238efe4697
XXX Should we use pci_get_powerstate() and pci_set_powerstate() in pci.c?
2164 lines
55 KiB
C
2164 lines
55 KiB
C
/* $NetBSD: if_pcn.c,v 1.18 2002/12/23 02:58:37 tsutsui Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2001 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the AMD PCnet-PCI series of Ethernet
|
|
* chips:
|
|
*
|
|
* * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
|
|
* Local Bus
|
|
*
|
|
* * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
|
|
* for PCI Local Bus
|
|
*
|
|
* * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
|
|
* Ethernet Controller for PCI Local Bus
|
|
*
|
|
* * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
|
|
* with OnNow Support
|
|
*
|
|
* * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
|
|
* Ethernet Controller with Integrated PHY
|
|
*
|
|
* This also supports the virtual PCnet-PCI Ethernet interface found
|
|
* in VMware.
|
|
*
|
|
* TODO:
|
|
*
|
|
* * Split this into bus-specific and bus-independent portions.
|
|
* The core could also be used for the ILACC (Am79900) 32-bit
|
|
* Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.18 2002/12/23 02:58:37 tsutsui Exp $");
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
#include <machine/endian.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/ic/am79900reg.h>
|
|
#include <dev/ic/lancereg.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/if_pcnreg.h>
|
|
|
|
/*
|
|
* Transmit descriptor list size. This is arbitrary, but allocate
|
|
* enough descriptors for 128 pending transmissions, and 4 segments
|
|
* per packet. This MUST work out to a power of 2.
|
|
*
|
|
* NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
|
|
*
|
|
* So we play a little trick here. We give each packet up to 16
|
|
* DMA segments, but only allocate the max of 512 descriptors. The
|
|
* transmit logic can deal with this, we just are hoping to sneak by.
|
|
*/
|
|
#define PCN_NTXSEGS 16
|
|
|
|
#define PCN_TXQUEUELEN 128
|
|
#define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
|
|
#define PCN_NTXDESC 512
|
|
#define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
|
|
#define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
|
|
#define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
|
|
|
|
/* Tx interrupt every N + 1 packets. */
|
|
#define PCN_TXINTR_MASK 7
|
|
|
|
/*
|
|
* Receive descriptor list size. We have one Rx buffer per incoming
|
|
* packet, so this logic is a little simpler.
|
|
*/
|
|
#define PCN_NRXDESC 128
|
|
#define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
|
|
#define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
|
|
|
|
/*
|
|
* Control structures are DMA'd to the PCnet chip. We allocate them in
|
|
* a single clump that maps to a single DMA segment to make several things
|
|
* easier.
|
|
*/
|
|
struct pcn_control_data {
|
|
/* The transmit descriptors. */
|
|
struct letmd pcd_txdescs[PCN_NTXDESC];
|
|
|
|
/* The receive descriptors. */
|
|
struct lermd pcd_rxdescs[PCN_NRXDESC];
|
|
|
|
/* The init block. */
|
|
struct leinit pcd_initblock;
|
|
};
|
|
|
|
#define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
|
|
#define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
|
|
#define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
|
|
#define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
|
|
|
|
/*
|
|
* Software state for transmit jobs.
|
|
*/
|
|
struct pcn_txsoft {
|
|
struct mbuf *txs_mbuf; /* head of our mbuf chain */
|
|
bus_dmamap_t txs_dmamap; /* our DMA map */
|
|
int txs_firstdesc; /* first descriptor in packet */
|
|
int txs_lastdesc; /* last descriptor in packet */
|
|
};
|
|
|
|
/*
|
|
* Software state for receive jobs.
|
|
*/
|
|
struct pcn_rxsoft {
|
|
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
|
|
bus_dmamap_t rxs_dmamap; /* our DMA map */
|
|
};
|
|
|
|
/*
|
|
* Description of Rx FIFO watermarks for various revisions.
|
|
*/
|
|
const char *pcn_79c970_rcvfw[] = {
|
|
"16 bytes",
|
|
"64 bytes",
|
|
"128 bytes",
|
|
NULL,
|
|
};
|
|
|
|
const char *pcn_79c971_rcvfw[] = {
|
|
"16 bytes",
|
|
"64 bytes",
|
|
"112 bytes",
|
|
NULL,
|
|
};
|
|
|
|
/*
|
|
* Description of Tx start points for various revisions.
|
|
*/
|
|
const char *pcn_79c970_xmtsp[] = {
|
|
"8 bytes",
|
|
"64 bytes",
|
|
"128 bytes",
|
|
"248 bytes",
|
|
};
|
|
|
|
const char *pcn_79c971_xmtsp[] = {
|
|
"20 bytes",
|
|
"64 bytes",
|
|
"128 bytes",
|
|
"248 bytes",
|
|
};
|
|
|
|
const char *pcn_79c971_xmtsp_sram[] = {
|
|
"44 bytes",
|
|
"64 bytes",
|
|
"128 bytes",
|
|
"store-and-forward",
|
|
};
|
|
|
|
/*
|
|
* Description of Tx FIFO watermarks for various revisions.
|
|
*/
|
|
const char *pcn_79c970_xmtfw[] = {
|
|
"16 bytes",
|
|
"64 bytes",
|
|
"128 bytes",
|
|
NULL,
|
|
};
|
|
|
|
const char *pcn_79c971_xmtfw[] = {
|
|
"16 bytes",
|
|
"64 bytes",
|
|
"108 bytes",
|
|
NULL,
|
|
};
|
|
|
|
/*
|
|
* Software state per device.
