NetBSD/sys/dev/hyperv/vmbus.c

2422 lines
59 KiB
C

/* $NetBSD: vmbus.c,v 1.18 2022/05/20 13:55:17 nonaka Exp $ */
/* $OpenBSD: hyperv.c,v 1.43 2017/06/27 13:56:15 mikeb Exp $ */
/*-
* Copyright (c) 2009-2012 Microsoft Corp.
* Copyright (c) 2012 NetApp Inc.
* Copyright (c) 2012 Citrix Inc.
* Copyright (c) 2016 Mike Belopuhov <mike@esdenera.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The OpenBSD port was done under funding by Esdenera Networks GmbH.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vmbus.c,v 1.18 2022/05/20 13:55:17 nonaka Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/atomic.h>
#include <sys/bitops.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/xcall.h>
#include <uvm/uvm_extern.h>
#include <dev/hyperv/vmbusvar.h>
#define VMBUS_GPADL_START 0xffff /* 0x10000 effectively */
/* Command submission flags */
#define HCF_SLEEPOK 0x0000
#define HCF_NOSLEEP 0x0002 /* M_NOWAIT */
#define HCF_NOREPLY 0x0004
static void vmbus_attach_deferred(device_t);
static int vmbus_attach_print(void *, const char *);
static int vmbus_alloc_dma(struct vmbus_softc *);
static void vmbus_free_dma(struct vmbus_softc *);
static int vmbus_init_interrupts(struct vmbus_softc *);
static void vmbus_deinit_interrupts(struct vmbus_softc *);
static void vmbus_init_interrupts_pcpu(void *, void *);
static void vmbus_deinit_interrupts_pcpu(void *, void *);
static int vmbus_connect(struct vmbus_softc *);
static int vmbus_cmd(struct vmbus_softc *, void *, size_t, void *, size_t,
int);
static int vmbus_start(struct vmbus_softc *, struct vmbus_msg *, paddr_t);
static int vmbus_reply(struct vmbus_softc *, struct vmbus_msg *);
static uint16_t vmbus_intr_signal(struct vmbus_softc *, paddr_t);
static void vmbus_event_proc(void *, struct cpu_info *);
static void vmbus_event_proc_compat(void *, struct cpu_info *);
static void vmbus_message_proc(void *, struct cpu_info *);
static void vmbus_message_softintr(void *);
static void vmbus_channel_response(struct vmbus_softc *,
struct vmbus_chanmsg_hdr *);
static void vmbus_channel_offer(struct vmbus_softc *,
struct vmbus_chanmsg_hdr *);
static void vmbus_channel_rescind(struct vmbus_softc *,
struct vmbus_chanmsg_hdr *);
static void vmbus_channel_delivered(struct vmbus_softc *,
struct vmbus_chanmsg_hdr *);
static int vmbus_channel_scan(struct vmbus_softc *);
static void vmbus_channel_cpu_default(struct vmbus_channel *);
static void vmbus_process_offer(struct vmbus_softc *,
struct vmbus_chanmsg_choffer *);
static void vmbus_process_rescind(struct vmbus_softc *,
struct vmbus_chanmsg_chrescind *);
static struct vmbus_channel *
vmbus_channel_lookup(struct vmbus_softc *, uint32_t);
static int vmbus_channel_ring_create(struct vmbus_channel *, uint32_t);
static void vmbus_channel_ring_destroy(struct vmbus_channel *);
static void vmbus_channel_detach(struct vmbus_channel *);
static void vmbus_chevq_enqueue(struct vmbus_softc *, int, void *);
static void vmbus_process_chevq(void *);
static void vmbus_chevq_thread(void *);
static void vmbus_devq_enqueue(struct vmbus_softc *, int,
struct vmbus_channel *);
static void vmbus_process_devq(void *);
static void vmbus_devq_thread(void *);
static void vmbus_subchannel_devq_thread(void *);
static struct vmbus_softc *vmbus_sc;
static const struct {
int hmd_response;
int hmd_request;
void (*hmd_handler)(struct vmbus_softc *,
struct vmbus_chanmsg_hdr *);
} vmbus_msg_dispatch[] = {
{ 0, 0, NULL },
{ VMBUS_CHANMSG_CHOFFER, 0, vmbus_channel_offer },
{ VMBUS_CHANMSG_CHRESCIND, 0, vmbus_channel_rescind },
{ VMBUS_CHANMSG_CHREQUEST, VMBUS_CHANMSG_CHOFFER, NULL },
{ VMBUS_CHANMSG_CHOFFER_DONE, 0, vmbus_channel_delivered },
{ VMBUS_CHANMSG_CHOPEN, 0, NULL },
{ VMBUS_CHANMSG_CHOPEN_RESP, VMBUS_CHANMSG_CHOPEN,
vmbus_channel_response },
{ VMBUS_CHANMSG_CHCLOSE, 0, NULL },
{ VMBUS_CHANMSG_GPADL_CONN, 0, NULL },
{ VMBUS_CHANMSG_GPADL_SUBCONN, 0, NULL },
{ VMBUS_CHANMSG_GPADL_CONNRESP, VMBUS_CHANMSG_GPADL_CONN,
vmbus_channel_response },
{ VMBUS_CHANMSG_GPADL_DISCONN, 0, NULL },
{ VMBUS_CHANMSG_GPADL_DISCONNRESP, VMBUS_CHANMSG_GPADL_DISCONN,
vmbus_channel_response },
{ VMBUS_CHANMSG_CHFREE, 0, NULL },
{ VMBUS_CHANMSG_CONNECT, 0, NULL },
{ VMBUS_CHANMSG_CONNECT_RESP, VMBUS_CHANMSG_CONNECT,
vmbus_channel_response },
{ VMBUS_CHANMSG_DISCONNECT, 0, NULL },
};
const struct hyperv_guid hyperv_guid_network = {
{ 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46,
0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e }
};
const struct hyperv_guid hyperv_guid_ide = {
{ 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44,
0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 }
};
const struct hyperv_guid hyperv_guid_scsi = {
{ 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d,
0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f }
};
const struct hyperv_guid hyperv_guid_shutdown = {
{ 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49,
0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb }
};
const struct hyperv_guid hyperv_guid_timesync = {
{ 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49,
0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf }
};
const struct hyperv_guid hyperv_guid_heartbeat = {
{ 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e,
0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d }
};
const struct hyperv_guid hyperv_guid_kvp = {
{ 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d,
0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6 }
};
const struct hyperv_guid hyperv_guid_vss = {
{ 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42,
0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 }
};
const struct hyperv_guid hyperv_guid_dynmem = {
{ 0xdc, 0x74, 0x50, 0x52, 0x85, 0x89, 0xe2, 0x46,
0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 }
};
const struct hyperv_guid hyperv_guid_mouse = {
{ 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c,
0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a }
};
const struct hyperv_guid hyperv_guid_kbd = {
{ 0x6d, 0xad, 0x12, 0xf9, 0x17, 0x2b, 0xea, 0x48,
0xbd, 0x65, 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84 }
};
const struct hyperv_guid hyperv_guid_video = {
{ 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a,
0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 }
};
const struct hyperv_guid hyperv_guid_fc = {
{ 0x4a, 0xcc, 0x9b, 0x2f, 0x69, 0x00, 0xf3, 0x4a,
0xb7, 0x6b, 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda }
};
const struct hyperv_guid hyperv_guid_fcopy = {
{ 0xe3, 0x4b, 0xd1, 0x34, 0xe4, 0xde, 0xc8, 0x41,
0x9a, 0xe7, 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92 }
};
const struct hyperv_guid hyperv_guid_pcie = {
{ 0x1d, 0xf6, 0xc4, 0x44, 0x44, 0x44, 0x00, 0x44,
0x9d, 0x52, 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f }
};
const struct hyperv_guid hyperv_guid_netdir = {
{ 0x3d, 0xaf, 0x2e, 0x8c, 0xa7, 0x32, 0x09, 0x4b,
0xab, 0x99, 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01 }
};
const struct hyperv_guid hyperv_guid_rdesktop = {
{ 0xf4, 0xac, 0x6a, 0x27, 0x15, 0xac, 0x6c, 0x42,
0x98, 0xdd, 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe }
};
/* Automatic Virtual Machine Activation (AVMA) Services */
const struct hyperv_guid hyperv_guid_avma1 = {
{ 0x55, 0xb2, 0x87, 0x44, 0x8c, 0xb8, 0x3f, 0x40,
0xbb, 0x51, 0xd1, 0xf6, 0x9c, 0xf1, 0x7f, 0x87 }
};
const struct hyperv_guid hyperv_guid_avma2 = {
{ 0xf4, 0xba, 0x75, 0x33, 0x15, 0x9e, 0x30, 0x4b,
0xb7, 0x65, 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b }
};
const struct hyperv_guid hyperv_guid_avma3 = {
{ 0xa0, 0x1f, 0x22, 0x99, 0xad, 0x24, 0xe2, 0x11,
0xbe, 0x98, 0x00, 0x1a, 0xa0, 0x1b, 0xbf, 0x6e }
};
const struct hyperv_guid hyperv_guid_avma4 = {
{ 0x16, 0x57, 0xe6, 0xf8, 0xb3, 0x3c, 0x06, 0x4a,
0x9a, 0x60, 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5 }
};
int
vmbus_match(device_t parent, cfdata_t cf, void *aux)
{
if (cf->cf_unit != 0 ||
!hyperv_hypercall_enabled() ||
!hyperv_synic_supported())
return 0;
return 1;
}
int
vmbus_attach(struct vmbus_softc *sc)
{
aprint_naive("\n");
aprint_normal(": Hyper-V VMBus\n");
vmbus_sc = sc;
sc->sc_msgpool = pool_cache_init(sizeof(struct vmbus_msg), 8, 0, 0,
"hvmsg", NULL, IPL_NET, NULL, NULL, NULL);
hyperv_set_message_proc(vmbus_message_proc, sc);
sc->sc_chanmap = kmem_zalloc(sizeof(struct vmbus_channel *) *
VMBUS_CHAN_MAX, KM_SLEEP);
if (vmbus_alloc_dma(sc))
goto cleanup;
if (vmbus_init_interrupts(sc))
goto cleanup;
if (vmbus_connect(sc))
goto cleanup;
aprint_normal_dev(sc->sc_dev, "protocol %d.%d\n",
VMBUS_VERSION_MAJOR(sc->sc_proto),
VMBUS_VERSION_MINOR(sc->sc_proto));
if (sc->sc_proto == VMBUS_VERSION_WS2008 ||
sc->sc_proto == VMBUS_VERSION_WIN7) {
hyperv_set_event_proc(vmbus_event_proc_compat, sc);
sc->sc_channel_max = VMBUS_CHAN_MAX_COMPAT;
} else {
hyperv_set_event_proc(vmbus_event_proc, sc);
sc->sc_channel_max = VMBUS_CHAN_MAX;
}
if (vmbus_channel_scan(sc))
goto cleanup;
config_interrupts(sc->sc_dev, vmbus_attach_deferred);
return 0;
cleanup:
vmbus_deinit_interrupts(sc);
vmbus_free_dma(sc);
kmem_free(__UNVOLATILE(sc->sc_chanmap),
sizeof(struct vmbus_channel *) * VMBUS_CHAN_MAX);
return -1;
}
static void
vmbus_attach_deferred(device_t self)
{
struct vmbus_softc *sc = device_private(self);
uint64_t xc;
xc = xc_broadcast(0, vmbus_init_interrupts_pcpu,
sc, NULL);
xc_wait(xc);
}
int
vmbus_detach(struct vmbus_softc *sc, int flags)
{
vmbus_deinit_interrupts(sc);
vmbus_free_dma(sc);
kmem_free(__UNVOLATILE(sc->sc_chanmap),
sizeof(struct vmbus_channel *) * VMBUS_CHAN_MAX);
return 0;
}
static int
vmbus_alloc_dma(struct vmbus_softc *sc)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
struct vmbus_percpu_data *pd;
int i;
/*
* Per-CPU messages and event flags.
