761 lines
19 KiB
C
761 lines
19 KiB
C
/* $NetBSD: uvm_loan.c,v 1.20 2000/04/10 00:32:46 thorpej Exp $ */
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1997 Charles D. Cranor and Washington University.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Charles D. Cranor and
|
|
* Washington University.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* from: Id: uvm_loan.c,v 1.1.6.4 1998/02/06 05:08:43 chs Exp
|
|
*/
|
|
|
|
/*
|
|
* uvm_loan.c: page loanout handler
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
/*
|
|
* "loaned" pages are pages which are (read-only, copy-on-write) loaned
|
|
* from the VM system to other parts of the kernel. this allows page
|
|
* copying to be avoided (e.g. you can loan pages from objs/anons to
|
|
* the mbuf system).
|
|
*
|
|
* there are 3 types of loans possible:
|
|
* O->K uvm_object page to wired kernel page (e.g. mbuf data area)
|
|
* A->K anon page to wired kernel page (e.g. mbuf data area)
|
|
* O->A uvm_object to anon loan (e.g. vnode page to an anon)
|
|
* note that it possible to have an O page loaned to both an A and K
|
|
* at the same time.
|
|
*
|
|
* loans are tracked by pg->loan_count. an O->A page will have both
|
|
* a uvm_object and a vm_anon, but PQ_ANON will not be set. this sort
|
|
* of page is considered "owned" by the uvm_object (not the anon).
|
|
*
|
|
* each loan of a page to the kernel bumps the pg->wire_count. the
|
|
* kernel mappings for these pages will be read-only and wired. since
|
|
* the page will also be wired, it will not be a candidate for pageout,
|
|
* and thus will never be pmap_page_protect()'d with VM_PROT_NONE. a
|
|
* write fault in the kernel to one of these pages will not cause
|
|
* copy-on-write. instead, the page fault is considered fatal. this
|
|
* is because the kernel mapping will have no way to look up the
|
|
* object/anon which the page is owned by. this is a good side-effect,
|
|
* since a kernel write to a loaned page is an error.
|
|
*
|
|
* owners that want to free their pages and discover that they are
|
|
* loaned out simply "disown" them (the page becomes an orphan). these
|
|
* pages should be freed when the last loan is dropped. in some cases
|
|
* an anon may "adopt" an orphaned page.
|
|
*
|
|
* locking: to read pg->loan_count either the owner or the page queues
|
|
* must be locked. to modify pg->loan_count, both the owner of the page
|
|
* and the PQs must be locked. pg->flags is (as always) locked by
|
|
* the owner of the page.
|
|
*
|
|
* note that locking from the "loaned" side is tricky since the object
|
|
* getting the loaned page has no reference to the page's owner and thus
|
|
* the owner could "die" at any time. in order to prevent the owner
|
|
* from dying the page queues should be locked. this forces us to sometimes
|
|
* use "try" locking.
|
|
*
|
|
* loans are typically broken by the following events:
|
|
* 1. write fault to a loaned page
|
|
* 2. pageout of clean+inactive O->A loaned page
|
|
* 3. owner frees page (e.g. pager flush)
|
|
*
|
|
* note that loaning a page causes all mappings of the page to become
|
|
* read-only (via pmap_page_protect). this could have an unexpected
|
|
* effect on normal "wired" pages if one is not careful (XXX).
|
|
*/
|
|
|
|
/*
|
|
* local prototypes
|
|
*/
|
|
|
|
static int uvm_loananon __P((struct uvm_faultinfo *, void ***,
|
|
int, struct vm_anon *));
|
|
static int uvm_loanentry __P((struct uvm_faultinfo *, void ***, int));
|
|
static int uvm_loanuobj __P((struct uvm_faultinfo *, void ***,
|
|
int, vaddr_t));
|
|
static int uvm_loanzero __P((struct uvm_faultinfo *, void ***, int));
|
|
|
|
/*
|
|
* inlines
|
|
*/
|
|
|
|
/*
|
|
* uvm_loanentry: loan out pages in a map entry (helper fn for uvm_loan())
|
|
*
|
|
* => "ufi" is the result of a successful map lookup (meaning that
|
|
* the maps are locked by the caller)
|
|
* => we may unlock the maps if needed (for I/O)
|
|
* => we put our output result in "output"
|
|
* => we return the number of pages we loaned, or -1 if we had an error
|
|
*/
|
|
|
|
static __inline int
|
|
uvm_loanentry(ufi, output, flags)
|
|
struct uvm_faultinfo *ufi;
|
|
void ***output;
|
|
int flags;
|
|
{
|
|
vaddr_t curaddr = ufi->orig_rvaddr;
|
|
vsize_t togo = ufi->size;
|
|
struct vm_aref *aref = &ufi->entry->aref;
|
|
struct uvm_object *uobj = ufi->entry->object.uvm_obj;
|
|
struct vm_anon *anon;
|
|
int rv, result = 0;
|
|
|
|
/*
|
|
* lock us the rest of the way down
|
|
*/
|
|
if (aref->ar_amap)
|
|
amap_lock(aref->ar_amap);
|
|
if (uobj)
|
|
simple_lock(&uobj->vmobjlock);
|
|
|
|
/*
|
|
* loop until done
|
|
*/
|
|
while (togo) {
|
|
|
|
/*
|
|
* find the page we want. check the anon layer first.