|
|
*/
|
|
struct pcn_softc {
|
|
struct device sc_dev; /* generic device information */
|
|
bus_space_tag_t sc_st; /* bus space tag */
|
|
bus_space_handle_t sc_sh; /* bus space handle */
|
|
bus_dma_tag_t sc_dmat; /* bus DMA tag */
|
|
struct ethercom sc_ethercom; /* Ethernet common data */
|
|
void *sc_sdhook; /* shutdown hook */
|
|
|
|
/* Points to our media routines, etc. */
|
|
const struct pcn_variant *sc_variant;
|
|
|
|
void *sc_ih; /* interrupt cookie */
|
|
|
|
struct mii_data sc_mii; /* MII/media information */
|
|
|
|
struct callout sc_tick_ch; /* tick callout */
|
|
|
|
bus_dmamap_t sc_cddmamap; /* control data DMA map */
|
|
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
|
|
|
|
/* Software state for transmit and receive descriptors. */
|
|
struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
|
|
struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
|
|
|
|
/* Control data structures */
|
|
struct pcn_control_data *sc_control_data;
|
|
#define sc_txdescs sc_control_data->pcd_txdescs
|
|
#define sc_rxdescs sc_control_data->pcd_rxdescs
|
|
#define sc_initblock sc_control_data->pcd_initblock
|
|
|
|
#ifdef PCN_EVENT_COUNTERS
|
|
/* Event counters. */
|
|
struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
|
|
struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
|
|
struct evcnt sc_ev_txintr; /* Tx interrupts */
|
|
struct evcnt sc_ev_rxintr; /* Rx interrupts */
|
|
struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
|
|
struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
|
|
struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
|
|
|
|
struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
|
|
struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
|
|
struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
|
|
struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
|
|
struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
|
|
struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
|
|
struct evcnt sc_ev_txcopy; /* Tx copies required */
|
|
#endif /* PCN_EVENT_COUNTERS */
|
|
|
|
const char **sc_rcvfw_desc; /* Rx FIFO watermark info */
|
|
int sc_rcvfw;
|
|
|
|
const char **sc_xmtsp_desc; /* Tx start point info */
|
|
int sc_xmtsp;
|
|
|
|
const char **sc_xmtfw_desc; /* Tx FIFO watermark info */
|
|
int sc_xmtfw;
|
|
|
|
int sc_flags; /* misc. flags; see below */
|
|
int sc_swstyle; /* the software style in use */
|
|
|
|
int sc_txfree; /* number of free Tx descriptors */
|
|
int sc_txnext; /* next ready Tx descriptor */
|
|
|
|
int sc_txsfree; /* number of free Tx jobs */
|
|
int sc_txsnext; /* next free Tx job */
|
|
int sc_txsdirty; /* dirty Tx jobs */
|
|
|
|
int sc_rxptr; /* next ready Rx descriptor/job */
|
|
|
|
uint32_t sc_csr5; /* prototype CSR5 register */
|
|
uint32_t sc_mode; /* prototype MODE register */
|
|
int sc_phyaddr; /* PHY address */
|
|
};
|
|
|
|
/* sc_flags */
|
|
#define PCN_F_HAS_MII 0x0001 /* has MII */
|
|
|
|
#ifdef PCN_EVENT_COUNTERS
|
|
#define PCN_EVCNT_INCR(ev) (ev)->ev_count++
|
|
#else
|
|
#define PCN_EVCNT_INCR(ev) /* nothing */
|
|
#endif
|
|
|
|
#define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
|
|
#define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
|
|
#define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
|
|
|
|
#define PCN_CDTXSYNC(sc, x, n, ops) \
|
|
do { \
|
|
int __x, __n; \
|
|
\
|
|
__x = (x); \
|
|
__n = (n); \
|
|
\
|
|
/* If it will wrap around, sync to the end of the ring. */ \
|
|
if ((__x + __n) > PCN_NTXDESC) { \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
PCN_CDTXOFF(__x), sizeof(struct letmd) * \
|
|
(PCN_NTXDESC - __x), (ops)); \
|
|
__n -= (PCN_NTXDESC - __x); \
|
|
__x = 0; \
|
|
} \
|
|
\
|
|
/* Now sync whatever is left. */ \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define PCN_CDRXSYNC(sc, x, ops) \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
|
|
|
|
#define PCN_CDINITSYNC(sc, ops) \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
PCN_CDINITOFF, sizeof(struct leinit), (ops))
|
|
|
|
#define PCN_INIT_RXDESC(sc, x) \
|
|
do { \
|
|
struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
|
|
struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
|
|
struct mbuf *__m = __rxs->rxs_mbuf; \
|
|
\
|
|
/* \
|
|
* Note: We scoot the packet forward 2 bytes in the buffer \
|
|
* so that the payload after the Ethernet header is aligned \
|
|
* to a 4-byte boundary. \
|
|
*/ \
|
|
__m->m_data = __m->m_ext.ext_buf + 2; \
|
|
\
|
|
if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
|
|
__rmd->rmd2 = \
|
|
htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
|
|
__rmd->rmd0 = 0; \
|
|
} else { \
|
|
__rmd->rmd2 = 0; \
|
|
__rmd->rmd0 = \
|
|
htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
|
|
} \
|
|
__rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
|
|
(LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
|
|
PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
|
|
} while(/*CONSTCOND*/0)
|
|
|
|
void pcn_start(struct ifnet *);
|
|
void pcn_watchdog(struct ifnet *);
|
|
int pcn_ioctl(struct ifnet *, u_long, caddr_t);
|
|
int pcn_init(struct ifnet *);
|
|
void pcn_stop(struct ifnet *, int);
|
|
|
|
void pcn_shutdown(void *);
|
|
|
|
void pcn_reset(struct pcn_softc *);
|
|
void pcn_rxdrain(struct pcn_softc *);
|
|
int pcn_add_rxbuf(struct pcn_softc *, int);
|
|
void pcn_tick(void *);
|
|
|
|
void pcn_spnd(struct pcn_softc *);
|
|
|
|
void pcn_set_filter(struct pcn_softc *);
|
|
|
|
int pcn_intr(void *);
|
|
void pcn_txintr(struct pcn_softc *);
|
|
int pcn_rxintr(struct pcn_softc *);
|
|
|
|
int pcn_mii_readreg(struct device *, int, int);
|
|
void pcn_mii_writereg(struct device *, int, int, int);
|
|
void pcn_mii_statchg(struct device *);
|
|
|
|
void pcn_79c970_mediainit(struct pcn_softc *);
|
|
int pcn_79c970_mediachange(struct ifnet *);
|
|
void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
void pcn_79c971_mediainit(struct pcn_softc *);
|
|
int pcn_79c971_mediachange(struct ifnet *);
|
|
void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
/*
|
|
* Description of a PCnet-PCI variant. Used to select media access
|
|
* method, mostly, and to print a nice description of the chip.
|
|
*/
|
|
const struct pcn_variant {
|
|
const char *pcv_desc;
|
|
void (*pcv_mediainit)(struct pcn_softc *);
|
|
uint16_t pcv_chipid;
|
|
} pcn_variants[] = {
|
|
{ "Am79c970 PCnet-PCI",
|
|
pcn_79c970_mediainit,
|
|
PARTID_Am79c970 },
|
|
|
|
{ "Am79c970A PCnet-PCI II",
|
|
pcn_79c970_mediainit,
|
|
PARTID_Am79c970A },
|
|
|
|
{ "Am79c971 PCnet-FAST",
|
|
pcn_79c971_mediainit,
|
|
PARTID_Am79c971 },
|
|
|
|
{ "Am79c972 PCnet-FAST+",
|
|
pcn_79c971_mediainit,
|
|
PARTID_Am79c972 },
|
|
|
|
{ "Am79c973 PCnet-FAST III",
|
|
pcn_79c971_mediainit,
|
|
PARTID_Am79c973 },
|
|
|
|
{ "Am79c975 PCnet-FAST III",
|
|
pcn_79c971_mediainit,
|
|
PARTID_Am79c975 },
|
|
|
|
{ "Unknown PCnet-PCI variant",
|
|
pcn_79c971_mediainit,
|
|
0 },
|
|
};
|
|
|
|
int pcn_copy_small = 0;
|
|
|
|
int pcn_match(struct device *, struct cfdata *, void *);
|
|
void pcn_attach(struct device *, struct device *, void *);
|
|
|
|
CFATTACH_DECL(pcn, sizeof(struct pcn_softc),
|
|
pcn_match, pcn_attach, NULL, NULL);
|
|
|
|
/*
|
|
* Routines to read and write the PCnet-PCI CSR/BCR space.
