NetBSD/sys/dev/fdt/cpufreq_dt.c

575 lines
14 KiB
C

/* $NetBSD: cpufreq_dt.c,v 1.19 2021/02/22 06:21:35 ryo Exp $ */
/*-
* Copyright (c) 2015-2017 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.19 2021/02/22 06:21:35 ryo Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/bus.h>
#include <sys/atomic.h>
#include <sys/xcall.h>
#include <sys/sysctl.h>
#include <sys/queue.h>
#include <sys/once.h>
#include <sys/cpu.h>
#include <dev/fdt/fdtvar.h>
struct cpufreq_dt_table {
int phandle;
TAILQ_ENTRY(cpufreq_dt_table) next;
};
static TAILQ_HEAD(, cpufreq_dt_table) cpufreq_dt_tables =
TAILQ_HEAD_INITIALIZER(cpufreq_dt_tables);
static kmutex_t cpufreq_dt_tables_lock;
struct cpufreq_dt_opp {
u_int freq_khz;
u_int voltage_uv;
u_int latency_ns;
};
struct cpufreq_dt_softc {
device_t sc_dev;
int sc_phandle;
struct clk *sc_clk;
struct fdtbus_regulator *sc_supply;
struct cpufreq_dt_opp *sc_opp;
ssize_t sc_nopp;
u_int sc_freq_target;
bool sc_freq_throttle;
u_int sc_busy;
char *sc_freq_available;
int sc_node_target;
int sc_node_current;
int sc_node_available;
struct cpufreq_dt_table sc_table;
};
static void
cpufreq_dt_change_cb(void *arg1, void *arg2)
{
struct cpufreq_dt_softc * const sc = arg1;
struct cpu_info *ci = curcpu();
ci->ci_data.cpu_cc_freq = clk_get_rate(sc->sc_clk);
}
static int
cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
{
struct cpufreq_dt_opp *opp = NULL;
u_int old_rate, new_rate, old_uv, new_uv;
uint64_t xc;
int error;
ssize_t n;
for (n = 0; n < sc->sc_nopp; n++)
if (sc->sc_opp[n].freq_khz == freq_khz) {
opp = &sc->sc_opp[n];
break;
}
if (opp == NULL)
return EINVAL;
old_rate = clk_get_rate(sc->sc_clk);
new_rate = freq_khz * 1000;
new_uv = opp->voltage_uv;
if (old_rate == new_rate)
return 0;
if (sc->sc_supply != NULL) {
error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
if (error != 0)
return error;
if (new_uv > old_uv) {
error = fdtbus_regulator_set_voltage(sc->sc_supply,
new_uv, new_uv);
if (error != 0)
return error;
}
}
error = clk_set_rate(sc->sc_clk, new_rate);
if (error != 0)
return error;
const u_int latency_us = howmany(opp->latency_ns, 1000);
if (latency_us > 0)
delay(latency_us);
if (sc->sc_supply != NULL) {
if (new_uv < old_uv) {
error = fdtbus_regulator_set_voltage(sc->sc_supply,
new_uv, new_uv);
if (error != 0)
return error;
}
}
if (error == 0) {
xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
xc_wait(xc);
pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
}
return 0;
}
static void
cpufreq_dt_throttle_enable(device_t dev)
{
struct cpufreq_dt_softc * const sc = device_private(dev);
if (sc->sc_freq_throttle)
return;
const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
kpause("throttle", false, 1, NULL);
if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
freq_khz / 1000, freq_khz % 1000);
sc->sc_freq_throttle = true;
if (sc->sc_freq_target == 0)
sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
}
atomic_dec_uint(&sc->sc_busy);
}
static void
cpufreq_dt_throttle_disable(device_t dev)
{
struct cpufreq_dt_softc * const sc = device_private(dev);
if (!sc->sc_freq_throttle)
return;
while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
kpause("throttle", false, 1, NULL);
const u_int freq_khz = sc->sc_freq_target * 1000;
if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
freq_khz / 1000, freq_khz % 1000);
sc->sc_freq_throttle = false;
}
atomic_dec_uint(&sc->sc_busy);
}
static int
cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
{
struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
struct sysctlnode node;
u_int fq, oldfq = 0;
int error, n;
node = *rnode;
node.sysctl_data = &fq;
if (rnode->sysctl_num == sc->sc_node_target) {
if (sc->sc_freq_target == 0)
sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
fq = sc->sc_freq_target;
} else
fq = clk_get_rate(sc->sc_clk) / 1000000;
