NetBSD/sys/dev/isa/sb.c
1994-03-06 17:18:43 +00:00

665 lines
16 KiB
C

/*
* Copyright (c) 1991-1993 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Computer Systems
* Engineering Group at Lawrence Berkeley Laboratory.
* 4. Neither the name of the University nor of the Laboratory may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: sb.c,v 1.5 1994/03/06 17:19:16 mycroft Exp $
*/
#include "sb.h"
#if NSB > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <machine/cpu.h>
#include <machine/pio.h>
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/icu.h>
#include "sbreg.h"
/*
* Software state, per SoundBlaster card.
* The soundblaster has multiple functionality, which we must demultiplex.
* One approach is to have one major device number for the soundblaster card,
* and use different minor numbers to indicate which hardware function
* we want. This would make for one large driver. Instead our approach
* is to partition the design into a set of drivers that share an underlying
* piece of hardware. Most things are hard to share, for example, the audio
* and midi ports. For audio, we might want to mix two processes' signals,
* and for midi we might want to merge streams (this is hard due to
* running status). Moreover, we should be able to re-use the high-level
* modules with other kinds of hardware. In this module, we only handle the
* most basic communications with the sb card.
*/
struct sb_softc {
#ifdef NEWCONFIG
struct device sc_dev; /* base device */
struct isadev sc_id; /* ISA device */
struct intrhand sc_ih; /* interrupt vectoring */
#endif
u_short sc_open; /* reference count of open calls */
u_short sc_dmachan; /* dma channel */
u_long sc_locked; /* true when doing HS DMA */
u_long sc_base; /* I/O port base address */
u_short sc_adacmode; /* low/high speed mode indicator */
#define SB_ADAC_LS 0
#define SB_ADAC_HS 1
u_short sc_adactc; /* current adac time constant */
u_long sc_interrupts; /* number of interrupts taken */
void (*sc_intr)(void*); /* dma completion intr handler */
void (*sc_mintr)(void*, int);/* midi input intr handler */
void *sc_arg; /* arg for sc_intr() */
};
int sbreset(u_long);
void sb_spkron(struct sb_softc *);
void sb_spkroff(struct sb_softc *);
static int wdsp(u_long base, int v);
static int rdsp(u_long base);
/* XXX */
#define splsb splhigh
/* XXX */
struct sb_softc *sb_softc;
#ifndef NEWCONFIG
struct sb_softc sb_softcs[NSB];
#define at_dma(flags, ptr, cc, chan) isa_dmastart(flags, ptr, cc, chan)
#endif
struct {
int wdsp;
int rdsp;
int wmidi;
} sberr;
#ifdef NEWCONFIG
int sbintr(struct sb_softc *);
int sbprobe(struct device *, struct cfdata *, void *);
void sbattach(struct device *, struct device *, void *);
void sbforceintr(void *);
struct cfdriver sbcd =
{ NULL, "sb", sbprobe, sbattach, sizeof(struct sb_softc) };
int
sbprobe(struct device *parent, struct cfdata *cf, void *aux)
{
register struct isa_attach_args *ia = (struct isa_attach_args *)aux;
register int base = ia->ia_iobase;
if (!SB_BASE_VALID(base)) {
printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
return (0);
}
ia->ia_iosize = SB_NPORT;
if (sbreset(base) < 0) {
printf("sb: couldn't reset card\n");
return (0);
}
/*
* Cannot auto-discover DMA channel.
*/
if (!SB_DRQ_VALID(ia->ia_drq)) {
printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
return (0);
}
/*
* If the IRQ wasn't compiled in, auto-detect it.
*/
if (ia->ia_irq == IRQUNK) {
ia->ia_irq = isa_discoverintr(sbforceintr, aux);
sbreset(base);
if (!SB_IRQ_VALID(ia->ia_irq)) {
printf("sb: couldn't auto-detect interrupt");
return (0);
}
} else if (!SB_IRQ_VALID(ia->ia_irq)) {
int irq = ffs(ia->ia_irq) - 1;
printf("sb: configured irq %d invalid\n", irq);
}
return (15);
}
void
sbforceintr(void *arg)
{
static char dmabuf;
struct isa_attach_args *ia = (struct isa_attach_args *)arg;
int base = ia->ia_iobase;
/*
* Set up a DMA read of one byte.
* XXX Note that at this point we haven't called
* at_setup_dmachan(). This is okay because it just
* allocates a buffer in case it needs to make a copy,
* and it won't need to make a copy for a 1 byte buffer.
* (I think that calling at_setup_dmachan() should be optional;
* if you don't call it, it will be called the first time
* it is needed (and you pay the latency). Also, you might
* never need the buffer anyway.)