|
|
*/
|
|
|
|
static __inline uint32_t
|
|
pcn_csr_read(struct pcn_softc *sc, int reg)
|
|
{
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
|
|
return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
|
|
}
|
|
|
|
static __inline void
|
|
pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
|
|
{
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
|
|
}
|
|
|
|
static __inline uint32_t
|
|
pcn_bcr_read(struct pcn_softc *sc, int reg)
|
|
{
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
|
|
return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
|
|
}
|
|
|
|
static __inline void
|
|
pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
|
|
{
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
|
|
}
|
|
|
|
static const struct pcn_variant *
|
|
pcn_lookup_variant(uint16_t chipid)
|
|
{
|
|
const struct pcn_variant *pcv;
|
|
|
|
for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
|
|
if (chipid == pcv->pcv_chipid)
|
|
return (pcv);
|
|
}
|
|
|
|
/*
|
|
* This covers unknown chips, which we simply treat like
|
|
* a generic PCnet-FAST.
|
|
*/
|
|
return (pcv);
|
|
}
|
|
|
|
int
|
|
pcn_match(struct device *parent, struct cfdata *cf, void *aux)
|
|
{
|
|
struct pci_attach_args *pa = aux;
|
|
|
|
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
|
|
return (0);
|
|
|
|
switch (PCI_PRODUCT(pa->pa_id)) {
|
|
case PCI_PRODUCT_AMD_PCNET_PCI:
|
|
/* Beat if_le_pci.c */
|
|
return (10);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
pcn_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct pcn_softc *sc = (struct pcn_softc *) self;
|
|
struct pci_attach_args *pa = aux;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr = NULL;
|
|
bus_space_tag_t iot, memt;
|
|
bus_space_handle_t ioh, memh;
|
|
bus_dma_segment_t seg;
|
|
int ioh_valid, memh_valid;
|
|
int i, rseg, error;
|
|
pcireg_t pmode;
|
|
uint32_t chipid, reg;
|
|
uint8_t enaddr[ETHER_ADDR_LEN];
|
|
int pmreg;
|
|
|
|
callout_init(&sc->sc_tick_ch);
|
|
|
|
printf(": AMD PCnet-PCI Ethernet\n");
|
|
|
|
/*
|
|
* Map the device.
|
|
*/
|
|
ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
|
|
&iot, &ioh, NULL, NULL) == 0);
|
|
memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
|
|
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
|
|
&memt, &memh, NULL, NULL) == 0);
|
|
|
|
if (memh_valid) {
|
|
sc->sc_st = memt;
|
|
sc->sc_sh = memh;
|
|
} else if (ioh_valid) {
|
|
sc->sc_st = iot;
|
|
sc->sc_sh = ioh;
|
|
} else {
|
|
printf("%s: unable to map device registers\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
|
|
/* Make sure bus mastering is enabled. */
|
|
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
|
|
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
|
|
PCI_COMMAND_MASTER_ENABLE);
|
|
|
|
/* Get it out of power save mode, if needed. */
|
|
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
|
|
pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
|
|
PCI_PMCSR_STATE_MASK;
|
|
if (pmode == PCI_PMCSR_STATE_D3) {
|
|
/*
|
|
* The card has lost all configuration data in
|
|
* this state, so punt.
|
|
*/
|
|
printf("%s: unable to wake from power state D3\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
if (pmode != PCI_PMCSR_STATE_D0) {
|
|
printf("%s: waking up from power date D%d\n",
|
|
sc->sc_dev.dv_xname, pmode);
|
|
pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
|
|
PCI_PMCSR_STATE_D0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the chip to a known state. This also puts the
|
|
* chip into 32-bit mode.
|
|
*/
|
|
pcn_reset(sc);
|
|
|
|
/*
|
|
* Read the Ethernet address from the EEPROM.
|
|
*/
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
|
|
PCN32_APROM + i);
|
|
|
|
/*
|
|
* Now that the device is mapped, attempt to figure out what
|
|
* kind of chip we have. Note that IDL has all 32 bits of
|
|
* the chip ID when we're in 32-bit mode.
|
|
*/
|
|
chipid = pcn_csr_read(sc, LE_CSR88);
|
|
sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
|
|
|
|
printf("%s: %s rev %d, Ethernet address %s\n",
|
|
sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
|
|
ether_sprintf(enaddr));
|
|
|
|
/*
|
|
* Map and establish our interrupt.
|
|
*/
|
|
if (pci_intr_map(pa, &ih)) {
|
|
printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
intrstr = pci_intr_string(pc, ih);
|
|
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
|
|
if (sc->sc_ih == NULL) {
|
|
printf("%s: unable to establish interrupt",
|
|
sc->sc_dev.dv_xname);
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
return;
|
|
}
|
|
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
|
|
0)) != 0) {
|
|
printf("%s: unable to allocate control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
printf("%s: unable to map control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct pcn_control_data), 1,
|
|
sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
|
|
printf("%s: unable to create control data DMA map, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
|
|
0)) != 0) {
|
|
printf("%s: unable to load control data DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/* Create the transmit buffer DMA maps. */
|
|
for (i = 0; i < PCN_TXQUEUELEN; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
PCN_NTXSEGS, MCLBYTES, 0, 0,
|
|
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
|
|
printf("%s: unable to create tx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/* Create the receive buffer DMA maps. */
|
|
for (i = 0; i < PCN_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
|
|
printf("%s: unable to create rx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_5;
|
|
}
|
|
sc->sc_rxsoft[i].rxs_mbuf = NULL;
|
|
}
|
|
|
|
/* Initialize our media structures. */
|
|
(*sc->sc_variant->pcv_mediainit)(sc);
|
|
|
|
/*
|
|
* Initialize FIFO watermark info.
|
|
*/
|
|
switch (sc->sc_variant->pcv_chipid) {
|
|
case PARTID_Am79c970:
|
|
case PARTID_Am79c970A:
|
|
sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
|
|
sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
|
|
sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
|
|
break;
|
|
|
|
default:
|
|
sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
|
|
/*
|
|
* Read BCR25 to determine how much SRAM is
|
|
* on the board. If > 0, then we the chip
|
|
* uses different Start Point thresholds.