*/
for (CPU_INFO_FOREACH(cii, ci)) {
pd = &sc->sc_percpu[cpu_index(ci)];
pd->simp = hyperv_dma_alloc(sc->sc_dmat, &pd->simp_dma,
PAGE_SIZE, PAGE_SIZE, 0, 1);
if (pd->simp == NULL)
return ENOMEM;
pd->siep = hyperv_dma_alloc(sc->sc_dmat, &pd->siep_dma,
PAGE_SIZE, PAGE_SIZE, 0, 1);
if (pd->siep == NULL)
return ENOMEM;
}
sc->sc_events = hyperv_dma_alloc(sc->sc_dmat, &sc->sc_events_dma,
PAGE_SIZE, PAGE_SIZE, 0, 1);
if (sc->sc_events == NULL)
return ENOMEM;
sc->sc_wevents = (u_long *)sc->sc_events;
sc->sc_revents = (u_long *)((uint8_t *)sc->sc_events + (PAGE_SIZE / 2));
for (i = 0; i < __arraycount(sc->sc_monitor); i++) {
sc->sc_monitor[i] = hyperv_dma_alloc(sc->sc_dmat,
&sc->sc_monitor_dma[i], PAGE_SIZE, PAGE_SIZE, 0, 1);
if (sc->sc_monitor[i] == NULL)
return ENOMEM;
}
return 0;
}
static void
vmbus_free_dma(struct vmbus_softc *sc)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
int i;
if (sc->sc_events != NULL) {
sc->sc_events = sc->sc_wevents = sc->sc_revents = NULL;
hyperv_dma_free(sc->sc_dmat, &sc->sc_events_dma);
}
for (i = 0; i < __arraycount(sc->sc_monitor); i++) {
sc->sc_monitor[i] = NULL;
hyperv_dma_free(sc->sc_dmat, &sc->sc_monitor_dma[i]);
}
for (CPU_INFO_FOREACH(cii, ci)) {
struct vmbus_percpu_data *pd = &sc->sc_percpu[cpu_index(ci)];
if (pd->simp != NULL) {
pd->simp = NULL;
hyperv_dma_free(sc->sc_dmat, &pd->simp_dma);
}
if (pd->siep != NULL) {
pd->siep = NULL;
hyperv_dma_free(sc->sc_dmat, &pd->siep_dma);
}
}
}
static int
vmbus_init_interrupts(struct vmbus_softc *sc)
{
uint64_t xc;
TAILQ_INIT(&sc->sc_reqs);
mutex_init(&sc->sc_req_lock, MUTEX_DEFAULT, IPL_NET);
TAILQ_INIT(&sc->sc_rsps);
mutex_init(&sc->sc_rsp_lock, MUTEX_DEFAULT, IPL_NET);
sc->sc_proto = VMBUS_VERSION_WS2008;
/* XXX event_tq */
sc->sc_msg_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
vmbus_message_softintr, sc);
if (sc->sc_msg_sih == NULL)
return -1;
kcpuset_create(&sc->sc_intr_cpuset, true);
if (cold) {
/* Initialize other CPUs later. */
vmbus_init_interrupts_pcpu(sc, NULL);
} else {
xc = xc_broadcast(0, vmbus_init_interrupts_pcpu,
sc, NULL);
xc_wait(xc);
}
atomic_or_32(&sc->sc_flags, VMBUS_SCFLAG_SYNIC);
return 0;
}
static void
vmbus_deinit_interrupts(struct vmbus_softc *sc)
{
uint64_t xc;
if (cold) {
vmbus_deinit_interrupts_pcpu(sc, NULL);
} else {
xc = xc_broadcast(0, vmbus_deinit_interrupts_pcpu,
sc, NULL);
xc_wait(xc);
}
atomic_and_32(&sc->sc_flags, (uint32_t)~VMBUS_SCFLAG_SYNIC);
/* XXX event_tq */
if (sc->sc_msg_sih != NULL) {
softint_disestablish(sc->sc_msg_sih);
sc->sc_msg_sih = NULL;
}
}
static void
vmbus_init_interrupts_pcpu(void *arg1, void *arg2 __unused)
{
struct vmbus_softc *sc = arg1;
cpuid_t cpu;
int s;
s = splhigh();
cpu = cpu_index(curcpu());
if (!kcpuset_isset(sc->sc_intr_cpuset, cpu)) {
kcpuset_atomic_set(sc->sc_intr_cpuset, cpu);
vmbus_init_interrupts_md(sc, cpu);
vmbus_init_synic_md(sc, cpu);
}
splx(s);
}
static void
vmbus_deinit_interrupts_pcpu(void *arg1, void *arg2 __unused)
{
struct vmbus_softc *sc = arg1;
cpuid_t cpu;
int s;
s = splhigh();
cpu = cpu_index(curcpu());
if (kcpuset_isset(sc->sc_intr_cpuset, cpu)) {
if (ISSET(sc->sc_flags, VMBUS_SCFLAG_SYNIC))
vmbus_deinit_synic_md(sc, cpu);
vmbus_deinit_interrupts_md(sc, cpu);
kcpuset_atomic_clear(sc->sc_intr_cpuset, cpu);
}
splx(s);
}
static int
vmbus_connect(struct vmbus_softc *sc)
{
static const uint32_t versions[] = {
VMBUS_VERSION_WIN8_1,
VMBUS_VERSION_WIN8,
VMBUS_VERSION_WIN7,
VMBUS_VERSION_WS2008
};
struct vmbus_chanmsg_connect cmd;
struct vmbus_chanmsg_connect_resp rsp;
int i, rv;
memset(&cmd, 0, sizeof(cmd));
cmd.chm_hdr.chm_type = VMBUS_CHANMSG_CONNECT;
cmd.chm_evtflags = hyperv_dma_get_paddr(&sc->sc_events_dma);
cmd.chm_mnf1 = hyperv_dma_get_paddr(&sc->sc_monitor_dma[0]);
cmd.chm_mnf2 = hyperv_dma_get_paddr(&sc->sc_monitor_dma[1]);
memset(&rsp, 0, sizeof(rsp));
for (i = 0; i < __arraycount(versions); i++) {
cmd.chm_ver = versions[i];
rv = vmbus_cmd(sc, &cmd, sizeof(cmd), &rsp, sizeof(rsp),
HCF_NOSLEEP);
if (rv) {
DPRINTF("%s: CONNECT failed\n",
device_xname(sc->sc_dev));
return rv;
}
if (rsp.chm_done) {
atomic_or_32(&sc->sc_flags, VMBUS_SCFLAG_CONNECTED);
sc->sc_proto = versions[i];
sc->sc_handle = VMBUS_GPADL_START;
break;
}
}
if (i == __arraycount(versions)) {
device_printf(sc->sc_dev,
"failed to negotiate protocol version\n");
return ENXIO;
}
return 0;
}
static int
vmbus_cmd(struct vmbus_softc *sc, void *cmd, size_t cmdlen, void *rsp,
size_t rsplen, int flags)
{
struct vmbus_msg *msg;
paddr_t pa;
int rv;
if (cmdlen > VMBUS_MSG_DSIZE_MAX) {
device_printf(sc->sc_dev, "payload too large (%zu)\n",
cmdlen);
return EMSGSIZE;
}
msg = pool_cache_get_paddr(sc->sc_msgpool, PR_WAITOK, &pa);
if (msg == NULL) {
device_printf(sc->sc_dev, "couldn't get msgpool\n");
return ENOMEM;
}
memset(msg, 0, sizeof(*msg));
msg->msg_req.hc_dsize = cmdlen;
memcpy(msg->msg_req.hc_data, cmd, cmdlen);
if (!(flags & HCF_NOREPLY)) {
msg->msg_rsp = rsp;
msg->msg_rsplen = rsplen;
} else
msg->msg_flags |= MSGF_NOQUEUE;
if (flags & HCF_NOSLEEP)
msg->msg_flags |= MSGF_NOSLEEP;
rv = vmbus_start(sc, msg, pa);
if (rv == 0)
rv = vmbus_reply(sc, msg);
pool_cache_put_paddr(sc->sc_msgpool, msg, pa);
return rv;
}
static int
vmbus_start(struct vmbus_softc *sc, struct vmbus_msg *msg, paddr_t msg_pa)
{
const char *wchan = "hvstart";
uint16_t status;
int wait_ms = 1; /* milliseconds */
int i, s;
msg->msg_req.hc_connid = VMBUS_CONNID_MESSAGE;
msg->msg_req.hc_msgtype = 1;
if (!(msg->msg_flags & MSGF_NOQUEUE)) {
mutex_enter(&sc->sc_req_lock);
TAILQ_INSERT_TAIL(&sc->sc_reqs, msg, msg_entry);
mutex_exit(&sc->sc_req_lock);
}
/*
* In order to cope with transient failures, e.g. insufficient
* resources on host side, we retry the post message Hypercall
* several times. 20 retries seem sufficient.