*/
at_dma(1, &dmabuf, 1, ia->ia_drq);
if (wdsp(base, SB_DSP_RDMA) == 0) {
(void)wdsp(base, 0);
(void)wdsp(base, 0);
}
}
void
sbattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
register struct sb_softc *sc = (struct sb_softc *)self;
struct isa_attach_args *ia = (struct isa_attach_args *)aux;
register int base = ia->ia_iobase;
register int vers;
/* XXX */
sb_softc = sc;
sc->sc_base = base;
sc->sc_dmachan = ia->ia_drq;
sc->sc_locked = 0;
isa_establish(&sc->sc_id, &sc->sc_dev);
sc->sc_ih.ih_fun = sbintr;
sc->sc_ih.ih_arg = (void *)sc;
/* XXX DV_TAPE? */
intr_establish(ia->ia_irq, &sc->sc_ih, DV_TAPE);
/*
* We limit DMA transfers to a page, and use the generic DMA handling
* code in isa.c. This code can end up copying a buffer, but since
* the audio driver uses relative small buffers this isn't likely.
*
* This allocation scheme means that the maximum transfer is limited
* by the page size (rather than 64k). This is reasonable. For 4K
* pages, the transfer time at 48KHz is 4096 / 48000 = 85ms. This
* is plenty long enough to amortize any fixed time overhead.
*/
at_setup_dmachan(sc->sc_dmachan, NBPG);
vers = sbversion(base);
printf(" dsp v%d.%d\n", vers >> 8, vers & 0xff);
}
#endif
#ifndef NEWCONFIG
int sbintr(int unit);
int sbprobe(struct isa_device *dev);
int sbattach(struct isa_device *dev);
struct isa_driver sbdriver = { sbprobe, sbattach, "sb" };
int
sbprobe(struct isa_device *dev)
{
register int base = dev->id_iobase;
if (!SB_BASE_VALID(base)) {
printf("sb: configured dma chan %d invalid\n", dev->id_drq);
return (0);
}
if (sbreset(base) < 0) {
printf("sb: couldn't reset card\n");
return (0);
}
/*
* Cannot auto-discover DMA channel.
*/
if (!SB_DRQ_VALID(dev->id_drq)) {
printf("sb: configured dma chan %d invalid\n", dev->id_drq);
return (0);
}
/*
* If the IRQ wasn't compiled in, auto-detect it.
*/
if (dev->id_irq == 0) {
printf("sb: no irq configured\n");
return (0);
} else if (!SB_IRQ_VALID(dev->id_irq)) {
int irq = ffs(dev->id_irq) - 1;
printf("sb: configured irq %d invalid\n", irq);
return (0);
}
return (15);
}
#define UNIT(x) (minor(x) & 0xf)
int
sbattach(struct isa_device *dev)
{
int unit = UNIT(dev->id_unit);
register struct sb_softc *sc = &sb_softcs[unit];
register int base = dev->id_iobase;
register int vers;
/* XXX */
sb_softc = sc;
sc->sc_base = base;
sc->sc_dmachan = dev->id_drq;
sc->sc_locked = 0;
vers = sbversion(base);
printf("sb%d: dsp v%d.%d\n", unit, vers >> 8, vers & 0xff);
}
#endif
struct sb_softc *
sbopen()
{
struct sb_softc *sc = sb_softc;
if (sc == 0)
return 0;
if (sc->sc_open == 0 && sbreset(sc->sc_base) == 0) {
sc->sc_open = 1;
sc->sc_mintr = 0;
sc->sc_intr = 0;
return (sc);
}
return (0);
}
void
sbclose(struct sb_softc *sc)
{
sc->sc_open = 0;
sb_spkroff(sc);
sc->sc_intr = 0;
sc->sc_mintr = 0;
/* XXX this will turn off any dma */
sbreset(sc->sc_base);
}
/*
* Write a byte to the dsp.
* XXX We are at the mercy of the card as we use a
* polling loop and wait until it can take the byte.
*/
static int
wdsp(u_long base, int v)
{
register int i;
for (i = 100; --i >= 0; ) {
if ((inb(base + SBP_DSP_WSTAT) & SB_DSP_BUSY) != 0)
continue;
outb(base + SBP_DSP_WRITE, v);
return (0);
}
++sberr.wdsp;
return (-1);
}
/*
* Read a byte from the DSP, using polling.
*/
int
rdsp(u_long base)
{
register int i;
for (i = 100; --i >= 0; ) {
if ((inb(base + SBP_DSP_RSTAT) & SB_DSP_READY) == 0)
continue;
return (inb(base + SBP_DSP_READ));
}
++sberr.rdsp;
return (-1);
}
/*
* Reset the card.