|
|
*
|
|
* Note BCR25 and BCR26 are loaded from the
|
|
* EEPROM on RST, and unaffected by S_RESET,
|
|
* so we don't really have to worry about
|
|
* them except for this.
|
|
*/
|
|
reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
|
|
if (reg != 0)
|
|
sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
|
|
else
|
|
sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
|
|
sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set up defaults -- see the tables above for what these
|
|
* values mean.
|
|
*
|
|
* XXX How should we tune RCVFW and XMTFW?
|
|
*/
|
|
sc->sc_rcvfw = 1; /* minimum for full-duplex */
|
|
sc->sc_xmtsp = 1;
|
|
sc->sc_xmtfw = 0;
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = pcn_ioctl;
|
|
ifp->if_start = pcn_start;
|
|
ifp->if_watchdog = pcn_watchdog;
|
|
ifp->if_init = pcn_init;
|
|
ifp->if_stop = pcn_stop;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/* Attach the interface. */
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
|
|
#ifdef PCN_EVENT_COUNTERS
|
|
/* Attach event counters. */
|
|
evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "txsstall");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "txdstall");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
|
|
NULL, sc->sc_dev.dv_xname, "txintr");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
|
|
NULL, sc->sc_dev.dv_xname, "rxintr");
|
|
evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "babl");
|
|
evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "miss");
|
|
evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "merr");
|
|
|
|
evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "txseg1");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "txseg2");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "txseg3");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "txseg4");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "txseg5");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "txsegmore");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_dev.dv_xname, "txcopy");
|
|
#endif /* PCN_EVENT_COUNTERS */
|
|
|
|
/* Make sure the interface is shutdown during reboot. */
|
|
sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
|
|
if (sc->sc_sdhook == NULL)
|
|
printf("%s: WARNING: unable to establish shutdown hook\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < PCN_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_rxsoft[i].rxs_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < PCN_TXQUEUELEN; i++) {
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
|
|
sizeof(struct pcn_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* pcn_shutdown:
|
|
*
|
|
* Make sure the interface is stopped at reboot time.
|
|
*/
|
|
void
|
|
pcn_shutdown(void *arg)
|
|
{
|
|
struct pcn_softc *sc = arg;
|
|
|
|
pcn_stop(&sc->sc_ethercom.ec_if, 1);
|
|
}
|
|
|
|
/*
|
|
* pcn_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
void
|
|
pcn_start(struct ifnet *ifp)
|
|
{
|
|
struct pcn_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
struct pcn_txsoft *txs;
|
|
bus_dmamap_t dmamap;
|
|
int error, nexttx, lasttx, ofree, seg;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of free descriptors and
|
|
* the first descriptor we'll use.
|
|
*/
|
|
ofree = sc->sc_txfree;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
for (;;) {
|
|
/* Grab a packet off the queue. */
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
m = NULL;
|
|
|
|
/* Get a work queue entry. */
|
|
if (sc->sc_txsfree == 0) {
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
|
|
break;
|
|
}
|
|
|
|
txs = &sc->sc_txsoft[sc->sc_txsnext];
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the alloted number of segments, or we
|
|
* were short on resources. In this case, we'll copy
|
|
* and try again.
|
|
*/
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
printf("%s: unable to allocate Tx mbuf\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
printf("%s: unable to allocate Tx "
|
|
"cluster\n", sc->sc_dev.dv_xname);
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
|
|
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: unable to load Tx buffer, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet. Note, we always reserve one descriptor
|
|
* at the end of the ring as a termination point, to
|
|
* prevent wrap-around.
|
|
*/
|
|
if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
|
|
/*
|
|
* Not enough free descriptors to transmit this
|
|
* packet. We haven't committed anything yet,
|
|
* so just unload the DMA map, put the packet
|
|
* back on the queue, and punt. Notify the upper
|
|
* layer that there are not more slots left.
|
|
*
|
|
* XXX We could allocate an mbuf and copy, but
|
|
* XXX is it worth it?
|
|
*/
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m != NULL) {
|
|
m_freem(m0);
|
|
m0 = m;
|
|
}
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef PCN_EVENT_COUNTERS
|
|
switch (dmamap->dm_nsegs) {
|
|
case 1:
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
|
|
break;
|
|
case 2:
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
|
|
break;
|
|
case 3:
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
|
|
break;
|
|
case 4:
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
|
|
break;
|
|
case 5:
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
|
|
break;
|
|
default:
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
|
|
break;
|
|
}
|
|
#endif /* PCN_EVENT_COUNTERS */
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
|
|
for (nexttx = sc->sc_txnext, seg = 0;
|
|
seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = PCN_NEXTTX(nexttx)) {
|
|
/*
|
|
* If this is the first descriptor we're
|
|
* enqueueing, don't set the OWN bit just
|
|
* yet. That could cause a race condition.
|
|
* We'll do it below.
|
|
*/
|
|
sc->sc_txdescs[nexttx].tmd0 = 0;
|
|
sc->sc_txdescs[nexttx].tmd2 =
|
|
htole32(dmamap->dm_segs[seg].ds_addr);
|
|
sc->sc_txdescs[nexttx].tmd1 =
|
|
htole32(LE_T1_ONES |
|
|
(nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
|
|
(LE_BCNT(dmamap->dm_segs[seg].ds_len) &
|
|
LE_T1_BCNT_MASK));
|
|
lasttx = nexttx;
|
|
}
|
|
} else {
|
|
for (nexttx = sc->sc_txnext, seg = 0;
|
|
seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = PCN_NEXTTX(nexttx)) {
|
|
/*
|
|
* If this is the first descriptor we're
|
|
* enqueueing, don't set the OWN bit just
|
|
* yet. That could cause a race condition.
|
|
* We'll do it below.
|
|
*/
|
|
sc->sc_txdescs[nexttx].tmd0 =
|
|
htole32(dmamap->dm_segs[seg].ds_addr);
|
|
sc->sc_txdescs[nexttx].tmd2 = 0;
|
|
sc->sc_txdescs[nexttx].tmd1 =
|
|
htole32(LE_T1_ONES |
|
|
(nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
|
|
(LE_BCNT(dmamap->dm_segs[seg].ds_len) &
|
|
LE_T1_BCNT_MASK));
|
|
lasttx = nexttx;
|
|
}
|
|
}
|
|
|
|
/* Interrupt on the packet, if appropriate. */
|
|
if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
|
|
sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
|
|
|
|
/* Set `start of packet' and `end of packet' appropriately. */
|
|
sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
|
|
sc->sc_txdescs[sc->sc_txnext].tmd1 |=
|
|
htole32(LE_T1_OWN|LE_T1_STP);
|
|
|
|
/* Sync the descriptors we're using. */
|
|
PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Kick the transmitter. */
|
|
pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later,
|
|
* and remember what txdirty will be once the packet is
|
|
* done.