*/
#define HC_RETRY_MAX 20
#define HC_WAIT_MAX (2 * 1000) /* 2s */
for (i = 0; i < HC_RETRY_MAX; i++) {
status = hyperv_hypercall_post_message(
msg_pa + offsetof(struct vmbus_msg, msg_req));
if (status == HYPERCALL_STATUS_SUCCESS)
return 0;
if (msg->msg_flags & MSGF_NOSLEEP) {
DELAY(wait_ms * 1000);
s = splnet();
hyperv_intr();
splx(s);
} else
tsleep(wchan, PRIBIO, wchan, uimax(1, mstohz(wait_ms)));
if (wait_ms < HC_WAIT_MAX)
wait_ms *= 2;
}
#undef HC_RETRY_MAX
#undef HC_WAIT_MAX
device_printf(sc->sc_dev,
"posting vmbus message failed with %d\n", status);
if (!(msg->msg_flags & MSGF_NOQUEUE)) {
mutex_enter(&sc->sc_req_lock);
TAILQ_REMOVE(&sc->sc_reqs, msg, msg_entry);
mutex_exit(&sc->sc_req_lock);
}
return EIO;
}
static int
vmbus_reply_done(struct vmbus_softc *sc, struct vmbus_msg *msg)
{
struct vmbus_msg *m;
mutex_enter(&sc->sc_rsp_lock);
TAILQ_FOREACH(m, &sc->sc_rsps, msg_entry) {
if (m == msg) {
mutex_exit(&sc->sc_rsp_lock);
return 1;
}
}
mutex_exit(&sc->sc_rsp_lock);
return 0;
}
static int
vmbus_reply(struct vmbus_softc *sc, struct vmbus_msg *msg)
{
int s;
if (msg->msg_flags & MSGF_NOQUEUE)
return 0;
while (!vmbus_reply_done(sc, msg)) {
if (msg->msg_flags & MSGF_NOSLEEP) {
delay(1000);
s = splnet();
hyperv_intr();
splx(s);
} else
tsleep(msg, PRIBIO, "hvreply", uimax(1, mstohz(1)));
}
mutex_enter(&sc->sc_rsp_lock);
TAILQ_REMOVE(&sc->sc_rsps, msg, msg_entry);
mutex_exit(&sc->sc_rsp_lock);
return 0;
}
static uint16_t
vmbus_intr_signal(struct vmbus_softc *sc, paddr_t con_pa)
{
uint64_t status;
status = hyperv_hypercall_signal_event(con_pa);
return (uint16_t)status;
}
#if LONG_BIT == 64
#define ffsl(v) ffs64(v)
#elif LONG_BIT == 32
#define ffsl(v) ffs32(v)
#else
#error unsupport LONG_BIT
#endif /* LONG_BIT */
static void
vmbus_event_flags_proc(struct vmbus_softc *sc, volatile u_long *revents,
int maxrow)
{
struct vmbus_channel *ch;
u_long pending;
uint32_t chanid, chanid_base;
int row, chanid_ofs;
for (row = 0; row < maxrow; row++) {
if (revents[row] == 0)
continue;
pending = atomic_swap_ulong(&revents[row], 0);
pending &= ~sc->sc_evtmask[row];
chanid_base = row * VMBUS_EVTFLAG_LEN;
while ((chanid_ofs = ffsl(pending)) != 0) {
chanid_ofs--; /* NOTE: ffs is 1-based */
pending &= ~(1UL << chanid_ofs);
chanid = chanid_base + chanid_ofs;
/* vmbus channel protocol message */
if (chanid == 0)
continue;
ch = sc->sc_chanmap[chanid];
if (__predict_false(ch == NULL)) {
/* Channel is closed. */
continue;
}
__insn_barrier();
if (ch->ch_state != VMBUS_CHANSTATE_OPENED) {
device_printf(sc->sc_dev,
"channel %d is not active\n", chanid);
continue;
}
ch->ch_evcnt.ev_count++;
vmbus_channel_schedule(ch);
}
}
}
static void
vmbus_event_proc(void *arg, struct cpu_info *ci)
{
struct vmbus_softc *sc = arg;
struct vmbus_evtflags *evt;
/*
* On Host with Win8 or above, the event page can be
* checked directly to get the id of the channel
* that has the pending interrupt.
*/
evt = (struct vmbus_evtflags *)sc->sc_percpu[cpu_index(ci)].siep +
VMBUS_SINT_MESSAGE;
vmbus_event_flags_proc(sc, evt->evt_flags,
__arraycount(evt->evt_flags));
}
static void
vmbus_event_proc_compat(void *arg, struct cpu_info *ci)
{
struct vmbus_softc *sc = arg;
struct vmbus_evtflags *evt;
evt = (struct vmbus_evtflags *)sc->sc_percpu[cpu_index(ci)].siep +
VMBUS_SINT_MESSAGE;
if (test_bit(0, &evt->evt_flags[0])) {
clear_bit(0, &evt->evt_flags[0]);
/*
* receive size is 1/2 page and divide that by 4 bytes
*/
vmbus_event_flags_proc(sc, sc->sc_revents,
VMBUS_CHAN_MAX_COMPAT / VMBUS_EVTFLAG_LEN);
}
}
static void
vmbus_message_proc(void *arg, struct cpu_info *ci)
{
struct vmbus_softc *sc = arg;
struct vmbus_message *msg;
msg = (struct vmbus_message *)sc->sc_percpu[cpu_index(ci)].simp +
VMBUS_SINT_MESSAGE;
if (__predict_false(msg->msg_type != HYPERV_MSGTYPE_NONE)) {
if (__predict_true(!cold))
softint_schedule_cpu(sc->sc_msg_sih, ci);
else
vmbus_message_softintr(sc);
}
}
static void
vmbus_message_softintr(void *arg)
{
struct vmbus_softc *sc = arg;
struct vmbus_message *msg;
struct vmbus_chanmsg_hdr *hdr;
uint32_t type;
cpuid_t cpu;
cpu = cpu_index(curcpu());
for (;;) {
msg = (struct vmbus_message *)sc->sc_percpu[cpu].simp +
VMBUS_SINT_MESSAGE;
if (msg->msg_type == HYPERV_MSGTYPE_NONE)
break;
hdr = (struct vmbus_chanmsg_hdr *)msg->msg_data;
type = hdr->chm_type;
if (type >= VMBUS_CHANMSG_COUNT) {
device_printf(sc->sc_dev,
"unhandled message type %u flags %#x\n", type,
msg->msg_flags);
} else {
if (vmbus_msg_dispatch[type].hmd_handler) {
vmbus_msg_dispatch[type].hmd_handler(sc, hdr);
} else {
device_printf(sc->sc_dev,
"unhandled message type %u\n", type);
}
}
msg->msg_type = HYPERV_MSGTYPE_NONE;
membar_sync();
if (msg->msg_flags & VMBUS_MSGFLAG_PENDING)
hyperv_send_eom();
}
}
static void
vmbus_channel_response(struct vmbus_softc *sc, struct vmbus_chanmsg_hdr *rsphdr)
{
struct vmbus_msg *msg;
struct vmbus_chanmsg_hdr *reqhdr;
int req;
req = vmbus_msg_dispatch[rsphdr->chm_type].hmd_request;
mutex_enter(&sc->sc_req_lock);
TAILQ_FOREACH(msg, &sc->sc_reqs, msg_entry) {
reqhdr = (struct vmbus_chanmsg_hdr *)&msg->msg_req.hc_data;
if (reqhdr->chm_type == req) {
TAILQ_REMOVE(&sc->sc_reqs, msg, msg_entry);
break;
}
}
mutex_exit(&sc->sc_req_lock);
if (msg != NULL) {
memcpy(msg->msg_rsp, rsphdr, msg->msg_rsplen);
mutex_enter(&sc->sc_rsp_lock);
TAILQ_INSERT_TAIL(&sc->sc_rsps, msg, msg_entry);
mutex_exit(&sc->sc_rsp_lock);
wakeup(msg);
}
}
static void
vmbus_channel_offer(struct vmbus_softc *sc, struct vmbus_chanmsg_hdr *hdr)
{
struct vmbus_chanmsg_choffer *co;
co = kmem_intr_alloc(sizeof(*co), KM_NOSLEEP);
if (co == NULL) {
device_printf(sc->sc_dev,
"failed to allocate an offer object\n");
return;
}
memcpy(co, hdr, sizeof(*co));
vmbus_chevq_enqueue(sc, VMBUS_CHEV_TYPE_OFFER, co);
}
static void
vmbus_channel_rescind(struct vmbus_softc *sc, struct vmbus_chanmsg_hdr *hdr)
{
struct vmbus_chanmsg_chrescind *cr;
cr = kmem_intr_alloc(sizeof(*cr), KM_NOSLEEP);
if (cr == NULL) {
device_printf(sc->sc_dev,
"failed to allocate an rescind object\n");
return;
}
memcpy(cr, hdr, sizeof(*cr));
vmbus_chevq_enqueue(sc, VMBUS_CHEV_TYPE_RESCIND, cr);
}
static void
vmbus_channel_delivered(struct vmbus_softc *sc, struct vmbus_chanmsg_hdr *hdr)
{
atomic_or_32(&sc->sc_flags, VMBUS_SCFLAG_OFFERS_DELIVERED);
wakeup(&sc->sc_devq);
}
static void
hyperv_guid_sprint(struct hyperv_guid *guid, char *str, size_t size)
{
static const struct {
const struct hyperv_guid *guid;
const char *ident;
} map[] = {
{ &hyperv_guid_network, "network" },
{ &hyperv_guid_ide, "ide" },
{ &hyperv_guid_scsi, "scsi" },
{ &hyperv_guid_shutdown, "shutdown" },
{ &hyperv_guid_timesync, "timesync" },
{ &hyperv_guid_heartbeat, "heartbeat" },
{ &hyperv_guid_kvp, "kvp" },
{ &hyperv_guid_vss, "vss" },
{ &hyperv_guid_dynmem, "dynamic-memory" },
{ &hyperv_guid_mouse, "mouse" },
{ &hyperv_guid_kbd, "keyboard" },
{ &hyperv_guid_video, "video" },
{ &hyperv_guid_fc, "fiber-channel" },
{ &hyperv_guid_fcopy, "file-copy" },
{ &hyperv_guid_pcie, "pcie-passthrough" },
{ &hyperv_guid_netdir, "network-direct" },
{ &hyperv_guid_rdesktop, "remote-desktop" },
{ &hyperv_guid_avma1, "avma-1" },
{ &hyperv_guid_avma2, "avma-2" },
{ &hyperv_guid_avma3, "avma-3" },
{ &hyperv_guid_avma4, "avma-4" },
};
int i;
for (i = 0; i < __arraycount(map); i++) {
if (memcmp(guid, map[i].guid, sizeof(*guid)) == 0) {
strlcpy(str, map[i].ident, size);
return;
}
}
hyperv_guid2str(guid, str, size);
}
static int
vmbus_channel_scan(struct vmbus_softc *sc)
{
struct vmbus_chanmsg_hdr hdr;
struct vmbus_chanmsg_choffer rsp;
TAILQ_INIT(&sc->sc_prichans);
mutex_init(&sc->sc_prichan_lock, MUTEX_DEFAULT, IPL_NET);
TAILQ_INIT(&sc->sc_channels);
mutex_init(&sc->sc_channel_lock, MUTEX_DEFAULT, IPL_NET);
/*
* This queue serializes vmbus channel offer and rescind messages.