|
|
*/
|
|
|
|
if (aref->ar_amap) {
|
|
anon = amap_lookup(aref, curaddr - ufi->entry->start);
|
|
} else {
|
|
anon = NULL;
|
|
}
|
|
|
|
if (anon) {
|
|
rv = uvm_loananon(ufi, output, flags, anon);
|
|
} else if (uobj) {
|
|
rv = uvm_loanuobj(ufi, output, flags, curaddr);
|
|
} else if (UVM_ET_ISCOPYONWRITE(ufi->entry)) {
|
|
rv = uvm_loanzero(ufi, output, flags);
|
|
} else {
|
|
rv = -1; /* null map entry... fail now */
|
|
}
|
|
|
|
/* total failure */
|
|
if (rv < 0)
|
|
return(-1);
|
|
|
|
/* relock failed, need to do another lookup */
|
|
if (rv == 0)
|
|
return(result);
|
|
|
|
/*
|
|
* got it... advance to next page
|
|
*/
|
|
result++;
|
|
togo -= PAGE_SIZE;
|
|
curaddr += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* unlock everything and return
|
|
*/
|
|
uvmfault_unlockall(ufi, aref->ar_amap, uobj, NULL);
|
|
return(result);
|
|
}
|
|
|
|
/*
|
|
* normal functions
|
|
*/
|
|
|
|
/*
|
|
* uvm_loan: loan pages out to anons or to the kernel
|
|
*
|
|
* => map should be unlocked
|
|
* => start and len should be multiples of PAGE_SIZE
|
|
* => result is either an array of anon's or vm_pages (depending on flags)
|
|
* => flag values: UVM_LOAN_TOANON - loan to anons
|
|
* UVM_LOAN_TOPAGE - loan to wired kernel page
|
|
* one and only one of these flags must be set!
|
|
*/
|
|
|
|
int
|
|
uvm_loan(map, start, len, result, flags)
|
|
struct vm_map *map;
|
|
vaddr_t start;
|
|
vsize_t len;
|
|
void **result;
|
|
int flags;
|
|
{
|
|
struct uvm_faultinfo ufi;
|
|
void **output;
|
|
int rv;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (map->flags & VM_MAP_INTRSAFE)
|
|
panic("uvm_loan: intrsafe map");
|
|
#endif
|
|
|
|
/*
|
|
* ensure that one and only one of the flags is set
|
|
*/
|
|
|
|
if ((flags & (UVM_LOAN_TOANON|UVM_LOAN_TOPAGE)) ==
|
|
(UVM_LOAN_TOANON|UVM_LOAN_TOPAGE) ||
|
|
(flags & (UVM_LOAN_TOANON|UVM_LOAN_TOPAGE)) == 0)
|
|
return(KERN_FAILURE);
|
|
|
|
/*
|
|
* "output" is a pointer to the current place to put the loaned
|
|
* page...
|
|
*/
|
|
|
|
output = &result[0]; /* start at the beginning ... */
|
|
|
|
/*
|
|
* while we've got pages to do
|
|
*/
|
|
|
|
while (len > 0) {
|
|
|
|
/*
|
|
* fill in params for a call to uvmfault_lookup
|
|
*/
|
|
|
|
ufi.orig_map = map;
|
|
ufi.orig_rvaddr = start;
|
|
ufi.orig_size = len;
|
|
|
|
/*
|
|
* do the lookup, the only time this will fail is if we hit on
|
|
* an unmapped region (an error)
|
|
*/
|
|
|
|
if (!uvmfault_lookup(&ufi, FALSE))
|
|
goto fail;
|
|
|
|
/*
|
|
* now do the loanout
|
|
*/
|
|
rv = uvm_loanentry(&ufi, &output, flags);
|
|
if (rv < 0)
|
|
goto fail;
|
|
|
|
/*
|
|
* done! advance pointers and unlock.