* Return non-zero if the card isn't detected.
*/
int
sbreset(register u_long base)
{
register int i;
/*
* See SBK, section 11.3.
* We pulse a reset signal into the card.
* Gee, what a brilliant hardware design.
*/
outb(base + SBP_DSP_RESET, 1);
delay(3);
outb(base + SBP_DSP_RESET, 0);
if (rdsp(base) != SB_MAGIC)
return (-1);
return (0);
}
/*
* Turn on the speaker. The SBK documention says this operation
* can take up to 1/10 of a second. Higher level layers should
* probably let the task sleep for this amount of time after
* calling here. Otherwise, things might not work (because
* wdsp() and rdsp() will probably timeout.)
*
* These engineers had their heads up their ass when
* they designed this card.
*/
void
sb_spkron(struct sb_softc *sc)
{
(void)wdsp(sc->sc_base, SB_DSP_SPKR_ON);
delay(1000);
}
/*
* Turn off the speaker; see comment above.
*/
void
sb_spkroff(struct sb_softc *sc)
{
(void)wdsp(sc->sc_base, SB_DSP_SPKR_OFF);
}
/*
* Read the version number out of the card. Return major code
* in high byte, and minor code in low byte.
*/
int
sbversion(register u_long base)
{
int v;
if (wdsp(base, SB_DSP_VERSION) < 0)
return (0);
v = rdsp(base) << 8;
v |= rdsp(base);
return ((v >= 0) ? v : 0);
}
/*
* Halt a DMA in progress. A low-speed transfer can be
* resumed with sb_contdma().
*/
void
sb_haltdma(struct sb_softc *sc)
{
if (sc->sc_locked)
sbreset(sc->sc_base);
else
(void)wdsp(sc->sc_base, SB_DSP_HALT);
}
void
sb_contdma(struct sb_softc *sc)
{
(void)wdsp(sc->sc_base, SB_DSP_CONT);
}
/*
* Time constant routines follow. See SBK, section 12.
* Although they don't come out and say it (in the docs),
* the card clearly uses a 1MHz countdown timer, as the
* low-speed formula (p. 12-4) is:
* tc = 256 - 10^6 / sr
* In high-speed mode, the constant is the upper byte of a 16-bit counter,
* and a 256MHz clock is used:
* tc = 65536 - 256 * 10^ 6 / sr
* Since we can only use the upper byte of the HS TC, the two formulae
* are equivalent. (Why didn't they say so?) E.g.,
* (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
*
* The crossover point (from low- to high-speed modes) is different
* for the SBPRO and SB20. The table on p. 12-5 gives the following data:
*
* SBPRO SB20
* ----- --------
* input ls min 4 KHz 4 HJz
* input ls max 23 KHz 13 KHz
* input hs max 44.1 KHz 15 KHz
* output ls min 4 KHz 4 KHz
* output ls max 23 KHz 23 KHz
* output hs max 44.1 KHz 44.1 KHz
*/
#define SB_LS_MIN 0x06 /* 4000 Hz */
#ifdef SBPRO
#define SB_ADC_LS_MAX 0xd4 /* 22727 Hz */
#define SB_ADC_HS_MAX 0xe9 /* 43478 Hz */
#else
#define SB_ADC_LS_MAX 0xb3 /* 12987 Hz */
#define SB_ADC_HS_MAX 0xbd /* 14925 Hz */
#endif
#define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
#define SB_DAC_HS_MAX 0xe9 /* 43478 Hz */
/*
* Convert a linear sampling rate into the DAC time constant.
* Set *mode to indicate the high/low-speed DMA operation.
* Because of limitations of the card, not all rates are possible.
* We return the time constant of the closest possible rate.
* The sampling rate limits are different for the DAC and ADC,
* so isdac indicates output, and !isdac indicates input.
*/
int
sb_srtotc(int sr, int *mode, int isdac)
{
register int tc = 256 - 1000000 / sr;
if (tc < SB_LS_MIN) {
tc = SB_LS_MIN;
*mode = SB_ADAC_LS;
} else if (isdac) {
if (tc < SB_DAC_LS_MAX)
*mode = SB_ADAC_LS;
else {
*mode = SB_ADAC_HS;
if (tc > SB_DAC_HS_MAX)
tc = SB_DAC_HS_MAX;
}
} else {
if (tc < SB_ADC_LS_MAX)
*mode = SB_ADAC_LS;
else {
*mode = SB_ADAC_HS;
if (tc > SB_ADC_HS_MAX)
tc = SB_ADC_HS_MAX;
}
}
return (tc);
}
/*
* Convert a DAC time constant to a sampling rate.