*/
SIMPLEQ_INIT(&sc->sc_chevq);
mutex_init(&sc->sc_chevq_lock, MUTEX_DEFAULT, IPL_NET);
cv_init(&sc->sc_chevq_cv, "hvchevcv");
if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
vmbus_chevq_thread, sc, NULL, "hvchevq") != 0) {
DPRINTF("%s: failed to create prich chevq thread\n",
device_xname(sc->sc_dev));
return -1;
}
/*
* This queue serializes vmbus devices' attach and detach
* for channel offer and rescind messages.
*/
SIMPLEQ_INIT(&sc->sc_devq);
mutex_init(&sc->sc_devq_lock, MUTEX_DEFAULT, IPL_NET);
cv_init(&sc->sc_devq_cv, "hvdevqcv");
if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
vmbus_devq_thread, sc, NULL, "hvdevq") != 0) {
DPRINTF("%s: failed to create prich devq thread\n",
device_xname(sc->sc_dev));
return -1;
}
/*
* This queue handles sub-channel detach, so that vmbus
* device's detach running in sc_devq can drain its sub-channels.
*/
SIMPLEQ_INIT(&sc->sc_subch_devq);
mutex_init(&sc->sc_subch_devq_lock, MUTEX_DEFAULT, IPL_NET);
cv_init(&sc->sc_subch_devq_cv, "hvsdvqcv");
if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
vmbus_subchannel_devq_thread, sc, NULL, "hvsdevq") != 0) {
DPRINTF("%s: failed to create subch devq thread\n",
device_xname(sc->sc_dev));
return -1;
}
memset(&hdr, 0, sizeof(hdr));
hdr.chm_type = VMBUS_CHANMSG_CHREQUEST;
if (vmbus_cmd(sc, &hdr, sizeof(hdr), &rsp, sizeof(rsp),
HCF_NOREPLY | HCF_NOSLEEP)) {
DPRINTF("%s: CHREQUEST failed\n", device_xname(sc->sc_dev));
return -1;
}
while (!ISSET(sc->sc_flags, VMBUS_SCFLAG_OFFERS_DELIVERED))
tsleep(&sc->sc_devq, PRIBIO, "hvscan", 1);
mutex_enter(&sc->sc_chevq_lock);
vmbus_process_chevq(sc);
mutex_exit(&sc->sc_chevq_lock);
mutex_enter(&sc->sc_devq_lock);
vmbus_process_devq(sc);
mutex_exit(&sc->sc_devq_lock);
return 0;
}
static struct vmbus_channel *
vmbus_channel_alloc(struct vmbus_softc *sc)
{
struct vmbus_channel *ch;
ch = kmem_zalloc(sizeof(*ch), KM_SLEEP);
ch->ch_monprm = hyperv_dma_alloc(sc->sc_dmat, &ch->ch_monprm_dma,
sizeof(*ch->ch_monprm), 8, 0, 1);
if (ch->ch_monprm == NULL) {
device_printf(sc->sc_dev, "monprm alloc failed\n");
kmem_free(ch, sizeof(*ch));
return NULL;
}
ch->ch_refs = 1;
ch->ch_sc = sc;
mutex_init(&ch->ch_event_lock, MUTEX_DEFAULT, IPL_NET);
cv_init(&ch->ch_event_cv, "hvevwait");
mutex_init(&ch->ch_subchannel_lock, MUTEX_DEFAULT, IPL_NET);
cv_init(&ch->ch_subchannel_cv, "hvsubch");
TAILQ_INIT(&ch->ch_subchannels);
ch->ch_state = VMBUS_CHANSTATE_CLOSED;
return ch;
}
static void
vmbus_channel_free(struct vmbus_channel *ch)
{
struct vmbus_softc *sc = ch->ch_sc;
KASSERTMSG(TAILQ_EMPTY(&ch->ch_subchannels) &&
ch->ch_subchannel_count == 0, "still owns sub-channels");
KASSERTMSG(ch->ch_state == 0 || ch->ch_state == VMBUS_CHANSTATE_CLOSED,
"free busy channel");
KASSERTMSG(ch->ch_refs == 0, "channel %u: invalid refcnt %d",
ch->ch_id, ch->ch_refs);
hyperv_dma_free(sc->sc_dmat, &ch->ch_monprm_dma);
mutex_destroy(&ch->ch_event_lock);
cv_destroy(&ch->ch_event_cv);
mutex_destroy(&ch->ch_subchannel_lock);
cv_destroy(&ch->ch_subchannel_cv);
/* XXX ch_evcnt */
if (ch->ch_taskq != NULL)
softint_disestablish(ch->ch_taskq);
kmem_free(ch, sizeof(*ch));
}
static int
vmbus_channel_add(struct vmbus_channel *nch)
{
struct vmbus_softc *sc = nch->ch_sc;
struct vmbus_channel *ch;
int refs __diagused;
if (nch->ch_id == 0) {
device_printf(sc->sc_dev, "got channel 0 offer, discard\n");
return EINVAL;
} else if (nch->ch_id >= sc->sc_channel_max) {
device_printf(sc->sc_dev, "invalid channel %u offer\n",
nch->ch_id);
return EINVAL;
}
mutex_enter(&sc->sc_prichan_lock);
TAILQ_FOREACH(ch, &sc->sc_prichans, ch_prientry) {
if (!memcmp(&ch->ch_type, &nch->ch_type, sizeof(ch->ch_type)) &&
!memcmp(&ch->ch_inst, &nch->ch_inst, sizeof(ch->ch_inst)))
break;
}
if (VMBUS_CHAN_ISPRIMARY(nch)) {
if (ch == NULL) {
TAILQ_INSERT_TAIL(&sc->sc_prichans, nch, ch_prientry);
mutex_exit(&sc->sc_prichan_lock);
goto done;
} else {
mutex_exit(&sc->sc_prichan_lock);
device_printf(sc->sc_dev,
"duplicated primary channel%u\n", nch->ch_id);
return EINVAL;
}
} else {
if (ch == NULL) {
mutex_exit(&sc->sc_prichan_lock);
device_printf(sc->sc_dev, "no primary channel%u\n",
nch->ch_id);
return EINVAL;
}
}
mutex_exit(&sc->sc_prichan_lock);
KASSERT(!VMBUS_CHAN_ISPRIMARY(nch));
KASSERT(ch != NULL);
refs = atomic_inc_uint_nv(&nch->ch_refs);
KASSERT(refs == 2);
nch->ch_primary_channel = ch;
nch->ch_dev = ch->ch_dev;
mutex_enter(&ch->ch_subchannel_lock);
TAILQ_INSERT_TAIL(&ch->ch_subchannels, nch, ch_subentry);
ch->ch_subchannel_count++;
cv_signal(&ch->ch_subchannel_cv);
mutex_exit(&ch->ch_subchannel_lock);
done:
mutex_enter(&sc->sc_channel_lock);
TAILQ_INSERT_TAIL(&sc->sc_channels, nch, ch_entry);
mutex_exit(&sc->sc_channel_lock);
vmbus_channel_cpu_default(nch);
return 0;
}
void
vmbus_channel_cpu_set(struct vmbus_channel *ch, int cpu)
{
struct vmbus_softc *sc = ch->ch_sc;
KASSERTMSG(cpu >= 0 && cpu < ncpu, "invalid cpu %d", cpu);
if (sc->sc_proto == VMBUS_VERSION_WS2008 ||
sc->sc_proto == VMBUS_VERSION_WIN7) {
/* Only cpu0 is supported */
cpu = 0;
}
ch->ch_cpuid = cpu;
ch->ch_vcpu = hyperv_get_vcpuid(cpu);
aprint_debug_dev(ch->ch_dev != NULL ? ch->ch_dev : sc->sc_dev,
"channel %u assigned to cpu%u [vcpu%u]\n",
ch->ch_id, ch->ch_cpuid, ch->ch_vcpu);
}
void
vmbus_channel_cpu_rr(struct vmbus_channel *ch)
{
static uint32_t vmbus_channel_nextcpu;
int cpu;
cpu = atomic_inc_32_nv(&vmbus_channel_nextcpu) % ncpu;
vmbus_channel_cpu_set(ch, cpu);
}
static void
vmbus_channel_cpu_default(struct vmbus_channel *ch)
{
/*
* By default, pin the channel to cpu0. Devices having
* special channel-cpu mapping requirement should call
* vmbus_channel_cpu_{set,rr}().
*/
vmbus_channel_cpu_set(ch, 0);
}
bool
vmbus_channel_is_revoked(struct vmbus_channel *ch)
{
return (ch->ch_flags & CHF_REVOKED) ? true : false;
}
static void
vmbus_process_offer(struct vmbus_softc *sc, struct vmbus_chanmsg_choffer *co)
{
struct vmbus_channel *ch;
ch = vmbus_channel_alloc(sc);
if (ch == NULL) {
device_printf(sc->sc_dev, "allocate channel %u failed\n",
co->chm_chanid);
return;
}
/*
* By default we setup state to enable batched reading.
