NetBSD/sys/dev/audio/audiodef.h

468 lines
13 KiB
C

/* $NetBSD: audiodef.h,v 1.20 2022/08/13 06:47:41 isaki Exp $ */
/*
* Copyright (C) 2017 Tetsuya Isaki. All rights reserved.
* Copyright (C) 2017 Y.Sugahara (moveccr). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _SYS_DEV_AUDIO_AUDIODEF_H_
#define _SYS_DEV_AUDIO_AUDIODEF_H_
#ifdef _KERNEL_OPT
#include "opt_audio.h"
#endif
/* Number of blocks in HW buffer. */
#define NBLKHW (3)
/* Number of blocks in output buffer on playback track. Must be > NBLKHW */
#define NBLKOUT (4)
/*
* Number of blocks in input buffer on recording track.
*
* For references:
* On 48000Hz/2ch (blk_ms=10), the buffer time is 160 [msec], and
* the input buffer size is 30720 [bytes] (= 1920 [byte/block] * 16).
*
* On 192000Hz/12ch (blk_ms=10), the buffer time is 160 [msec], and
* the input buffer size is 737280 [bytes] (= 46080 [byte/block] * 16).
*
* On 8000Hz/1ch (blk_ms=40), the buffer time is 640 [msec], and
* the input buffer size = 10240 [bytes] (= 640 [byte/block] * 16).
*/
#define NBLKIN (16)
/* Minimum number of blocks in usrbuf on playback track. */
#define AUMINNOBLK (3)
/*
* Whether the playback mixer use single buffer mode.
* It reduces the latency one block but needs machine power.
* In case of the double buffer (as default), it increases the latency
* but can be expected to stabilize even on slower machines.
*/
/* #define AUDIO_HW_SINGLE_BUFFER */
/*
* Whether supports per-track volume.
* For now, there are no user interfaces to get/set it.
*/
/* #define AUDIO_SUPPORT_TRACK_VOLUME */
/*
* AUDIO_SCALEDOWN()
* This macro should be used for audio wave data only.
*
* The arithmetic shift right (ASR) (in other words, floor()) is good for
* this purpose, and will be faster than division on the most platform.
* The division (in other words, truncate()) is not so bad alternate for
* this purpose, and will be fast enough.
* (Using ASR is 1.9 times faster than division on my amd64, and 1.3 times
* faster on my m68k. -- isaki 201801.)
*
* However, the right shift operator ('>>') for negative integer is
* "implementation defined" behavior in C (note that it's not "undefined"
* behavior). So only if implementation defines '>>' as ASR, we use it.
*/
#if defined(__GNUC__)
/* gcc defines '>>' as ASR. */
#define AUDIO_SCALEDOWN(value, bits) ((value) >> (bits))
#else
#define AUDIO_SCALEDOWN(value, bits) ((value) / (1 << (bits)))
#endif
#if defined(_KERNEL)
/* conversion stage */
typedef struct {
audio_ring_t srcbuf;
audio_ring_t *dst;
audio_filter_t filter;
audio_filter_arg_t arg;
} audio_stage_t;
typedef enum {
AUDIO_STATE_CLEAR, /* no data, no need to drain */
AUDIO_STATE_RUNNING, /* need to drain */
AUDIO_STATE_DRAINING, /* now draining */
} audio_state_t;
struct audio_track {
/*
* AUMODE_PLAY for playback track, or
* AUMODE_RECORD for recording track.
* Note that AUMODE_PLAY_ALL is maintained by file->mode, not here.
*/
int mode;
audio_ring_t usrbuf; /* user i/o buffer */
u_int usrbuf_blksize; /* usrbuf block size in bytes */
u_int usrbuf_allocsize; /* allocation size in bytes */
bool mmapped; /* device is mmap()-ed */
u_int usrbuf_usedhigh;/* high water mark in bytes */
u_int usrbuf_usedlow; /* low water mark in bytes */
/*
* Track input format. It means usrbuf.fmt for playback, or
* mixer->trackfmt for recording.
*/
audio_format2_t inputfmt;
/*
* Pointer to track (conversion stage's) input buffer.
* Must be protected by track lock (only for recording track).