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
txs->txs_lastdesc = lasttx;
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txfree -= dmamap->dm_nsegs;
|
|
sc->sc_txnext = nexttx;
|
|
|
|
sc->sc_txsfree--;
|
|
sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
|
|
|
|
#if NBPFILTER > 0
|
|
/* Pass the packet to any BPF listeners. */
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif /* NBPFILTER > 0 */
|
|
}
|
|
|
|
if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
|
|
/* No more slots left; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
|
|
if (sc->sc_txfree != ofree) {
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pcn_watchdog: [ifnet interface function]
|
|
*
|
|
* Watchdog timer handler.
|
|
*/
|
|
void
|
|
pcn_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct pcn_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* Since we're not interrupting every packet, sweep
|
|
* up before we report an error.
|
|
*/
|
|
pcn_txintr(sc);
|
|
|
|
if (sc->sc_txfree != PCN_NTXDESC) {
|
|
printf("%s: device timeout (txfree %d txsfree %d)\n",
|
|
sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
|
|
ifp->if_oerrors++;
|
|
|
|
/* Reset the interface. */
|
|
(void) pcn_init(ifp);
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
pcn_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* pcn_ioctl: [ifnet interface function]
|
|
*
|
|
* Handle control requests from the operator.
|
|
*/
|
|
int
|
|
pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct pcn_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
error = pcn_init(ifp);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
pcn_start(ifp);
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* pcn_intr:
|
|
*
|
|
* Interrupt service routine.
|
|
*/
|
|
int
|
|
pcn_intr(void *arg)
|
|
{
|
|
struct pcn_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint32_t csr0;
|
|
int wantinit, handled = 0;
|
|
|
|
for (wantinit = 0; wantinit == 0;) {
|
|
csr0 = pcn_csr_read(sc, LE_CSR0);
|
|
if ((csr0 & LE_C0_INTR) == 0)
|
|
break;
|
|
|
|
/* ACK the bits and re-enable interrupts. */
|
|
pcn_csr_write(sc, LE_CSR0, csr0 &
|
|
(LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
|
|
LE_C0_TINT|LE_C0_IDON));
|
|
|
|
handled = 1;
|
|
|
|
if (csr0 & LE_C0_RINT) {
|
|
PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
|
|
wantinit = pcn_rxintr(sc);
|
|
}
|
|
|
|
if (csr0 & LE_C0_TINT) {
|
|
PCN_EVCNT_INCR(&sc->sc_ev_txintr);
|
|
pcn_txintr(sc);
|
|
}
|
|
|
|
if (csr0 & LE_C0_ERR) {
|
|
if (csr0 & LE_C0_BABL) {
|
|
PCN_EVCNT_INCR(&sc->sc_ev_babl);
|
|
ifp->if_oerrors++;
|
|
}
|
|
if (csr0 & LE_C0_MISS) {
|
|
PCN_EVCNT_INCR(&sc->sc_ev_miss);
|
|
ifp->if_ierrors++;
|
|
}
|
|
if (csr0 & LE_C0_MERR) {
|
|
PCN_EVCNT_INCR(&sc->sc_ev_merr);
|
|
printf("%s: memory error\n",
|
|
sc->sc_dev.dv_xname);
|
|
wantinit = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((csr0 & LE_C0_RXON) == 0) {
|
|
printf("%s: receiver disabled\n",
|
|
sc->sc_dev.dv_xname);
|
|
ifp->if_ierrors++;
|
|
wantinit = 1;
|
|
}
|
|
|
|
if ((csr0 & LE_C0_TXON) == 0) {
|
|
printf("%s: transmitter disabled\n",
|
|
sc->sc_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
wantinit = 1;
|
|
}
|
|
}
|
|
|
|
if (handled) {
|
|
if (wantinit)
|
|
pcn_init(ifp);
|
|
|
|
/* Try to get more packets going. */
|
|
pcn_start(ifp);
|
|
}
|
|
|
|
return (handled);
|
|
}
|
|
|
|
/*
|
|
* pcn_spnd:
|
|
*
|
|
* Suspend the chip.
|
|
*/
|
|
void
|
|
pcn_spnd(struct pcn_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
|
|
return;
|
|
delay(5);
|
|
}
|
|
|
|
printf("%s: WARNING: chip failed to enter suspended state\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
|
|
/*
|
|
* pcn_txintr:
|
|
*
|
|
* Helper; handle transmit interrupts.
|
|
*/
|
|
void
|
|
pcn_txintr(struct pcn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct pcn_txsoft *txs;
|
|
uint32_t tmd1, tmd2, tmd;
|
|
int i, j;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
|
|
i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
|
|
PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
|
|
if (tmd1 & LE_T1_OWN)
|
|
break;
|
|
|
|
/*
|
|
* Slightly annoying -- we have to loop through the
|
|
* descriptors we've used looking for ERR, since it
|
|
* can appear on any descriptor in the chain.
|
|
*/
|
|
for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
|
|
tmd = le32toh(sc->sc_txdescs[j].tmd1);
|
|
if (tmd & LE_T1_ERR) {
|
|
ifp->if_oerrors++;
|
|
if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
|
|
tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
|
|
else
|
|
tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
|
|
if (tmd2 & LE_T2_UFLO) {
|
|
if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
|
|
sc->sc_xmtsp++;
|
|
printf("%s: transmit "
|
|
"underrun; new threshold: "
|
|
"%s\n",
|
|
sc->sc_dev.dv_xname,
|
|
sc->sc_xmtsp_desc[
|
|
sc->sc_xmtsp]);
|
|
pcn_spnd(sc);
|
|
pcn_csr_write(sc, LE_CSR80,
|
|
LE_C80_RCVFW(sc->sc_rcvfw) |
|
|
LE_C80_XMTSP(sc->sc_xmtsp) |
|
|
LE_C80_XMTFW(sc->sc_xmtfw));
|
|
pcn_csr_write(sc, LE_CSR5,
|
|
sc->sc_csr5);
|
|
} else {
|
|
printf("%s: transmit "
|
|
"underrun\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
} else if (tmd2 & LE_T2_BUFF) {
|
|
printf("%s: transmit buffer error\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
if (tmd2 & LE_T2_LCOL)
|
|
ifp->if_collisions++;
|
|
if (tmd2 & LE_T2_RTRY)
|
|
ifp->if_collisions += 16;
|
|
goto next_packet;
|
|
}
|
|
if (j == txs->txs_lastdesc)
|
|
break;
|
|
}
|
|
if (tmd1 & LE_T1_ONE)
|
|
ifp->if_collisions++;
|
|
else if (tmd & LE_T1_MORE) {
|
|
/* Real number is unknown. */
|
|
ifp->if_collisions += 2;
|
|
}
|
|
ifp->if_opackets++;
|
|
next_packet:
|
|
sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
|
|
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
|
|
/* Update the dirty transmit buffer pointer. */
|
|
sc->sc_txsdirty = i;
|
|
|
|
/*
|
|
* If there are no more pending transmissions, cancel the watchdog
|
|
* timer.