* A specific service can choose to disable this prior
* to opening the channel.
*/
ch->ch_flags |= CHF_BATCHED;
hyperv_guid_sprint(&co->chm_chtype, ch->ch_ident,
sizeof(ch->ch_ident));
ch->ch_monprm->mp_connid = VMBUS_CONNID_EVENT;
if (sc->sc_proto > VMBUS_VERSION_WS2008)
ch->ch_monprm->mp_connid = co->chm_connid;
if (co->chm_flags1 & VMBUS_CHOFFER_FLAG1_HASMNF) {
ch->ch_mgroup = co->chm_montrig / VMBUS_MONTRIG_LEN;
ch->ch_mindex = co->chm_montrig % VMBUS_MONTRIG_LEN;
ch->ch_flags |= CHF_MONITOR;
}
ch->ch_id = co->chm_chanid;
ch->ch_subidx = co->chm_subidx;
memcpy(&ch->ch_type, &co->chm_chtype, sizeof(ch->ch_type));
memcpy(&ch->ch_inst, &co->chm_chinst, sizeof(ch->ch_inst));
if (vmbus_channel_add(ch) != 0) {
atomic_dec_uint(&ch->ch_refs);
vmbus_channel_free(ch);
return;
}
ch->ch_state = VMBUS_CHANSTATE_OFFERED;
vmbus_devq_enqueue(sc, VMBUS_DEV_TYPE_ATTACH, ch);
#ifdef HYPERV_DEBUG
printf("%s: channel %u: \"%s\"", device_xname(sc->sc_dev), ch->ch_id,
ch->ch_ident);
if (ch->ch_flags & CHF_MONITOR)
printf(", monitor %u\n", co->chm_montrig);
else
printf("\n");
#endif
}
static void
vmbus_process_rescind(struct vmbus_softc *sc,
struct vmbus_chanmsg_chrescind *cr)
{
struct vmbus_channel *ch;
if (cr->chm_chanid > VMBUS_CHAN_MAX) {
device_printf(sc->sc_dev, "invalid revoked channel%u\n",
cr->chm_chanid);
return;
}
mutex_enter(&sc->sc_channel_lock);
ch = vmbus_channel_lookup(sc, cr->chm_chanid);
if (ch == NULL) {
mutex_exit(&sc->sc_channel_lock);
device_printf(sc->sc_dev, "channel%u is not offered\n",
cr->chm_chanid);
return;
}
TAILQ_REMOVE(&sc->sc_channels, ch, ch_entry);
mutex_exit(&sc->sc_channel_lock);
if (VMBUS_CHAN_ISPRIMARY(ch)) {
mutex_enter(&sc->sc_prichan_lock);
TAILQ_REMOVE(&sc->sc_prichans, ch, ch_prientry);
mutex_exit(&sc->sc_prichan_lock);
}
KASSERTMSG(!(ch->ch_flags & CHF_REVOKED),
"channel%u has already been revoked", ch->ch_id);
atomic_or_uint(&ch->ch_flags, CHF_REVOKED);
vmbus_channel_detach(ch);
}
static int
vmbus_channel_release(struct vmbus_channel *ch)
{
struct vmbus_softc *sc = ch->ch_sc;
struct vmbus_chanmsg_chfree cmd;
int rv;
memset(&cmd, 0, sizeof(cmd));
cmd.chm_hdr.chm_type = VMBUS_CHANMSG_CHFREE;
cmd.chm_chanid = ch->ch_id;
rv = vmbus_cmd(sc, &cmd, sizeof(cmd), NULL, 0,
HCF_NOREPLY | HCF_SLEEPOK);
if (rv) {
DPRINTF("%s: CHFREE failed with %d\n", device_xname(sc->sc_dev),
rv);
}
return rv;
}
struct vmbus_channel **
vmbus_subchannel_get(struct vmbus_channel *prich, int subchan_cnt)
{
struct vmbus_softc *sc = prich->ch_sc;
struct vmbus_channel **ret, *ch;
int i, s;
KASSERTMSG(subchan_cnt > 0,
"invalid sub-channel count %d", subchan_cnt);
ret = kmem_zalloc(sizeof(struct vmbus_channel *) * subchan_cnt,
KM_SLEEP);
mutex_enter(&prich->ch_subchannel_lock);
while (prich->ch_subchannel_count < subchan_cnt) {
if (cold) {
mutex_exit(&prich->ch_subchannel_lock);
delay(1000);
s = splnet();
hyperv_intr();
splx(s);
mutex_enter(&sc->sc_chevq_lock);
vmbus_process_chevq(sc);
mutex_exit(&sc->sc_chevq_lock);
mutex_enter(&prich->ch_subchannel_lock);
} else {
mtsleep(prich, PRIBIO, "hvsubch", 1,
&prich->ch_subchannel_lock);
}
}
i = 0;
TAILQ_FOREACH(ch, &prich->ch_subchannels, ch_subentry) {
ret[i] = ch; /* XXX inc refs */
if (++i == subchan_cnt)
break;
}
KASSERTMSG(i == subchan_cnt, "invalid subchan count %d, should be %d",
prich->ch_subchannel_count, subchan_cnt);
mutex_exit(&prich->ch_subchannel_lock);
return ret;
}
void
vmbus_subchannel_rel(struct vmbus_channel **subch, int cnt)
{
kmem_free(subch, sizeof(struct vmbus_channel *) * cnt);
}
void
vmbus_subchannel_drain(struct vmbus_channel *prich)
{
int s;
mutex_enter(&prich->ch_subchannel_lock);
while (prich->ch_subchannel_count > 0) {
if (cold) {
mutex_exit(&prich->ch_subchannel_lock);
delay(1000);
s = splnet();
hyperv_intr();
splx(s);
mutex_enter(&prich->ch_subchannel_lock);
} else {
cv_wait(&prich->ch_subchannel_cv,
&prich->ch_subchannel_lock);
}
}
mutex_exit(&prich->ch_subchannel_lock);
}
static struct vmbus_channel *
vmbus_channel_lookup(struct vmbus_softc *sc, uint32_t chanid)
{
struct vmbus_channel *ch = NULL;
TAILQ_FOREACH(ch, &sc->sc_channels, ch_entry) {
if (ch->ch_id == chanid)
return ch;
}
return NULL;
}
static int
vmbus_channel_ring_create(struct vmbus_channel *ch, uint32_t buflen)
{
struct vmbus_softc *sc = ch->ch_sc;
buflen = roundup(buflen, PAGE_SIZE) + sizeof(struct vmbus_bufring);
ch->ch_ring_size = 2 * buflen;
/* page aligned memory */
ch->ch_ring = hyperv_dma_alloc(sc->sc_dmat, &ch->ch_ring_dma,
ch->ch_ring_size, PAGE_SIZE, 0, 1);
if (ch->ch_ring == NULL) {
device_printf(sc->sc_dev,
"failed to allocate channel ring\n");
return ENOMEM;
}
memset(&ch->ch_wrd, 0, sizeof(ch->ch_wrd));
ch->ch_wrd.rd_ring = (struct vmbus_bufring *)ch->ch_ring;
ch->ch_wrd.rd_size = buflen;
ch->ch_wrd.rd_dsize = buflen - sizeof(struct vmbus_bufring);
mutex_init(&ch->ch_wrd.rd_lock, MUTEX_DEFAULT, IPL_NET);
memset(&ch->ch_rrd, 0, sizeof(ch->ch_rrd));
ch->ch_rrd.rd_ring = (struct vmbus_bufring *)((uint8_t *)ch->ch_ring +
buflen);
ch->ch_rrd.rd_size = buflen;
ch->ch_rrd.rd_dsize = buflen - sizeof(struct vmbus_bufring);
mutex_init(&ch->ch_rrd.rd_lock, MUTEX_DEFAULT, IPL_NET);
if (vmbus_handle_alloc(ch, &ch->ch_ring_dma, ch->ch_ring_size,
&ch->ch_ring_gpadl)) {
device_printf(sc->sc_dev,
"failed to obtain a PA handle for the ring\n");
vmbus_channel_ring_destroy(ch);
return ENOMEM;
}
return 0;
}
static void
vmbus_channel_ring_destroy(struct vmbus_channel *ch)
{
struct vmbus_softc *sc = ch->ch_sc;
hyperv_dma_free(sc->sc_dmat, &ch->ch_ring_dma);
ch->ch_ring = NULL;
vmbus_handle_free(ch, ch->ch_ring_gpadl);
mutex_destroy(&ch->ch_wrd.rd_lock);
memset(&ch->ch_wrd, 0, sizeof(ch->ch_wrd));
mutex_destroy(&ch->ch_rrd.rd_lock);
memset(&ch->ch_rrd, 0, sizeof(ch->ch_rrd));
}
int
vmbus_channel_open(struct vmbus_channel *ch, size_t buflen, void *udata,
size_t udatalen, void (*handler)(void *), void *arg)
{
struct vmbus_softc *sc = ch->ch_sc;
struct vmbus_chanmsg_chopen cmd;
struct vmbus_chanmsg_chopen_resp rsp;
int rv = EINVAL;
if (ch->ch_ring == NULL &&
(rv = vmbus_channel_ring_create(ch, buflen))) {
DPRINTF("%s: failed to create channel ring\n",
device_xname(sc->sc_dev));
return rv;
}
__insn_barrier();
sc->sc_chanmap[ch->ch_id] = ch;
memset(&cmd, 0, sizeof(cmd));
cmd.chm_hdr.chm_type = VMBUS_CHANMSG_CHOPEN;
cmd.chm_openid = ch->ch_id;
cmd.chm_chanid = ch->ch_id;
cmd.chm_gpadl = ch->ch_ring_gpadl;
cmd.chm_txbr_pgcnt = atop(ch->ch_wrd.rd_size);
cmd.chm_vcpuid = ch->ch_vcpu;
if (udata && udatalen > 0)
memcpy(cmd.chm_udata, udata, udatalen);
memset(&rsp, 0, sizeof(rsp));
ch->ch_handler = handler;
ch->ch_ctx = arg;
ch->ch_state = VMBUS_CHANSTATE_OPENED;
rv = vmbus_cmd(sc, &cmd, sizeof(cmd), &rsp, sizeof(rsp), HCF_NOSLEEP);
if (rv) {
sc->sc_chanmap[ch->ch_id] = NULL;