*/
audio_ring_t *input;
/*
* Track (conversion stage's) output buffer.
* Must be protected by track lock (only for playback track).
*/
audio_ring_t outbuf;
audio_stage_t codec; /* encoding conversion stage */
audio_stage_t chvol; /* channel volume stage */
audio_stage_t chmix; /* channel mix stage */
audio_stage_t freq; /* frequency conversion stage */
/* Work area for frequency conversion. */
u_int freq_step; /* src/dst ratio */
u_int freq_current; /* counter */
u_int freq_leap; /* correction counter per block */
aint_t freq_prev[AUDIO_MAX_CHANNELS]; /* previous values */
aint_t freq_curr[AUDIO_MAX_CHANNELS]; /* current values */
/* Per-channel volumes (0..256) */
uint16_t ch_volume[AUDIO_MAX_CHANNELS];
#if defined(AUDIO_SUPPORT_TRACK_VOLUME)
/* Track volume (0..256) */
u_int volume;
#endif
/*
* For AUDIO_GET[IO]OFFS.
* No locks are required for these.
*/
u_int stamp; /* number of transferred blocks */
u_int last_stamp;
audio_trackmixer_t *mixer; /* connected track mixer */
/* Sequence number picked up by track mixer. */
uint64_t seq;
audio_state_t pstate; /* playback state */
bool is_pause;
uint64_t dropframes; /* number of dropped frames */
int eofcounter; /* count of zero-sized write */
/*
* Non-zero if the track is in use.
* Must access atomically.
*/
volatile uint lock;
int id; /* track id for debug */
};
#endif /* _KERNEL */
typedef struct audio_track audio_track_t;
struct audio_file {
struct audio_softc *sc;
dev_t dev;
/*
* Playback and recording track, or NULL if the track is unavailable.
*/
audio_track_t *ptrack;
audio_track_t *rtrack;
/*
* Indicates the operation mode of this file.
* AUMODE_PLAY means playback is requested.
* AUMODE_RECORD means recording is requested.
* AUMODE_PLAY_ALL affects nothing but can be get/set for backward
* compatibility.
*/
int mode;
/* process who wants audio SIGIO. */
pid_t async_audio;
/* true when closing */
bool dying;
SLIST_ENTRY(audio_file) entry;
};
#if defined(_KERNEL)
struct audio_trackmixer {
struct audio_softc *sc;
int mode; /* AUMODE_PLAY or AUMODE_RECORD */
audio_format2_t track_fmt; /* track <-> trackmixer format */
int frames_per_block; /* number of frames in a block */
/*
* software master volume (0..256)
* Must be protected by sc_intr_lock.
*/
u_int volume;
/*
* Volume recovery timer in auto gain control.
* Must be protected by sc_intr_lock.
*/
int voltimer;
audio_format2_t mixfmt;
void *mixsample; /* mixing buf in double-sized int */
/*
* true if trackmixer does LE<->BE conversion.
* Generally an encoding conversion should be done by each hardware
* driver but for most modern little endian drivers which support
* only linear PCM it's troublesome issue to consider about big endian
* arch. Therefore, we do this conversion here only if the hardware
* format is SLINEAR_OE:16.
*/
bool swap_endian;
audio_filter_t codec; /* hardware codec */
audio_filter_arg_t codecarg; /* and its argument */
audio_ring_t codecbuf; /* also used for wide->int conversion */
audio_ring_t hwbuf; /* HW I/O buf */
void *sih; /* softint cookie */
/* Must be protected by sc_lock. */
kcondvar_t outcv;
uint64_t mixseq; /* seq# currently being mixed */
uint64_t hwseq; /* seq# HW output completed */
/* initial blktime n/d = AUDIO_BLK_MS / 1000 */
int blktime_n; /* blk time numerator */
int blktime_d; /* blk time denominator */
/* XXX */
uint64_t hw_complete_counter;
};
/*
* Audio Ring Buffer.
*/
#ifdef DIAGNOSTIC
#define DIAGNOSTIC_ring(ring) audio_diagnostic_ring(__func__, (ring))
extern void audio_diagnostic_ring(const char *, const audio_ring_t *);
#else
#define DIAGNOSTIC_ring(ring)
#endif
/*
* Convert number of frames to number of bytes.