if (rnode->sysctl_num == sc->sc_node_target)
oldfq = fq;
if (sc->sc_freq_target == 0)
sc->sc_freq_target = fq;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
return 0;
for (n = 0; n < sc->sc_nopp; n++)
if (sc->sc_opp[n].freq_khz / 1000 == fq)
break;
if (n == sc->sc_nopp)
return EINVAL;
if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
return EBUSY;
sc->sc_freq_target = fq;
if (sc->sc_freq_throttle)
error = 0;
else
error = cpufreq_dt_set_rate(sc, fq * 1000);
atomic_dec_uint(&sc->sc_busy);
return error;
}
static struct cpu_info *
cpufreq_dt_cpu_lookup(cpuid_t mpidr)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
for (CPU_INFO_FOREACH(cii, ci)) {
if (ci->ci_cpuid == mpidr)
return ci;
}
return NULL;
}
static void
cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
{
const struct sysctlnode *node, *cpunode;
struct sysctllog *cpufreq_log = NULL;
struct cpu_info *ci;
bus_addr_t mpidr;
int error, i;
if (fdtbus_get_reg(sc->sc_phandle, 0, &mpidr, 0) != 0)
return;
ci = cpufreq_dt_cpu_lookup(mpidr);
if (ci == NULL)
return;
sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
for (i = 0; i < sc->sc_nopp; i++) {
char buf[6];
snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
strcat(sc->sc_freq_available, buf);
}
error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
if (error)
goto sysctl_failed;
error = sysctl_createv(&cpufreq_log, 0, &node, &node,
0, CTLTYPE_NODE, "cpufreq", NULL,
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
0, CTLTYPE_NODE, cpu_name(ci), NULL,
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
sc->sc_node_target = node->sysctl_num;
error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
sc->sc_node_current = node->sysctl_num;
error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
0, CTLTYPE_STRING, "available", NULL,
NULL, 0, sc->sc_freq_available, 0,
CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
sc->sc_node_available = node->sysctl_num;
return;
sysctl_failed:
aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
sysctl_teardown(&cpufreq_log);
}
static int
cpufreq_dt_parse_opp(struct cpufreq_dt_softc *sc)
{
const int phandle = sc->sc_phandle;
const u_int *opp;
int len, i;
opp = fdtbus_get_prop(phandle, "operating-points", &len);
if (len < 8)
return ENXIO;
sc->sc_nopp = len / 8;
sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
sc->sc_opp[i].freq_khz = be32toh(opp[0]);
sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
}
return 0;
}
static const struct fdt_opp_info *
cpufreq_dt_lookup_opp_info(const int opp_table)
{
__link_set_decl(fdt_opps, struct fdt_opp_info);
struct fdt_opp_info * const *opp;
const struct fdt_opp_info *best_opp = NULL;
int match, best_match = 0;
__link_set_foreach(opp, fdt_opps) {
const struct device_compatible_entry compat_data[] = {
{ .compat = (*opp)->opp_compat },
DEVICE_COMPAT_EOL
};
match = of_compatible_match(opp_table, compat_data);
if (match > best_match) {
best_match = match;
best_opp = *opp;
}
}
return best_opp;
}
static bool
cpufreq_dt_opp_v2_supported(const int opp_table, const int opp_node)
{
return true;
}
FDT_OPP(opp_v2, "operating-points-v2", cpufreq_dt_opp_v2_supported);
static bool
cpufreq_dt_node_supported(const struct fdt_opp_info *opp_info, const int opp_table, const int opp_node)
{
if (!fdtbus_status_okay(opp_node))
return false;
if (of_hasprop(opp_node, "opp-suspend"))
return false;
if (opp_info != NULL)
return opp_info->opp_supported(opp_table, opp_node);
return false;
}
static int
cpufreq_dt_parse_opp_v2(struct cpufreq_dt_softc *sc)
{
const int phandle = sc->sc_phandle;
struct cpufreq_dt_table *table;
const struct fdt_opp_info *opp_info;
const u_int *opp_uv;
uint64_t opp_hz;
int opp_node, len, i, index;
const int opp_table = fdtbus_get_phandle(phandle, "operating-points-v2");
if (opp_table < 0)
return ENOENT;