vmbus_channel_ring_destroy(ch);
DPRINTF("%s: CHOPEN failed with %d\n", device_xname(sc->sc_dev),
rv);
ch->ch_handler = NULL;
ch->ch_ctx = NULL;
ch->ch_state = VMBUS_CHANSTATE_OFFERED;
return rv;
}
return 0;
}
static void
vmbus_channel_detach(struct vmbus_channel *ch)
{
u_int refs;
KASSERTMSG(ch->ch_refs > 0, "channel%u: invalid refcnt %d",
ch->ch_id, ch->ch_refs);
membar_release();
refs = atomic_dec_uint_nv(&ch->ch_refs);
if (refs == 0) {
membar_acquire();
/* Detach the target channel. */
vmbus_devq_enqueue(ch->ch_sc, VMBUS_DEV_TYPE_DETACH, ch);
}
}
static int
vmbus_channel_close_internal(struct vmbus_channel *ch)
{
struct vmbus_softc *sc = ch->ch_sc;
struct vmbus_chanmsg_chclose cmd;
int rv;
sc->sc_chanmap[ch->ch_id] = NULL;
memset(&cmd, 0, sizeof(cmd));
cmd.chm_hdr.chm_type = VMBUS_CHANMSG_CHCLOSE;
cmd.chm_chanid = ch->ch_id;
ch->ch_state = VMBUS_CHANSTATE_CLOSING;
rv = vmbus_cmd(sc, &cmd, sizeof(cmd), NULL, 0,
HCF_NOREPLY | HCF_NOSLEEP);
if (rv) {
DPRINTF("%s: CHCLOSE failed with %d\n",
device_xname(sc->sc_dev), rv);
return rv;
}
ch->ch_state = VMBUS_CHANSTATE_CLOSED;
vmbus_channel_ring_destroy(ch);
return 0;
}
int
vmbus_channel_close_direct(struct vmbus_channel *ch)
{
int rv;
rv = vmbus_channel_close_internal(ch);
if (!VMBUS_CHAN_ISPRIMARY(ch))
vmbus_channel_detach(ch);
return rv;
}
int
vmbus_channel_close(struct vmbus_channel *ch)
{
struct vmbus_channel **subch;
int i, cnt, rv;
if (!VMBUS_CHAN_ISPRIMARY(ch))
return 0;
cnt = ch->ch_subchannel_count;
if (cnt > 0) {
subch = vmbus_subchannel_get(ch, cnt);
for (i = 0; i < ch->ch_subchannel_count; i++) {
rv = vmbus_channel_close_internal(subch[i]);
(void) rv; /* XXX */
vmbus_channel_detach(ch);
}
vmbus_subchannel_rel(subch, cnt);
}
return vmbus_channel_close_internal(ch);
}
static inline void
vmbus_channel_setevent(struct vmbus_softc *sc, struct vmbus_channel *ch)
{
struct vmbus_mon_trig *mtg;
/* Each uint32_t represents 32 channels */
set_bit(ch->ch_id, sc->sc_wevents);
if (ch->ch_flags & CHF_MONITOR) {
mtg = &sc->sc_monitor[1]->mnf_trigs[ch->ch_mgroup];
set_bit(ch->ch_mindex, &mtg->mt_pending);
} else
vmbus_intr_signal(sc, hyperv_dma_get_paddr(&ch->ch_monprm_dma));
}
static void
vmbus_channel_intr(void *arg)
{
struct vmbus_channel *ch = arg;
if (vmbus_channel_ready(ch))
ch->ch_handler(ch->ch_ctx);
if (vmbus_channel_unpause(ch) == 0)
return;
vmbus_channel_pause(ch);
vmbus_channel_schedule(ch);
}
int
vmbus_channel_setdeferred(struct vmbus_channel *ch, const char *name)
{
ch->ch_taskq = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
vmbus_channel_intr, ch);
if (ch->ch_taskq == NULL)
return -1;
return 0;
}
void
vmbus_channel_schedule(struct vmbus_channel *ch)
{
if (ch->ch_handler) {
if (!cold && (ch->ch_flags & CHF_BATCHED)) {
vmbus_channel_pause(ch);
softint_schedule(ch->ch_taskq);
} else
ch->ch_handler(ch->ch_ctx);
}
}
static __inline void
vmbus_ring_put(struct vmbus_ring_data *wrd, uint8_t *data, uint32_t datalen)
{
int left = MIN(datalen, wrd->rd_dsize - wrd->rd_prod);
memcpy(&wrd->rd_ring->br_data[wrd->rd_prod], data, left);
memcpy(&wrd->rd_ring->br_data[0], data + left, datalen - left);
wrd->rd_prod += datalen;
if (wrd->rd_prod >= wrd->rd_dsize)
wrd->rd_prod -= wrd->rd_dsize;
}
static inline void
vmbus_ring_get(struct vmbus_ring_data *rrd, uint8_t *data, uint32_t datalen,
int peek)
{
int left = MIN(datalen, rrd->rd_dsize - rrd->rd_cons);
memcpy(data, &rrd->rd_ring->br_data[rrd->rd_cons], left);
memcpy(data + left, &rrd->rd_ring->br_data[0], datalen - left);
if (!peek) {
rrd->rd_cons += datalen;
if (rrd->rd_cons >= rrd->rd_dsize)
rrd->rd_cons -= rrd->rd_dsize;
}
}
static __inline void
vmbus_ring_avail(struct vmbus_ring_data *rd, uint32_t *towrite,
uint32_t *toread)
{
uint32_t ridx = rd->rd_ring->br_rindex;
uint32_t widx = rd->rd_ring->br_windex;
uint32_t r, w;
if (widx >= ridx)
w = rd->rd_dsize - (widx - ridx);
else
w = ridx - widx;
r = rd->rd_dsize - w;
if (towrite)
*towrite = w;
if (toread)
*toread = r;
}
static bool
vmbus_ring_is_empty(struct vmbus_ring_data *rd)
{
return rd->rd_ring->br_rindex == rd->rd_ring->br_windex;
}
static int
vmbus_ring_write(struct vmbus_ring_data *wrd, struct iovec *iov, int iov_cnt,
int *needsig)
{
uint64_t indices = 0;
uint32_t avail, oprod, datalen = sizeof(indices);
int i;
for (i = 0; i < iov_cnt; i++)
datalen += iov[i].iov_len;
KASSERT(datalen <= wrd->rd_dsize);
vmbus_ring_avail(wrd, &avail, NULL);
if (avail <= datalen) {
DPRINTF("%s: avail %u datalen %u\n", __func__, avail, datalen);
return EAGAIN;
}
oprod = wrd->rd_prod;
for (i = 0; i < iov_cnt; i++)
vmbus_ring_put(wrd, iov[i].iov_base, iov[i].iov_len);
indices = (uint64_t)oprod << 32;
vmbus_ring_put(wrd, (uint8_t *)&indices, sizeof(indices));
membar_sync();
wrd->rd_ring->br_windex = wrd->rd_prod;
membar_sync();
/* Signal when the ring transitions from being empty to non-empty */
if (wrd->rd_ring->br_imask == 0 &&
wrd->rd_ring->br_rindex == oprod)
*needsig = 1;
else
*needsig = 0;
return 0;
}
int
vmbus_channel_send(struct vmbus_channel *ch, void *data, uint32_t datalen,
uint64_t rid, int type, uint32_t flags)
{
struct vmbus_softc *sc = ch->ch_sc;
struct vmbus_chanpkt cp;
struct iovec iov[3];
uint32_t pktlen, pktlen_aligned;
uint64_t zeropad = 0;
int rv, needsig = 0;
pktlen = sizeof(cp) + datalen;
pktlen_aligned = roundup(pktlen, sizeof(uint64_t));
cp.cp_hdr.cph_type = type;
cp.cp_hdr.cph_flags = flags;
VMBUS_CHANPKT_SETLEN(cp.cp_hdr.cph_hlen, sizeof(cp));
VMBUS_CHANPKT_SETLEN(cp.cp_hdr.cph_tlen, pktlen_aligned);
cp.cp_hdr.cph_tid = rid;
iov[0].iov_base = &cp;
iov[0].iov_len = sizeof(cp);
iov[1].iov_base = data;
iov[1].iov_len = datalen;
iov[2].iov_base = &zeropad;
iov[2].iov_len = pktlen_aligned - pktlen;
mutex_enter(&ch->ch_wrd.rd_lock);
rv = vmbus_ring_write(&ch->ch_wrd, iov, 3, &needsig);
mutex_exit(&ch->ch_wrd.rd_lock);
if (rv == 0 && needsig)
vmbus_channel_setevent(sc, ch);
return rv;
}
int
vmbus_channel_send_sgl(struct vmbus_channel *ch, struct vmbus_gpa *sgl,
uint32_t nsge, void *data, uint32_t datalen, uint64_t rid)
{
struct vmbus_softc *sc = ch->ch_sc;
struct vmbus_chanpkt_sglist cp;
struct iovec iov[4];
uint32_t buflen, pktlen, pktlen_aligned;
uint64_t zeropad = 0;
int rv, needsig = 0;
buflen = sizeof(struct vmbus_gpa) * nsge;
pktlen = sizeof(cp) + datalen + buflen;
pktlen_aligned = roundup(pktlen, sizeof(uint64_t));
cp.cp_hdr.cph_type = VMBUS_CHANPKT_TYPE_GPA;
cp.cp_hdr.cph_flags = VMBUS_CHANPKT_FLAG_RC;
VMBUS_CHANPKT_SETLEN(cp.cp_hdr.cph_hlen, sizeof(cp) + buflen);
VMBUS_CHANPKT_SETLEN(cp.cp_hdr.cph_tlen, pktlen_aligned);
cp.cp_hdr.cph_tid = rid;
cp.cp_gpa_cnt = nsge;
cp.cp_rsvd = 0;
iov[0].iov_base = &cp;
iov[0].iov_len = sizeof(cp);
iov[1].iov_base = sgl;
iov[1].iov_len = buflen;
iov[2].iov_base = data;
iov[2].iov_len = datalen;