|
|
*/
|
|
if (sc->sc_txsfree == PCN_TXQUEUELEN)
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* pcn_rxintr:
|
|
*
|
|
* Helper; handle receive interrupts.
|
|
*/
|
|
int
|
|
pcn_rxintr(struct pcn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct pcn_rxsoft *rxs;
|
|
struct mbuf *m;
|
|
uint32_t rmd1;
|
|
int i, len;
|
|
|
|
for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
|
|
PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
|
|
|
|
if (rmd1 & LE_R1_OWN)
|
|
break;
|
|
|
|
/*
|
|
* Check for errors and make sure the packet fit into
|
|
* a single buffer. We have structured this block of
|
|
* code the way it is in order to compress it into
|
|
* one test in the common case (no error).
|
|
*/
|
|
if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
|
|
(LE_R1_STP|LE_R1_ENP))) {
|
|
/* Make sure the packet is in a single buffer. */
|
|
if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
|
|
(LE_R1_STP|LE_R1_ENP)) {
|
|
printf("%s: packet spilled into next buffer\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (1); /* pcn_intr() will re-init */
|
|
}
|
|
|
|
/*
|
|
* If the packet had an error, simple recycle the
|
|
* buffer.
|
|
*/
|
|
if (rmd1 & LE_R1_ERR) {
|
|
ifp->if_ierrors++;
|
|
/*
|
|
* If we got an overflow error, chances
|
|
* are there will be a CRC error. In
|
|
* this case, just print the overflow
|
|
* error, and skip the others.
|
|
*/
|
|
if (rmd1 & LE_R1_OFLO)
|
|
printf("%s: overflow error\n",
|
|
sc->sc_dev.dv_xname);
|
|
else {
|
|
#define PRINTIT(x, str) \
|
|
if (rmd1 & (x)) \
|
|
printf("%s: %s\n", \
|
|
sc->sc_dev.dv_xname, str);
|
|
PRINTIT(LE_R1_FRAM, "framing error");
|
|
PRINTIT(LE_R1_CRC, "CRC error");
|
|
PRINTIT(LE_R1_BUFF, "buffer error");
|
|
}
|
|
#undef PRINTIT
|
|
PCN_INIT_RXDESC(sc, i);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
* No errors; receive the packet.
|
|
*/
|
|
if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
|
|
len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
|
|
else
|
|
len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
|
|
|
|
/*
|
|
* The LANCE family includes the CRC with every packet;
|
|
* trim it off here.
|
|
*/
|
|
len -= ETHER_CRC_LEN;
|
|
|
|
/*
|
|
* If the packet is small enough to fit in a
|
|
* single header mbuf, allocate one and copy
|
|
* the data into it. This greatly reduces
|
|
* memory consumption when we receive lots
|
|
* of small packets.
|
|
*
|
|
* Otherwise, we add a new buffer to the receive
|
|
* chain. If this fails, we drop the packet and
|
|
* recycle the old buffer.
|
|
*/
|
|
if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
goto dropit;
|
|
m->m_data += 2;
|
|
memcpy(mtod(m, caddr_t),
|
|
mtod(rxs->rxs_mbuf, caddr_t), len);
|
|
PCN_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
} else {
|
|
m = rxs->rxs_mbuf;
|
|
if (pcn_add_rxbuf(sc, i) != 0) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
PCN_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
#if NBPFILTER > 0
|
|
/* Pass this up to any BPF listeners. */
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif /* NBPFILTER > 0 */
|
|
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
ifp->if_ipackets++;
|
|
}
|
|
|
|
/* Update the receive pointer. */
|
|
sc->sc_rxptr = i;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* pcn_tick:
|
|
*
|
|
* One second timer, used to tick the MII.
|
|
*/
|
|
void
|
|
pcn_tick(void *arg)
|
|
{
|
|
struct pcn_softc *sc = arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* pcn_reset:
|
|
*
|
|
* Perform a soft reset on the PCnet-PCI.
|
|
*/
|
|
void
|
|
pcn_reset(struct pcn_softc *sc)
|
|
{
|
|
|
|
/*
|
|
* The PCnet-PCI chip is reset by reading from the
|
|
* RESET register. Note that while the NE2100 LANCE
|
|
* boards require a write after the read, the PCnet-PCI
|
|
* chips do not require this.
|
|
*
|
|
* Since we don't know if we're in 16-bit or 32-bit
|
|
* mode right now, issue both (it's safe) in the
|
|
* hopes that one will succeed.
|
|
*/
|
|
(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
|
|
(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
|
|
|
|
/* Wait 1ms for it to finish. */
|
|
delay(1000);
|
|
|
|
/*
|
|
* Select 32-bit I/O mode by issuing a 32-bit write to the
|
|
* RDP. Since the RAP is 0 after a reset, writing a 0
|
|
* to RDP is safe (since it simply clears CSR0).
|
|
*/
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
|
|
}
|
|
|
|
/*
|
|
* pcn_init: [ifnet interface function]
|
|
*
|
|
* Initialize the interface. Must be called at splnet().
|
|
*/
|
|
int
|
|
pcn_init(struct ifnet *ifp)
|
|
{
|
|
struct pcn_softc *sc = ifp->if_softc;
|
|
struct pcn_rxsoft *rxs;
|
|
uint8_t *enaddr = LLADDR(ifp->if_sadl);
|
|
int i, error = 0;
|
|
uint32_t reg;
|
|
|
|
/* Cancel any pending I/O. */
|
|
pcn_stop(ifp, 0);
|
|
|
|
/* Reset the chip to a known state. */
|
|
pcn_reset(sc);
|
|
|
|
/*
|
|
* On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
|
|
* else.
|
|
*
|
|
* XXX It'd be really nice to use SSTYLE 2 on all the chips,
|
|
* because the structure layout is compatible with ILACC,
|
|
* but the burst mode is only available in SSTYLE 3, and
|
|
* burst mode should provide some performance enhancement.