|
|
*/
|
|
rv <<= PAGE_SHIFT;
|
|
len -= rv;
|
|
start += rv;
|
|
uvmfault_unlockmaps(&ufi, FALSE);
|
|
}
|
|
|
|
/*
|
|
* got it! return success.
|
|
*/
|
|
|
|
return(KERN_SUCCESS);
|
|
|
|
fail:
|
|
/*
|
|
* fail: failed to do it. drop our loans and return failure code.
|
|
*/
|
|
if (output - result) {
|
|
if (flags & UVM_LOAN_TOANON)
|
|
uvm_unloananon((struct vm_anon **)result,
|
|
output - result);
|
|
else
|
|
uvm_unloanpage((struct vm_page **)result,
|
|
output - result);
|
|
}
|
|
return(KERN_FAILURE);
|
|
}
|
|
|
|
/*
|
|
* uvm_loananon: loan a page from an anon out
|
|
*
|
|
* => return value:
|
|
* -1 = fatal error, everything is unlocked, abort.
|
|
* 0 = lookup in ufi went stale, everything unlocked, relookup and
|
|
* try again
|
|
* 1 = got it, everything still locked
|
|
*/
|
|
|
|
int
|
|
uvm_loananon(ufi, output, flags, anon)
|
|
struct uvm_faultinfo *ufi;
|
|
void ***output;
|
|
int flags;
|
|
struct vm_anon *anon;
|
|
{
|
|
struct vm_page *pg;
|
|
int result;
|
|
|
|
/*
|
|
* if we are loaning to another anon then it is easy, we just
|
|
* bump the reference count on the current anon and return a
|
|
* pointer to it.
|
|
*/
|
|
if (flags & UVM_LOAN_TOANON) {
|
|
simple_lock(&anon->an_lock);
|
|
pg = anon->u.an_page;
|
|
if (pg && (pg->pqflags & PQ_ANON) != 0 && anon->an_ref == 1)
|
|
/* read protect it */
|
|
pmap_page_protect(pg, VM_PROT_READ);
|
|
anon->an_ref++;
|
|
**output = anon;
|
|
*output = (*output) + 1;
|
|
simple_unlock(&anon->an_lock);
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* we are loaning to a kernel-page. we need to get the page
|
|
* resident so we can wire it. uvmfault_anonget will handle
|
|
* this for us.
|
|
*/
|
|
|
|
simple_lock(&anon->an_lock);
|
|
result = uvmfault_anonget(ufi, ufi->entry->aref.ar_amap, anon);
|
|
|
|
/*
|
|
* if we were unable to get the anon, then uvmfault_anonget has
|
|
* unlocked everything and returned an error code.
|
|
*/
|
|
|
|
if (result != VM_PAGER_OK) {
|
|
|
|
/* need to refault (i.e. refresh our lookup) ? */
|
|
if (result == VM_PAGER_REFAULT)
|
|
return(0);
|
|
|
|
/* "try again"? sleep a bit and retry ... */
|
|
if (result == VM_PAGER_AGAIN) {
|
|
tsleep((caddr_t)&lbolt, PVM, "loanagain", 0);
|
|
return(0);
|
|
}
|
|
|
|
/* otherwise flag it as an error */
|
|
return(-1);
|
|
}
|
|
|
|
/*
|
|
* we have the page and its owner locked: do the loan now.
|
|
*/
|
|
|
|
pg = anon->u.an_page;
|
|
uvm_lock_pageq();
|
|
if (pg->loan_count == 0)
|
|
pmap_page_protect(pg, VM_PROT_READ);
|
|
pg->loan_count++;
|
|
uvm_pagewire(pg); /* always wire it */
|
|
uvm_unlock_pageq();
|
|
**output = pg;
|
|
*output = (*output) + 1;
|
|
|
|
/* unlock anon and return success */
|
|
if (pg->uobject)
|
|
simple_unlock(&pg->uobject->vmobjlock);
|
|
simple_unlock(&anon->an_lock);
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* uvm_loanuobj: loan a page from a uobj out
|
|
*
|
|
* => return value:
|
|
* -1 = fatal error, everything is unlocked, abort.