iov[3].iov_base = &zeropad;
iov[3].iov_len = pktlen_aligned - pktlen;
mutex_enter(&ch->ch_wrd.rd_lock);
rv = vmbus_ring_write(&ch->ch_wrd, iov, 4, &needsig);
mutex_exit(&ch->ch_wrd.rd_lock);
if (rv == 0 && needsig)
vmbus_channel_setevent(sc, ch);
return rv;
}
int
vmbus_channel_send_prpl(struct vmbus_channel *ch, struct vmbus_gpa_range *prpl,
uint32_t nprp, void *data, uint32_t datalen, uint64_t rid)
{
struct vmbus_softc *sc = ch->ch_sc;
struct vmbus_chanpkt_prplist cp;
struct iovec iov[4];
uint32_t buflen, pktlen, pktlen_aligned;
uint64_t zeropad = 0;
int rv, needsig = 0;
buflen = sizeof(struct vmbus_gpa_range) * (nprp + 1);
pktlen = sizeof(cp) + datalen + buflen;
pktlen_aligned = roundup(pktlen, sizeof(uint64_t));
cp.cp_hdr.cph_type = VMBUS_CHANPKT_TYPE_GPA;
cp.cp_hdr.cph_flags = VMBUS_CHANPKT_FLAG_RC;
VMBUS_CHANPKT_SETLEN(cp.cp_hdr.cph_hlen, sizeof(cp) + buflen);
VMBUS_CHANPKT_SETLEN(cp.cp_hdr.cph_tlen, pktlen_aligned);
cp.cp_hdr.cph_tid = rid;
cp.cp_range_cnt = 1;
cp.cp_rsvd = 0;
iov[0].iov_base = &cp;
iov[0].iov_len = sizeof(cp);
iov[1].iov_base = prpl;
iov[1].iov_len = buflen;
iov[2].iov_base = data;
iov[2].iov_len = datalen;
iov[3].iov_base = &zeropad;
iov[3].iov_len = pktlen_aligned - pktlen;
mutex_enter(&ch->ch_wrd.rd_lock);
rv = vmbus_ring_write(&ch->ch_wrd, iov, 4, &needsig);
mutex_exit(&ch->ch_wrd.rd_lock);
if (rv == 0 && needsig)
vmbus_channel_setevent(sc, ch);
return rv;
}
static int
vmbus_ring_peek(struct vmbus_ring_data *rrd, void *data, uint32_t datalen)
{
uint32_t avail;
KASSERT(datalen <= rrd->rd_dsize);
vmbus_ring_avail(rrd, NULL, &avail);
if (avail < datalen)
return EAGAIN;
vmbus_ring_get(rrd, (uint8_t *)data, datalen, 1);
return 0;
}
static int
vmbus_ring_read(struct vmbus_ring_data *rrd, void *data, uint32_t datalen,
uint32_t offset)
{
uint64_t indices;
uint32_t avail;
KASSERT(datalen <= rrd->rd_dsize);
vmbus_ring_avail(rrd, NULL, &avail);
if (avail < datalen) {
DPRINTF("%s: avail %u datalen %u\n", __func__, avail, datalen);
return EAGAIN;
}
if (offset) {
rrd->rd_cons += offset;
if (rrd->rd_cons >= rrd->rd_dsize)
rrd->rd_cons -= rrd->rd_dsize;
}
vmbus_ring_get(rrd, (uint8_t *)data, datalen, 0);
vmbus_ring_get(rrd, (uint8_t *)&indices, sizeof(indices), 0);
membar_sync();
rrd->rd_ring->br_rindex = rrd->rd_cons;
return 0;
}
int
vmbus_channel_recv(struct vmbus_channel *ch, void *data, uint32_t datalen,
uint32_t *rlen, uint64_t *rid, int raw)
{
struct vmbus_softc *sc = ch->ch_sc;
struct vmbus_chanpkt_hdr cph;
uint32_t offset, pktlen;
int rv;
*rlen = 0;
mutex_enter(&ch->ch_rrd.rd_lock);
if ((rv = vmbus_ring_peek(&ch->ch_rrd, &cph, sizeof(cph))) != 0) {
mutex_exit(&ch->ch_rrd.rd_lock);
return rv;
}
offset = raw ? 0 : VMBUS_CHANPKT_GETLEN(cph.cph_hlen);
pktlen = VMBUS_CHANPKT_GETLEN(cph.cph_tlen) - offset;
if (pktlen > datalen) {
mutex_exit(&ch->ch_rrd.rd_lock);
device_printf(sc->sc_dev, "%s: pktlen %u datalen %u\n",
__func__, pktlen, datalen);
return EINVAL;
}
rv = vmbus_ring_read(&ch->ch_rrd, data, pktlen, offset);
if (rv == 0) {
*rlen = pktlen;
*rid = cph.cph_tid;
}
mutex_exit(&ch->ch_rrd.rd_lock);
return rv;
}
static inline void
vmbus_ring_mask(struct vmbus_ring_data *rd)
{
membar_sync();
rd->rd_ring->br_imask = 1;
membar_sync();
}
static inline void
vmbus_ring_unmask(struct vmbus_ring_data *rd)
{
membar_sync();
rd->rd_ring->br_imask = 0;
membar_sync();
}
void
vmbus_channel_pause(struct vmbus_channel *ch)
{
atomic_or_ulong(&ch->ch_sc->sc_evtmask[ch->ch_id / VMBUS_EVTFLAG_LEN],
__BIT(ch->ch_id % VMBUS_EVTFLAG_LEN));
vmbus_ring_mask(&ch->ch_rrd);
}
uint32_t
vmbus_channel_unpause(struct vmbus_channel *ch)
{
uint32_t avail;
atomic_and_ulong(&ch->ch_sc->sc_evtmask[ch->ch_id / VMBUS_EVTFLAG_LEN],
~__BIT(ch->ch_id % VMBUS_EVTFLAG_LEN));
vmbus_ring_unmask(&ch->ch_rrd);
vmbus_ring_avail(&ch->ch_rrd, NULL, &avail);
return avail;
}
uint32_t
vmbus_channel_ready(struct vmbus_channel *ch)
{
uint32_t avail;
vmbus_ring_avail(&ch->ch_rrd, NULL, &avail);
return avail;
}
bool
vmbus_channel_tx_empty(struct vmbus_channel *ch)
{
return vmbus_ring_is_empty(&ch->ch_wrd);
}
bool
vmbus_channel_rx_empty(struct vmbus_channel *ch)
{
return vmbus_ring_is_empty(&ch->ch_rrd);
}
/* How many PFNs can be referenced by the header */
#define VMBUS_NPFNHDR ((VMBUS_MSG_DSIZE_MAX - \
sizeof(struct vmbus_chanmsg_gpadl_conn)) / sizeof(uint64_t))
/* How many PFNs can be referenced by the body */
#define VMBUS_NPFNBODY ((VMBUS_MSG_DSIZE_MAX - \
sizeof(struct vmbus_chanmsg_gpadl_subconn)) / sizeof(uint64_t))
int
vmbus_handle_alloc(struct vmbus_channel *ch, const struct hyperv_dma *dma,
uint32_t buflen, uint32_t *handle)
{
struct vmbus_softc *sc = ch->ch_sc;
struct vmbus_chanmsg_gpadl_conn *hdr;
struct vmbus_chanmsg_gpadl_subconn *cmd;
struct vmbus_chanmsg_gpadl_connresp rsp;
struct vmbus_msg *msg;
int i, j, last, left, rv;
int bodylen = 0, ncmds = 0, pfn = 0;
uint64_t *frames;
paddr_t pa;
uint8_t *body;
/* Total number of pages to reference */
int total = atop(buflen);
/* Number of pages that will fit the header */
int inhdr = MIN(total, VMBUS_NPFNHDR);
KASSERT((buflen & PAGE_MASK) == 0);
KASSERT(buflen == (uint32_t)dma->map->dm_mapsize);
msg = pool_cache_get_paddr(sc->sc_msgpool, PR_WAITOK, &pa);
/* Prepare array of frame addresses */
frames = kmem_zalloc(total * sizeof(*frames), KM_SLEEP);
for (i = 0, j = 0; i < dma->map->dm_nsegs && j < total; i++) {
bus_dma_segment_t *seg = &dma->map->dm_segs[i];
bus_addr_t addr = seg->ds_addr;
KASSERT((addr & PAGE_MASK) == 0);
KASSERT((seg->ds_len & PAGE_MASK) == 0);
while (addr < seg->ds_addr + seg->ds_len && j < total) {
frames[j++] = atop(addr);
addr += PAGE_SIZE;
}
}
memset(msg, 0, sizeof(*msg));
msg->msg_req.hc_dsize = sizeof(struct vmbus_chanmsg_gpadl_conn) +
inhdr * sizeof(uint64_t);
hdr = (struct vmbus_chanmsg_gpadl_conn *)msg->msg_req.hc_data;
msg->msg_rsp = &rsp;
msg->msg_rsplen = sizeof(rsp);
msg->msg_flags = MSGF_NOSLEEP;
left = total - inhdr;
/* Allocate additional gpadl_body structures if required */
if (left > 0) {
ncmds = howmany(left, VMBUS_NPFNBODY);
bodylen = ncmds * VMBUS_MSG_DSIZE_MAX;
body = kmem_zalloc(bodylen, KM_SLEEP);
}
*handle = atomic_inc_32_nv(&sc->sc_handle);
hdr->chm_hdr.chm_type = VMBUS_CHANMSG_GPADL_CONN;
hdr->chm_chanid = ch->ch_id;
hdr->chm_gpadl = *handle;
/* Single range for a contiguous buffer */
hdr->chm_range_cnt = 1;
hdr->chm_range_len = sizeof(struct vmbus_gpa_range) + total *
sizeof(uint64_t);
hdr->chm_range.gpa_ofs = 0;
hdr->chm_range.gpa_len = buflen;
/* Fit as many pages as possible into the header */
for (i = 0; i < inhdr; i++)
hdr->chm_range.gpa_page[i] = frames[pfn++];
for (i = 0; i < ncmds; i++) {
cmd = (struct vmbus_chanmsg_gpadl_subconn *)(body +
VMBUS_MSG_DSIZE_MAX * i);
cmd->chm_hdr.chm_type = VMBUS_CHANMSG_GPADL_SUBCONN;
cmd->chm_gpadl = *handle;