|
|
*/
|
|
if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
|
|
sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
|
|
else
|
|
sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
|
|
pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
|
|
|
|
/* Initialize the transmit descriptor ring. */
|
|
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
|
|
PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
sc->sc_txfree = PCN_NTXDESC;
|
|
sc->sc_txnext = 0;
|
|
|
|
/* Initialize the transmit job descriptors. */
|
|
for (i = 0; i < PCN_TXQUEUELEN; i++)
|
|
sc->sc_txsoft[i].txs_mbuf = NULL;
|
|
sc->sc_txsfree = PCN_TXQUEUELEN;
|
|
sc->sc_txsnext = 0;
|
|
sc->sc_txsdirty = 0;
|
|
|
|
/*
|
|
* Initialize the receive descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
for (i = 0; i < PCN_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf == NULL) {
|
|
if ((error = pcn_add_rxbuf(sc, i)) != 0) {
|
|
printf("%s: unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
pcn_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
} else
|
|
PCN_INIT_RXDESC(sc, i);
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
|
|
/* Initialize MODE for the initialization block. */
|
|
sc->sc_mode = 0;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
sc->sc_mode |= LE_C15_PROM;
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0)
|
|
sc->sc_mode |= LE_C15_DRCVBC;
|
|
|
|
/*
|
|
* If we have MII, simply select MII in the MODE register,
|
|
* and clear ASEL. Otherwise, let ASEL stand (for now),
|
|
* and leave PORTSEL alone (it is ignored with ASEL is set).
|
|
*/
|
|
if (sc->sc_flags & PCN_F_HAS_MII) {
|
|
pcn_bcr_write(sc, LE_BCR2,
|
|
pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
|
|
sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
|
|
|
|
/*
|
|
* Disable MII auto-negotiation. We handle that in
|
|
* our own MII layer.
|
|
*/
|
|
pcn_bcr_write(sc, LE_BCR32,
|
|
pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
|
|
}
|
|
|
|
/*
|
|
* Set the Tx and Rx descriptor ring addresses in the init
|
|
* block, the TLEN and RLEN other fields of the init block
|
|
* MODE register.
|
|
*/
|
|
sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
|
|
sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
|
|
sc->sc_initblock.init_mode = htole32(sc->sc_mode |
|
|
((ffs(PCN_NTXDESC) - 1) << 28) |
|
|
((ffs(PCN_NRXDESC) - 1) << 20));
|
|
|
|
/* Set the station address in the init block. */
|
|
sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
|
|
(enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
|
|
sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
|
|
(enaddr[5] << 8));
|
|
|
|
/* Set the multicast filter in the init block. */
|
|
pcn_set_filter(sc);
|
|
|
|
/* Initialize CSR3. */
|
|
pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
|
|
|
|
/* Initialize CSR4. */
|
|
pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
|
|
LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
|
|
|
|
/* Initialize CSR5. */
|
|
sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
|
|
pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
|
|
|
|
/*
|
|
* If we have an Am79c971 or greater, initialize CSR7.
|
|
*
|
|
* XXX Might be nice to use the MII auto-poll interrupt someday.
|
|
*/
|
|
switch (sc->sc_variant->pcv_chipid) {
|
|
case PARTID_Am79c970:
|
|
case PARTID_Am79c970A:
|
|
/* Not available on these chips. */
|
|
break;
|
|
|
|
default:
|
|
pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* On the Am79c970A and greater, initialize BCR18 to
|
|
* enable burst mode.
|
|
*
|
|
* Also enable the "no underflow" option on the Am79c971 and
|
|
* higher, which prevents the chip from generating transmit
|
|
* underflows, yet sill provides decent performance. Note if
|
|
* chip is not connected to external SRAM, then we still have
|
|
* to handle underflow errors (the NOUFLO bit is ignored in
|
|
* that case).
|
|
*/
|
|
reg = pcn_bcr_read(sc, LE_BCR18);
|
|
switch (sc->sc_variant->pcv_chipid) {
|
|
case PARTID_Am79c970:
|
|
break;
|
|
|
|
case PARTID_Am79c970A:
|
|
reg |= LE_B18_BREADE|LE_B18_BWRITE;
|
|
break;
|
|
|
|
default:
|
|
reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
|
|
break;
|
|
}
|
|
pcn_bcr_write(sc, LE_BCR18, reg);
|
|
|
|
/*
|
|
* Initialize CSR80 (FIFO thresholds for Tx and Rx).
|
|
*/
|
|
pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
|
|
LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
|
|
|
|
/*
|
|
* Send the init block to the chip, and wait for it
|
|
* to be processed.
|
|
*/
|
|
PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
|
|
pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
|
|
pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
|
|
pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
|
|
delay(100);
|
|
for (i = 0; i < 10000; i++) {
|
|
if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
|
|
break;
|
|
delay(10);
|
|
}
|
|
PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
|
|
if (i == 10000) {
|
|
printf("%s: timeout processing init block\n",
|
|
sc->sc_dev.dv_xname);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Set the media. */
|
|
(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
|
|
|
|
/* Enable interrupts and external activity (and ACK IDON). */
|
|
pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
|
|
|
|
if (sc->sc_flags & PCN_F_HAS_MII) {
|
|
/* Start the one second MII clock. */
|
|
callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
|
|
}
|
|
|
|
/* ...all done! */
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
out:
|
|
if (error)
|
|
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* pcn_rxdrain:
|
|
*
|
|
* Drain the receive queue.
|
|
*/
|
|
void
|
|
pcn_rxdrain(struct pcn_softc *sc)
|
|
{
|
|
struct pcn_rxsoft *rxs;
|
|
int i;
|
|
|
|
for (i = 0; i < PCN_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pcn_stop: [ifnet interface function]
|
|
*
|
|
* Stop transmission on the interface.
|
|
*/
|
|
void
|
|
pcn_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct pcn_softc *sc = ifp->if_softc;
|
|
struct pcn_txsoft *txs;
|
|
int i;
|
|
|
|
if (sc->sc_flags & PCN_F_HAS_MII) {
|
|
/* Stop the one second clock. */
|
|
callout_stop(&sc->sc_tick_ch);
|
|
|
|
/* Down the MII. */
|
|
mii_down(&sc->sc_mii);
|
|
}
|
|
|
|
/* Stop the chip. */
|
|
pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
|
|
|
|
/* Release any queued transmit buffers. */
|
|
for (i = 0; i < PCN_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
if (disable)
|
|
pcn_rxdrain(sc);
|
|
|
|
/* Mark the interface as down and cancel the watchdog timer. */
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* pcn_add_rxbuf:
|
|
*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
int
|
|
pcn_add_rxbuf(struct pcn_softc *sc, int idx)
|
|
{
|
|
struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (rxs->rxs_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
|
|
rxs->rxs_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: can't load rx DMA map %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, idx, error);
|
|
panic("pcn_add_rxbuf");
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
PCN_INIT_RXDESC(sc, idx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* pcn_set_filter:
|
|
*
|
|
* Set up the receive filter.
|
|
*/
|
|
void
|
|
pcn_set_filter(struct pcn_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
uint32_t crc;
|
|
|
|
/*
|
|
* Set up the multicast address filter by passing all multicast
|
|
* addresses through a CRC generator, and then using the high
|
|
* order 6 bits as an index into the 64-bit logical address
|
|
* filter. The high order bits select the word, while the rest
|
|
* of the bits select the bit within the word.