* See SBK, section 12.
*/
int
sb_tctosr(int tc)
{
return (1000000 / (256 - tc));
}
int
sb_set_sr(register struct sb_softc *sc, u_long *sr, int isdac)
{
register int tc;
int mode;
tc = sb_srtotc(*sr, &mode, isdac);
if (wdsp(sc->sc_base, SB_DSP_TIMECONST) < 0 ||
wdsp(sc->sc_base, tc) < 0)
return (-1);
*sr = sb_tctosr(tc);
sc->sc_adacmode = mode;
sc->sc_adactc = tc;
return (0);
}
int
sb_round_sr(u_long sr, int isdac)
{
int mode, tc;
tc = sb_srtotc(sr, &mode, isdac);
return (sb_tctosr(tc));
}
int
sb_dma_input(struct sb_softc *sc, void *p, int cc, void (*intr)(), void *arg)
{
register int base;
at_dma(1, p, cc, sc->sc_dmachan);
sc->sc_intr = intr;
sc->sc_arg = arg;
base = sc->sc_base;
--cc;
if (sc->sc_adacmode == SB_ADAC_LS) {
if (wdsp(base, SB_DSP_RDMA) < 0 ||
wdsp(base, cc) < 0 ||
wdsp(base, cc >> 8) < 0) {
sbreset(sc->sc_base);
return (EIO);
}
} else {
if (wdsp(base, SB_DSP_BLOCKSIZE) < 0 ||
wdsp(base, cc) < 0 ||
wdsp(base, cc >> 8) < 0 ||
wdsp(base, SB_DSP_HS_INPUT) < 0) {
sbreset(sc->sc_base);
return (EIO);
}
sc->sc_locked = 1;
}
return (0);
}
int
sb_dma_output(struct sb_softc *sc, void *p, int cc, void (*intr)(), void *arg)
{
register int base;
at_dma(0, p, cc, sc->sc_dmachan);
sc->sc_intr = intr;
sc->sc_arg = arg;
base = sc->sc_base;
--cc;
if (sc->sc_adacmode == SB_ADAC_LS) {
if (wdsp(base, SB_DSP_WDMA) < 0 ||
wdsp(base, cc) < 0 ||
wdsp(base, cc >> 8) < 0) {
sbreset(sc->sc_base);
return (EIO);
}
} else {
if (wdsp(base, SB_DSP_BLOCKSIZE) < 0 ||
wdsp(base, cc) < 0 ||
wdsp(base, cc >> 8) < 0 ||
wdsp(base, SB_DSP_HS_OUTPUT) < 0) {
sbreset(sc->sc_base);
return (EIO);
}
sc->sc_locked = 1;
}
return (0);
}
/*
* Only the DSP unit on the sound blaster generates interrupts.
* There are three cases of interrupt: reception of a midi byte
* (when mode is enabled), completion of dma transmission, or
* completion of a dma reception. The three modes are mutually
* exclusive so we know a priori which event has occurred.
*/
#ifdef NEWCONFIG
int
sbintr(struct sb_softc *sc)
{
#else
int
sbintr(int unit)
{
register struct sb_softc *sc = &sb_softcs[UNIT(unit)];
#endif
sc->sc_locked = 0;
/* clear interrupt */
inb(sc->sc_base + SBP_DSP_RSTAT);
if (sc->sc_mintr != 0) {
int c = rdsp(sc->sc_base);
(*sc->sc_mintr)(sc->sc_arg, c);
} else if(sc->sc_intr != 0) {
(*sc->sc_intr)(sc->sc_arg);
} else
return (0);
return (1);
}
/*
* Enter midi uart mode and arrange for read interrupts
* to vector to `intr'. This puts the card in a mode
* which allows only midi I/O; the card must be reset
* to leave this mode. Unfortunately, the card does not
* use transmit interrupts, so bytes must be output
* using polling. To keep the polling overhead to a
* minimum, output should be driven off a timer.
* This is a little tricky since only 320us separate
* consecutive midi bytes.
*/
void
sb_set_midi_mode(struct sb_softc *sc, void (*intr)(), void *arg)
{
wdsp(sc->sc_base, SB_MIDI_UART_INTR);
sc->sc_mintr = intr;
sc->sc_intr = 0;
sc->sc_arg = arg;
}
/*
* Write a byte to the midi port, when in midi uart mode.
*/
void
sb_midi_output(struct sb_softc *sc, int v)
{
if (wdsp(sc->sc_base, v) < 0)
++sberr.wmidi;
}
#endif