last = MIN(left, VMBUS_NPFNBODY);
for (j = 0; j < last; j++)
cmd->chm_gpa_page[j] = frames[pfn++];
left -= last;
}
rv = vmbus_start(sc, msg, pa);
if (rv != 0) {
DPRINTF("%s: GPADL_CONN failed\n", device_xname(sc->sc_dev));
goto out;
}
for (i = 0; i < ncmds; i++) {
int cmdlen = sizeof(*cmd);
cmd = (struct vmbus_chanmsg_gpadl_subconn *)(body +
VMBUS_MSG_DSIZE_MAX * i);
/* Last element can be short */
if (i == ncmds - 1)
cmdlen += last * sizeof(uint64_t);
else
cmdlen += VMBUS_NPFNBODY * sizeof(uint64_t);
rv = vmbus_cmd(sc, cmd, cmdlen, NULL, 0,
HCF_NOREPLY | HCF_NOSLEEP);
if (rv != 0) {
DPRINTF("%s: GPADL_SUBCONN (iteration %d/%d) failed "
"with %d\n", device_xname(sc->sc_dev), i, ncmds,
rv);
goto out;
}
}
rv = vmbus_reply(sc, msg);
if (rv != 0) {
DPRINTF("%s: GPADL allocation failed with %d\n",
device_xname(sc->sc_dev), rv);
}
out:
if (bodylen > 0)
kmem_free(body, bodylen);
kmem_free(frames, total * sizeof(*frames));
pool_cache_put_paddr(sc->sc_msgpool, msg, pa);
if (rv)
return rv;
KASSERT(*handle == rsp.chm_gpadl);
return 0;
}
void
vmbus_handle_free(struct vmbus_channel *ch, uint32_t handle)
{
struct vmbus_softc *sc = ch->ch_sc;
struct vmbus_chanmsg_gpadl_disconn cmd;
struct vmbus_chanmsg_gpadl_disconn rsp;
int rv;
memset(&cmd, 0, sizeof(cmd));
cmd.chm_hdr.chm_type = VMBUS_CHANMSG_GPADL_DISCONN;
cmd.chm_chanid = ch->ch_id;
cmd.chm_gpadl = handle;
rv = vmbus_cmd(sc, &cmd, sizeof(cmd), &rsp, sizeof(rsp), HCF_NOSLEEP);
if (rv) {
DPRINTF("%s: GPADL_DISCONN failed with %d\n",
device_xname(sc->sc_dev), rv);
}
}
static void
vmbus_chevq_enqueue(struct vmbus_softc *sc, int type, void *arg)
{
struct vmbus_chev *vce;
vce = kmem_intr_alloc(sizeof(*vce), KM_NOSLEEP);
if (vce == NULL) {
device_printf(sc->sc_dev, "failed to allocate chev\n");
return;
}
vce->vce_type = type;
vce->vce_arg = arg;
mutex_enter(&sc->sc_chevq_lock);
SIMPLEQ_INSERT_TAIL(&sc->sc_chevq, vce, vce_entry);
cv_broadcast(&sc->sc_chevq_cv);
mutex_exit(&sc->sc_chevq_lock);
}
static void
vmbus_process_chevq(void *arg)
{
struct vmbus_softc *sc = arg;
struct vmbus_chev *vce;
struct vmbus_chanmsg_choffer *co;
struct vmbus_chanmsg_chrescind *cr;
KASSERT(mutex_owned(&sc->sc_chevq_lock));
while (!SIMPLEQ_EMPTY(&sc->sc_chevq)) {
vce = SIMPLEQ_FIRST(&sc->sc_chevq);
SIMPLEQ_REMOVE_HEAD(&sc->sc_chevq, vce_entry);
mutex_exit(&sc->sc_chevq_lock);
switch (vce->vce_type) {
case VMBUS_CHEV_TYPE_OFFER:
co = vce->vce_arg;
vmbus_process_offer(sc, co);
kmem_free(co, sizeof(*co));
break;
case VMBUS_CHEV_TYPE_RESCIND:
cr = vce->vce_arg;
vmbus_process_rescind(sc, cr);
kmem_free(cr, sizeof(*cr));
break;
default:
DPRINTF("%s: unknown chevq type %d\n",
device_xname(sc->sc_dev), vce->vce_type);
break;
}
kmem_free(vce, sizeof(*vce));
mutex_enter(&sc->sc_chevq_lock);
}
}
static void
vmbus_chevq_thread(void *arg)
{
struct vmbus_softc *sc = arg;
mutex_enter(&sc->sc_chevq_lock);
for (;;) {
if (SIMPLEQ_EMPTY(&sc->sc_chevq)) {
cv_wait(&sc->sc_chevq_cv, &sc->sc_chevq_lock);
continue;
}
vmbus_process_chevq(sc);
}
mutex_exit(&sc->sc_chevq_lock);
kthread_exit(0);
}
static void
vmbus_devq_enqueue(struct vmbus_softc *sc, int type, struct vmbus_channel *ch)
{
struct vmbus_dev *vd;
vd = kmem_zalloc(sizeof(*vd), KM_SLEEP);
if (vd == NULL) {
device_printf(sc->sc_dev, "failed to allocate devq\n");
return;
}
vd->vd_type = type;
vd->vd_chan = ch;
if (VMBUS_CHAN_ISPRIMARY(ch)) {
mutex_enter(&sc->sc_devq_lock);
SIMPLEQ_INSERT_TAIL(&sc->sc_devq, vd, vd_entry);
cv_broadcast(&sc->sc_devq_cv);
mutex_exit(&sc->sc_devq_lock);
} else {
mutex_enter(&sc->sc_subch_devq_lock);
SIMPLEQ_INSERT_TAIL(&sc->sc_subch_devq, vd, vd_entry);
cv_broadcast(&sc->sc_subch_devq_cv);
mutex_exit(&sc->sc_subch_devq_lock);
}
}
static void
vmbus_process_devq(void *arg)
{
struct vmbus_softc *sc = arg;
struct vmbus_dev *vd;
struct vmbus_channel *ch;
struct vmbus_attach_args vaa;
KASSERT(mutex_owned(&sc->sc_devq_lock));
while (!SIMPLEQ_EMPTY(&sc->sc_devq)) {
vd = SIMPLEQ_FIRST(&sc->sc_devq);
SIMPLEQ_REMOVE_HEAD(&sc->sc_devq, vd_entry);
mutex_exit(&sc->sc_devq_lock);
switch (vd->vd_type) {
case VMBUS_DEV_TYPE_ATTACH:
ch = vd->vd_chan;
vaa.aa_type = &ch->ch_type;
vaa.aa_inst = &ch->ch_inst;
vaa.aa_ident = ch->ch_ident;
vaa.aa_chan = ch;
vaa.aa_iot = sc->sc_iot;
vaa.aa_memt = sc->sc_memt;
ch->ch_dev = config_found(sc->sc_dev,
&vaa, vmbus_attach_print, CFARGS_NONE);
break;
case VMBUS_DEV_TYPE_DETACH:
ch = vd->vd_chan;
if (ch->ch_dev != NULL) {
config_detach(ch->ch_dev, DETACH_FORCE);
ch->ch_dev = NULL;
}
vmbus_channel_release(ch);
vmbus_channel_free(ch);
break;
default:
DPRINTF("%s: unknown devq type %d\n",
device_xname(sc->sc_dev), vd->vd_type);
break;
}
kmem_free(vd, sizeof(*vd));
mutex_enter(&sc->sc_devq_lock);
}
}
static void
vmbus_devq_thread(void *arg)
{
struct vmbus_softc *sc = arg;
mutex_enter(&sc->sc_devq_lock);
for (;;) {
if (SIMPLEQ_EMPTY(&sc->sc_devq)) {
cv_wait(&sc->sc_devq_cv, &sc->sc_devq_lock);
continue;
}
vmbus_process_devq(sc);
}
mutex_exit(&sc->sc_devq_lock);
kthread_exit(0);
}
static void
vmbus_subchannel_devq_thread(void *arg)
{
struct vmbus_softc *sc = arg;
struct vmbus_dev *vd;
struct vmbus_channel *ch, *prich;
mutex_enter(&sc->sc_subch_devq_lock);
for (;;) {
if (SIMPLEQ_EMPTY(&sc->sc_subch_devq)) {
cv_wait(&sc->sc_subch_devq_cv, &sc->sc_subch_devq_lock);
continue;
}
while (!SIMPLEQ_EMPTY(&sc->sc_subch_devq)) {
vd = SIMPLEQ_FIRST(&sc->sc_subch_devq);
SIMPLEQ_REMOVE_HEAD(&sc->sc_subch_devq, vd_entry);
mutex_exit(&sc->sc_subch_devq_lock);
switch (vd->vd_type) {
case VMBUS_DEV_TYPE_ATTACH:
/* Nothing to do */
break;
case VMBUS_DEV_TYPE_DETACH:
ch = vd->vd_chan;
vmbus_channel_release(ch);
prich = ch->ch_primary_channel;
mutex_enter(&prich->ch_subchannel_lock);
TAILQ_REMOVE(&prich->ch_subchannels, ch,
ch_subentry);
prich->ch_subchannel_count--;
mutex_exit(&prich->ch_subchannel_lock);
wakeup(prich);
vmbus_channel_free(ch);
break;
default:
DPRINTF("%s: unknown devq type %d\n",
device_xname(sc->sc_dev), vd->vd_type);
break;
}
kmem_free(vd, sizeof(*vd));
mutex_enter(&sc->sc_subch_devq_lock);
}
}
mutex_exit(&sc->sc_subch_devq_lock);
kthread_exit(0);
}
static int
vmbus_attach_print(void *aux, const char *name)
{
struct vmbus_attach_args *aa = aux;
if (name)
printf("\"%s\" at %s", aa->aa_ident, name);
return UNCONF;
}
MODULE(MODULE_CLASS_DRIVER, vmbus, "hyperv");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
vmbus_modcmd(modcmd_t cmd, void *aux)
{
int rv = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
rv = config_init_component(cfdriver_ioconf_vmbus,
cfattach_ioconf_vmbus, cfdata_ioconf_vmbus);
#endif
break;
case MODULE_CMD_FINI:
#ifdef _MODULE
rv = config_fini_component(cfdriver_ioconf_vmbus,
cfattach_ioconf_vmbus, cfdata_ioconf_vmbus);
#endif
break;
default:
rv = ENOTTY;
break;
}
return rv;
}