|
|
*/
|
|
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
goto allmulti;
|
|
|
|
sc->sc_initblock.init_ladrf[0] =
|
|
sc->sc_initblock.init_ladrf[1] =
|
|
sc->sc_initblock.init_ladrf[2] =
|
|
sc->sc_initblock.init_ladrf[3] = 0;
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 6 most significant bits. */
|
|
crc >>= 26;
|
|
|
|
/* Set the corresponding bit in the filter. */
|
|
sc->sc_initblock.init_ladrf[crc >> 4] |=
|
|
htole16(1 << (crc & 0xf));
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
return;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
sc->sc_initblock.init_ladrf[0] =
|
|
sc->sc_initblock.init_ladrf[1] =
|
|
sc->sc_initblock.init_ladrf[2] =
|
|
sc->sc_initblock.init_ladrf[3] = 0xffff;
|
|
}
|
|
|
|
/*
|
|
* pcn_79c970_mediainit:
|
|
*
|
|
* Initialize media for the Am79c970.
|
|
*/
|
|
void
|
|
pcn_79c970_mediainit(struct pcn_softc *sc)
|
|
{
|
|
const char *sep = "";
|
|
|
|
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
|
|
pcn_79c970_mediastatus);
|
|
|
|
#define ADD(str, m, d) \
|
|
do { \
|
|
printf("%s%s", sep, str); \
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
|
|
sep = ", "; \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
printf("%s: ", sc->sc_dev.dv_xname);
|
|
ADD("10base5", IFM_10_5, PORTSEL_AUI);
|
|
if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
|
|
ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
|
|
ADD("10baseT", IFM_10_T, PORTSEL_10T);
|
|
if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
|
|
ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
|
|
ADD("auto", IFM_AUTO, 0);
|
|
if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
|
|
ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
|
|
printf("\n");
|
|
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
|
|
/*
|
|
* pcn_79c970_mediastatus: [ifmedia interface function]
|
|
*
|
|
* Get the current interface media status (Am79c970 version).
|
|
*/
|
|
void
|
|
pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct pcn_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* The currently selected media is always the active media.
|
|
* Note: We have no way to determine what media the AUTO
|
|
* process picked.
|
|
*/
|
|
ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
|
|
}
|
|
|
|
/*
|
|
* pcn_79c970_mediachange: [ifmedia interface function]
|
|
*
|
|
* Set hardware to newly-selected media (Am79c970 version).
|
|
*/
|
|
int
|
|
pcn_79c970_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct pcn_softc *sc = ifp->if_softc;
|
|
uint32_t reg;
|
|
|
|
if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
|
|
/*
|
|
* CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
|
|
*/
|
|
reg = pcn_bcr_read(sc, LE_BCR2);
|
|
reg |= LE_B2_ASEL;
|
|
pcn_bcr_write(sc, LE_BCR2, reg);
|
|
} else {
|
|
/*
|
|
* Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
|
|
*/
|
|
reg = pcn_bcr_read(sc, LE_BCR2);
|
|
reg &= ~LE_B2_ASEL;
|
|
pcn_bcr_write(sc, LE_BCR2, reg);
|
|
|
|
reg = pcn_csr_read(sc, LE_CSR15);
|
|
reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
|
|
LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
|
|
pcn_csr_write(sc, LE_CSR15, reg);
|
|
}
|
|
|
|
if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
|
|
reg = LE_B9_FDEN;
|
|
if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
|
|
reg |= LE_B9_AUIFD;
|
|
pcn_bcr_write(sc, LE_BCR9, reg);
|
|
} else
|
|
pcn_bcr_write(sc, LE_BCR9, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* pcn_79c971_mediainit:
|
|
*
|
|
* Initialize media for the Am79c971.
|
|
*/
|
|
void
|
|
pcn_79c971_mediainit(struct pcn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* We have MII. */
|
|
sc->sc_flags |= PCN_F_HAS_MII;
|
|
|
|
/*
|
|
* The built-in 10BASE-T interface is mapped to the MII
|
|
* on the PCNet-FAST. Unfortunately, there's no EEPROM
|
|
* word that tells us which PHY to use. Since the 10BASE-T
|
|
* interface is always at PHY 31, we make a note of the
|
|
* first PHY that responds, and disallow any PHYs after
|
|
* it. This is all handled in the MII read routine.
|
|
*/
|
|
sc->sc_phyaddr = -1;
|
|
|
|
/* Initialize our media structures and probe the MII. */
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = pcn_mii_readreg;
|
|
sc->sc_mii.mii_writereg = pcn_mii_writereg;
|
|
sc->sc_mii.mii_statchg = pcn_mii_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
|
|
pcn_79c971_mediastatus);
|
|
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
|
|
/*
|
|
* pcn_79c971_mediastatus: [ifmedia interface function]
|
|
*
|
|
* Get the current interface media status (Am79c971 version).
|
|
*/
|
|
void
|
|
pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct pcn_softc *sc = ifp->if_softc;
|
|
|
|
mii_pollstat(&sc->sc_mii);
|
|
ifmr->ifm_status = sc->sc_mii.mii_media_status;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media_active;
|
|
}
|
|
|
|
/*
|
|
* pcn_79c971_mediachange: [ifmedia interface function]
|
|
*
|
|
* Set hardware to newly-selected media (Am79c971 version).
|
|
*/
|
|
int
|
|
pcn_79c971_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct pcn_softc *sc = ifp->if_softc;
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
mii_mediachg(&sc->sc_mii);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* pcn_mii_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the MII.
|
|
*/
|
|
int
|
|
pcn_mii_readreg(struct device *self, int phy, int reg)
|
|
{
|
|
struct pcn_softc *sc = (void *) self;
|
|
uint32_t rv;
|
|
|
|
if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr)
|
|
return (0);
|
|
|
|
pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
|
|
rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
|
|
if (rv == 0xffff)
|
|
return (0);
|
|
|
|
if (sc->sc_phyaddr == -1)
|
|
sc->sc_phyaddr = phy;
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pcn_mii_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the MII.
|
|
*/
|
|
void
|
|
pcn_mii_writereg(struct device *self, int phy, int reg, int val)
|
|
{
|
|
struct pcn_softc *sc = (void *) self;
|
|
|
|
pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
|
|
pcn_bcr_write(sc, LE_BCR34, val);
|
|
}
|
|
|
|
/*
|
|
* pcn_mii_statchg: [mii interface function]
|
|
*
|
|
* Callback from MII layer when media changes.
|
|
*/
|
|
void
|
|
pcn_mii_statchg(struct device *self)
|
|
{
|
|
struct pcn_softc *sc = (void *) self;
|
|
|
|
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
|
|
pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
|
|
else
|
|
pcn_bcr_write(sc, LE_BCR9, 0);
|
|
}
|