/* If the table is shared, only setup a single instance */
if (of_hasprop(opp_table, "opp-shared")) {
TAILQ_FOREACH(table, &cpufreq_dt_tables, next)
if (table->phandle == opp_table)
return EEXIST;
sc->sc_table.phandle = opp_table;
TAILQ_INSERT_TAIL(&cpufreq_dt_tables, &sc->sc_table, next);
}
opp_info = cpufreq_dt_lookup_opp_info(opp_table);
for (opp_node = OF_child(opp_table); opp_node; opp_node = OF_peer(opp_node)) {
if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
continue;
sc->sc_nopp++;
}
if (sc->sc_nopp == 0)
return EINVAL;
sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
index = sc->sc_nopp - 1;
for (opp_node = OF_child(opp_table), i = 0; opp_node; opp_node = OF_peer(opp_node), i++) {
if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
continue;
if (of_getprop_uint64(opp_node, "opp-hz", &opp_hz) != 0)
return EINVAL;
opp_uv = fdtbus_get_prop(opp_node, "opp-microvolt", &len);
if (opp_uv == NULL || len < 1)
return EINVAL;
/* Table is in reverse order */
sc->sc_opp[index].freq_khz = (u_int)(opp_hz / 1000);
sc->sc_opp[index].voltage_uv = be32toh(opp_uv[0]);
of_getprop_uint32(opp_node, "clock-latency-ns", &sc->sc_opp[index].latency_ns);
--index;
}
return 0;
}
static int
cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
{
const int phandle = sc->sc_phandle;
int error, i;
if (of_hasprop(phandle, "cpu-supply")) {
sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
if (sc->sc_supply == NULL) {
aprint_error_dev(sc->sc_dev,
"couldn't acquire cpu-supply\n");
return ENXIO;
}
}
sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
if (sc->sc_clk == NULL) {
aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
return ENXIO;
}
mutex_enter(&cpufreq_dt_tables_lock);
if (of_hasprop(phandle, "operating-points"))
error = cpufreq_dt_parse_opp(sc);
else if (of_hasprop(phandle, "operating-points-v2"))
error = cpufreq_dt_parse_opp_v2(sc);
else
error = EINVAL;
mutex_exit(&cpufreq_dt_tables_lock);
if (error) {
if (error != EEXIST)
aprint_error_dev(sc->sc_dev,
"couldn't parse operating points: %d\n", error);
return error;
}
for (i = 0; i < sc->sc_nopp; i++) {
aprint_debug_dev(sc->sc_dev, "supported rate: %u.%03u MHz, %u uV\n",
sc->sc_opp[i].freq_khz / 1000,
sc->sc_opp[i].freq_khz % 1000,
sc->sc_opp[i].voltage_uv);
}
return 0;
}
static int
cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
{
struct fdt_attach_args * const faa = aux;
const int phandle = faa->faa_phandle;
bus_addr_t addr;
if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
return 0;
if (!of_hasprop(phandle, "clocks"))
return 0;
if (!of_hasprop(phandle, "operating-points") &&
!of_hasprop(phandle, "operating-points-v2"))
return 0;
return 1;
}
static void
cpufreq_dt_init(device_t self)
{
struct cpufreq_dt_softc * const sc = device_private(self);
int error;
if ((error = cpufreq_dt_parse(sc)) != 0)
return;
pmf_event_register(sc->sc_dev, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
pmf_event_register(sc->sc_dev, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
cpufreq_dt_init_sysctl(sc);
if (sc->sc_nopp > 0) {
struct cpufreq_dt_opp * const opp = &sc->sc_opp[0];
aprint_normal_dev(sc->sc_dev, "rate: %u.%03u MHz, %u uV\n",
opp->freq_khz / 1000, opp->freq_khz % 1000, opp->voltage_uv);
cpufreq_dt_set_rate(sc, opp->freq_khz);
}
}
static int
cpufreq_dt_lock_init(void)
{
mutex_init(&cpufreq_dt_tables_lock, MUTEX_DEFAULT, IPL_NONE);
return 0;
}
static void
cpufreq_dt_attach(device_t parent, device_t self, void *aux)
{
static ONCE_DECL(locks);
struct cpufreq_dt_softc * const sc = device_private(self);
struct fdt_attach_args * const faa = aux;
RUN_ONCE(&locks, cpufreq_dt_lock_init);
sc->sc_dev = self;
sc->sc_phandle = faa->faa_phandle;
aprint_naive("\n");
aprint_normal("\n");
config_interrupts(self, cpufreq_dt_init);
}
CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);