)
{
return rt->rt_tag;
}
int
rt_check_reject_route(const struct rtentry *rt, const struct ifnet *ifp)
{
if ((rt->rt_flags & RTF_REJECT) != 0) {
/* Mimic looutput */
if (ifp->if_flags & IFF_LOOPBACK)
return (rt->rt_flags & RTF_HOST) ?
EHOSTUNREACH : ENETUNREACH;
else if (rt->rt_rmx.rmx_expire == 0 ||
time_uptime < rt->rt_rmx.rmx_expire)
return (rt->rt_flags & RTF_GATEWAY) ?
EHOSTUNREACH : EHOSTDOWN;
}
return 0;
}
void
rt_delete_matched_entries(sa_family_t family, int (*f)(struct rtentry *, void *),
void *v)
{
for (;;) {
int s;
int error;
struct rtentry *rt, *retrt = NULL;
RT_RLOCK();
s = splsoftnet();
rt = rtbl_search_matched_entry(family, f, v);
if (rt == NULL) {
splx(s);
RT_UNLOCK();
return;
}
rt->rt_refcnt++;
splx(s);
RT_UNLOCK();
error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
rt_mask(rt), rt->rt_flags, &retrt);
if (error == 0) {
KASSERT(retrt == rt);
KASSERT((retrt->rt_flags & RTF_UP) == 0);
retrt->rt_ifp = NULL;
rt_unref(rt);
rt_free(retrt);
} else if (error == ESRCH) {
/* Someone deleted the entry already. */
rt_unref(rt);
} else {
log(LOG_ERR, "%s: unable to delete rtentry @ %p, "
"error = %d\n", rt->rt_ifp->if_xname, rt, error);
/* XXX how to treat this case? */
}
}
}
int
rt_walktree(sa_family_t family, int (*f)(struct rtentry *, void *), void *v)
{
int error;
RT_RLOCK();
error = rtbl_walktree(family, f, v);
RT_UNLOCK();
return error;
}
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_interface.h>
#include <ddb/db_output.h>
#define rt_expire rt_rmx.rmx_expire
static void
db_print_sa(const struct sockaddr *sa)
{
int len;
const u_char *p;
if (sa == NULL) {
db_printf("[NULL]");
return;
}
p = (const u_char *)sa;
len = sa->sa_len;
db_printf("[");
while (len > 0) {
db_printf("%d", *p);
p++; len--;
if (len) db_printf(",");
}
db_printf("]\n");
}
static void
db_print_ifa(struct ifaddr *ifa)
{
if (ifa == NULL)
return;
db_printf(" ifa_addr=");
db_print_sa(ifa->ifa_addr);
db_printf(" ifa_dsta=");
db_print_sa(ifa->ifa_dstaddr);
db_printf(" ifa_mask=");
db_print_sa(ifa->ifa_netmask);
db_printf(" flags=0x%x,refcnt=%d,metric=%d\n",
ifa->ifa_flags,
ifa->ifa_refcnt,
ifa->ifa_metric);
}
/*
* Function to pass to rt_walktree().
* Return non-zero error to abort walk.
*/
static int
db_show_rtentry(struct rtentry *rt, void *w)
{
db_printf("rtentry=%p", rt);
db_printf(" flags=0x%x refcnt=%d use=%"PRId64" expire=%"PRId64"\n",
rt->rt_flags, rt->rt_refcnt,
rt->rt_use, (uint64_t)rt->rt_expire);
db_printf(" key="); db_print_sa(rt_getkey(rt));
db_printf(" mask="); db_print_sa(rt_mask(rt));
db_printf(" gw="); db_print_sa(rt->rt_gateway);
db_printf(" ifp=%p ", rt->rt_ifp);
if (rt->rt_ifp)
db_printf("(%s)", rt->rt_ifp->if_xname);
else
db_printf("(NULL)");
db_printf(" ifa=%p\n", rt->rt_ifa);
db_print_ifa(rt->rt_ifa);
db_printf(" gwroute=%p llinfo=%p\n",
rt->rt_gwroute, rt->rt_llinfo);
return 0;
}
/*
* Function to print all the route trees.
* Use this from ddb: "show routes"
*/
void
db_show_routes(db_expr_t addr, bool have_addr,
db_expr_t count, const char *modif)
{
rt_walktree(AF_INET, db_show_rtentry, NULL);
}
#endif