|
|
* 0 = lookup in ufi went stale, everything unlocked, relookup and
|
|
* try again
|
|
* 1 = got it, everything still locked
|
|
*/
|
|
|
|
int
|
|
uvm_loanuobj(ufi, output, flags, va)
|
|
struct uvm_faultinfo *ufi;
|
|
void ***output;
|
|
int flags;
|
|
vaddr_t va;
|
|
{
|
|
struct vm_amap *amap = ufi->entry->aref.ar_amap;
|
|
struct uvm_object *uobj = ufi->entry->object.uvm_obj;
|
|
struct vm_page *pg;
|
|
struct vm_anon *anon;
|
|
int result, npages;
|
|
boolean_t locked;
|
|
|
|
/*
|
|
* first we must make sure the page is resident.
|
|
*
|
|
* XXXCDC: duplicate code with uvm_fault().
|
|
*/
|
|
|
|
if (uobj->pgops->pgo_get) {
|
|
npages = 1;
|
|
pg = NULL;
|
|
result = uobj->pgops->pgo_get(uobj, va - ufi->entry->start,
|
|
&pg, &npages, 0, VM_PROT_READ, MADV_NORMAL, PGO_LOCKED);
|
|
} else {
|
|
result = VM_PAGER_ERROR;
|
|
}
|
|
|
|
/*
|
|
* check the result of the locked pgo_get. if there is a problem,
|
|
* then we fail the loan.
|
|
*/
|
|
|
|
if (result != VM_PAGER_OK && result != VM_PAGER_UNLOCK) {
|
|
uvmfault_unlockall(ufi, amap, uobj, NULL);
|
|
return(-1);
|
|
}
|
|
|
|
/*
|
|
* if we need to unlock for I/O, do so now.
|
|
*/
|
|
|
|
if (result == VM_PAGER_UNLOCK) {
|
|
uvmfault_unlockall(ufi, amap, NULL, NULL);
|
|
|
|
npages = 1;
|
|
/* locked: uobj */
|
|
result = uobj->pgops->pgo_get(uobj, va - ufi->entry->start,
|
|
&pg, &npages, 0, VM_PROT_READ, MADV_NORMAL, 0);
|
|
/* locked: <nothing> */
|
|
|
|
/*
|
|
* check for errors
|
|
*/
|
|
|
|
if (result != VM_PAGER_OK) {
|
|
if (result == VM_PAGER_AGAIN) {
|
|
tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0);
|
|
return(0); /* redo the lookup and try again */
|
|
}
|
|
return(-1); /* total failure */
|
|
}
|
|
|
|
/*
|
|
* pgo_get was a success. attempt to relock everything.
|
|
*/
|
|
|
|
locked = uvmfault_relock(ufi);
|
|
if (locked && amap)
|
|
amap_lock(amap);
|
|
simple_lock(&uobj->vmobjlock);
|
|
|
|
/*
|
|
* verify that the page has not be released and re-verify
|
|
* that amap slot is still free. if there is a problem we
|
|
* drop our lock (thus force a lookup refresh/retry).
|
|
*/
|
|
|
|
if ((pg->flags & PG_RELEASED) != 0 ||
|
|
(locked && amap && amap_lookup(&ufi->entry->aref,
|
|
ufi->orig_rvaddr - ufi->entry->start))) {
|
|
|
|
if (locked)
|
|
uvmfault_unlockall(ufi, amap, NULL, NULL);
|
|
locked = FALSE;
|
|
}
|
|
|
|
/*
|
|
* didn't get the lock? release the page and retry.
|
|
*/
|
|
|
|
if (locked == FALSE) {
|
|
|
|
if (pg->flags & PG_WANTED)
|
|
/* still holding object lock */
|
|
wakeup(pg);
|
|
|
|
if (pg->flags & PG_RELEASED) {
|
|
#ifdef DIAGNOSTIC
|
|
if (uobj->pgops->pgo_releasepg == NULL)
|
|
panic("uvm_loanuobj: object has no releasepg function");
|
|
#endif
|
|
/* frees page */
|
|
if (uobj->pgops->pgo_releasepg(pg, NULL))
|
|
simple_unlock(&uobj->vmobjlock);
|
|
return (0);
|
|
}
|
|
|
|
uvm_lock_pageq();
|
|
uvm_pageactivate(pg); /* make sure it is in queues */
|
|
uvm_unlock_pageq();
|
|
pg->flags &= ~(PG_BUSY|PG_WANTED);
|
|
UVM_PAGE_OWN(pg, NULL);
|
|
simple_unlock(&uobj->vmobjlock);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* at this point we have the page we want ("pg") marked PG_BUSY for us
|
|
* and we have all data structures locked. do the loanout. page can
|
|
* not be PG_RELEASED (we caught this above).
|
|
*/
|
|
|
|
if ((flags & UVM_LOAN_TOANON) == 0) { /* loan to wired-kernel page? */
|
|
uvm_lock_pageq();
|
|
if (pg->loan_count == 0)
|
|
pmap_page_protect(pg, VM_PROT_READ);
|
|
pg->loan_count++;
|
|
uvm_pagewire(pg);
|
|
uvm_unlock_pageq();
|
|
**output = pg;
|
|
*output = (*output) + 1;
|
|
if (pg->flags & PG_WANTED)
|
|
wakeup(pg);
|
|
pg->flags &= ~(PG_WANTED|PG_BUSY);
|
|
UVM_PAGE_OWN(pg, NULL);
|
|
return(1); /* got it! */
|
|
}
|
|
|
|
/*
|
|
* must be a loan to an anon. check to see if there is already
|
|
* an anon associated with this page. if so, then just return
|
|
* a reference to this object. the page should already be
|
|
* mapped read-only because it is already on loan.
|
|
*/
|
|
|
|
if (pg->uanon) {
|
|
anon = pg->uanon;
|
|
simple_lock(&anon->an_lock);
|
|
anon->an_ref++;
|
|
simple_unlock(&anon->an_lock);
|
|
**output = anon;
|
|
*output = (*output) + 1;
|
|
uvm_lock_pageq();
|
|
uvm_pageactivate(pg); /* reactivate */
|
|
uvm_unlock_pageq();
|
|
if (pg->flags & PG_WANTED)
|
|
wakeup(pg);
|
|
pg->flags &= ~(PG_WANTED|PG_BUSY);
|
|
UVM_PAGE_OWN(pg, NULL);
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* need to allocate a new anon
|
|
*/
|
|
|
|
anon = uvm_analloc();
|
|
if (anon == NULL) { /* out of VM! */
|
|
if (pg->flags & PG_WANTED)
|
|
wakeup(pg);
|
|
pg->flags &= ~(PG_WANTED|PG_BUSY);
|
|
UVM_PAGE_OWN(pg, NULL);
|
|
uvmfault_unlockall(ufi, amap, uobj, NULL);
|
|
return(-1);
|
|
}
|
|
anon->u.an_page = pg;
|
|
pg->uanon = anon;
|
|
uvm_lock_pageq();
|
|
if (pg->loan_count == 0)
|
|
pmap_page_protect(pg, VM_PROT_READ);
|
|
pg->loan_count++;
|
|
uvm_pageactivate(pg);
|
|
uvm_unlock_pageq();
|
|
**output = anon;
|
|
*output = (*output) + 1;
|
|
if (pg->flags & PG_WANTED)
|
|
wakeup(pg);
|
|
pg->flags &= ~(PG_WANTED|PG_BUSY);
|
|
UVM_PAGE_OWN(pg, NULL);
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* uvm_loanzero: "loan" a zero-fill page out
|
|
*
|
|
* => return value:
|
|
* -1 = fatal error, everything is unlocked, abort.
|
|
* 0 = lookup in ufi went stale, everything unlocked, relookup and
|
|
* try again
|
|
* 1 = got it, everything still locked
|
|
*/
|
|
|
|
int
|
|
uvm_loanzero(ufi, output, flags)
|
|
struct uvm_faultinfo *ufi;
|
|
void ***output;
|
|
int flags;
|
|
{
|
|
struct vm_anon *anon;
|
|
struct vm_page *pg;
|
|
|
|
if ((flags & UVM_LOAN_TOANON) == 0) { /* loaning to kernel-page */
|
|
|
|
while ((pg = uvm_pagealloc(NULL, 0, NULL,
|
|
UVM_PGA_ZERO)) == NULL) {
|
|
uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
|
|
ufi->entry->object.uvm_obj, NULL);
|
|
uvm_wait("loanzero1");
|
|
if (!uvmfault_relock(ufi))
|
|
return(0);
|
|
if (ufi->entry->aref.ar_amap)
|
|
amap_lock(ufi->entry->aref.ar_amap);
|
|
if (ufi->entry->object.uvm_obj)
|
|
simple_lock(
|
|
&ufi->entry->object.uvm_obj->vmobjlock);
|
|
/* ... and try again */
|
|
}
|
|
|
|
/* got a zero'd page; return */
|
|
pg->flags &= ~(PG_BUSY|PG_FAKE);
|
|
UVM_PAGE_OWN(pg, NULL);
|
|
**output = pg;
|
|
*output = (*output) + 1;
|
|
uvm_lock_pageq();
|
|
/* wire it as we are loaning to kernel-page */
|
|
uvm_pagewire(pg);
|
|
pg->loan_count = 1;
|
|
uvm_unlock_pageq();
|
|
return(1);
|
|
}
|
|
|
|
/* loaning to an anon */
|
|
while ((anon = uvm_analloc()) == NULL ||
|
|
(pg = uvm_pagealloc(NULL, 0, anon, UVM_PGA_ZERO)) == NULL) {
|
|
|
|
/* unlock everything */
|
|
uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
|
|
ufi->entry->object.uvm_obj, NULL);
|
|
|
|
/* out of swap causes us to fail */
|
|
if (anon == NULL)
|
|
return(-1);
|
|
|
|
uvm_anfree(anon);
|
|
uvm_wait("loanzero2"); /* wait for pagedaemon */
|
|
|
|
if (!uvmfault_relock(ufi))
|
|
/* map changed while unlocked, need relookup */
|
|
return (0);
|
|
|
|
/* relock everything else */
|
|
if (ufi->entry->aref.ar_amap)
|
|
amap_lock(ufi->entry->aref.ar_amap);
|
|
if (ufi->entry->object.uvm_obj)
|
|
simple_lock(&ufi->entry->object.uvm_obj->vmobjlock);
|
|
/* ... and try again */
|
|
}
|
|
|
|
/* got a zero'd page; return */
|
|
pg->flags &= ~(PG_BUSY|PG_FAKE);
|
|
UVM_PAGE_OWN(pg, NULL);
|
|
uvm_lock_pageq();
|
|
uvm_pageactivate(pg);
|
|
uvm_unlock_pageq();
|
|
**output = anon;
|
|
*output = (*output) + 1;
|
|
return(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* uvm_unloananon: kill loans on anons (basically a normal ref drop)
|
|
*
|
|
* => we expect all our resources to be unlocked
|
|
*/
|
|
|
|
void
|
|
uvm_unloananon(aloans, nanons)
|
|
struct vm_anon **aloans;
|
|
int nanons;
|
|
{
|
|
struct vm_anon *anon;
|
|
|
|
while (nanons-- > 0) {
|
|
int refs;
|
|
|
|
anon = *aloans++;
|
|
simple_lock(&anon->an_lock);
|
|
refs = --anon->an_ref;
|
|
simple_unlock(&anon->an_lock);
|
|
|
|
if (refs == 0) {
|
|
uvm_anfree(anon); /* last reference: kill anon */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvm_unloanpage: kill loans on pages loaned out to the kernel
|
|
*
|
|
* => we expect all our resources to be unlocked
|
|
*/
|
|
|
|
void
|
|
uvm_unloanpage(ploans, npages)
|
|
struct vm_page **ploans;
|
|
int npages;
|
|
{
|
|
struct vm_page *pg;
|
|
|
|
uvm_lock_pageq();
|
|
|
|
while (npages-- > 0) {
|
|
pg = *ploans++;
|
|
|
|
if (pg->loan_count < 1)
|
|
panic("uvm_unloanpage: page %p isn't loaned", pg);
|
|
|
|
pg->loan_count--; /* drop loan */
|
|
uvm_pageunwire(pg); /* and wire */
|
|
|
|
/*
|
|
* if page is unowned and we killed last loan, then we can
|
|
* free it
|
|
*/
|
|
if (pg->loan_count == 0 && pg->uobject == NULL &&
|
|
pg->uanon == NULL) {
|
|
|
|
if (pg->flags & PG_BUSY)
|
|
panic("uvm_unloanpage: page %p unowned but PG_BUSY!", pg);
|
|
|
|
/* be safe */
|
|
pmap_page_protect(pg, VM_PROT_NONE);
|
|
uvm_pagefree(pg); /* pageq locked above */
|
|
|
|
}
|
|
}
|
|
|
|
uvm_unlock_pageq();
|
|
}
|
|
|