*/
static __inline int
frametobyte(const audio_format2_t *fmt, int frames)
{
return frames * fmt->channels * fmt->stride / NBBY;
}
/*
* Return the number of frames per block.
*/
static __inline int
frame_per_block(const audio_trackmixer_t *mixer, const audio_format2_t *fmt)
{
return (fmt->sample_rate * mixer->blktime_n + mixer->blktime_d - 1) /
mixer->blktime_d;
}
/*
* Round idx. idx must be non-negative and less than 2 * capacity.
*/
static __inline int
auring_round(const audio_ring_t *ring, int idx)
{
DIAGNOSTIC_ring(ring);
KASSERTMSG(idx >= 0, "idx=%d", idx);
KASSERTMSG(idx < ring->capacity * 2,
"idx=%d ring->capacity=%d", idx, ring->capacity);
if (idx < ring->capacity) {
return idx;
} else {
return idx - ring->capacity;
}
}
/*
* Return ring's tail (= head + used) position.
* This position indicates next frame of the last valid frames.
*/
static __inline int
auring_tail(const audio_ring_t *ring)
{
return auring_round(ring, ring->head + ring->used);
}
/*
* Return ring's head pointer.
* This function can be used only if the stride of the 'ring' is equal to
* the internal stride. Don't use this for hw buffer.
*/
static __inline aint_t *
auring_headptr_aint(const audio_ring_t *ring)
{
KASSERTMSG(ring->fmt.stride == sizeof(aint_t) * NBBY,
"ring->fmt.stride=%d sizeof(aint_t)*NBBY=%zd",
ring->fmt.stride, sizeof(aint_t) * NBBY);
return (aint_t *)ring->mem + ring->head * ring->fmt.channels;
}
/*
* Return ring's tail (= head + used) pointer.
* This function can be used only if the stride of the 'ring' is equal to
* the internal stride. Don't use this for hw buffer.
*/
static __inline aint_t *
auring_tailptr_aint(const audio_ring_t *ring)
{
KASSERTMSG(ring->fmt.stride == sizeof(aint_t) * NBBY,
"ring->fmt.stride=%d sizeof(aint_t)*NBBY=%zd",
ring->fmt.stride, sizeof(aint_t) * NBBY);
return (aint_t *)ring->mem + auring_tail(ring) * ring->fmt.channels;
}
/*
* Return ring's head pointer.
* This function can be used even if the stride of the 'ring' is equal to
* or not equal to the internal stride.
*/
static __inline uint8_t *
auring_headptr(const audio_ring_t *ring)
{
return (uint8_t *)ring->mem +
ring->head * ring->fmt.channels * ring->fmt.stride / NBBY;
}
/*
* Return ring's tail pointer.
* It points the next position of the last valid frames.
* This function can be used even if the stride of the 'ring' is equal to
* or not equal to the internal stride.
*/
static __inline uint8_t *
auring_tailptr(audio_ring_t *ring)
{
return (uint8_t *)ring->mem +
auring_tail(ring) * ring->fmt.channels * ring->fmt.stride / NBBY;
}
/*
* Return ring's capacity in bytes.
*/
static __inline int
auring_bytelen(const audio_ring_t *ring)
{
return frametobyte(&ring->fmt, ring->capacity);
}
/*
* Take out n frames from head of ring.
* This function only manipurates counters. It doesn't manipurate any
* actual buffer data.
*/
#define auring_take(ring, n) auring_take_(__func__, __LINE__, ring, n)
static __inline void
auring_take_(const char *func, int line, audio_ring_t *ring, int n)
{
DIAGNOSTIC_ring(ring);
KASSERTMSG(n >= 0, "called from %s:%d: n=%d", func, line, n);
KASSERTMSG(ring->used >= n, "called from %s:%d: ring->used=%d n=%d",
func, line, ring->used, n);
ring->head = auring_round(ring, ring->head + n);
ring->used -= n;
}
/*
* Append n frames into tail of ring.
* This function only manipurates counters. It doesn't manipurate any
* actual buffer data.
*/
#define auring_push(ring, n) auring_push_(__func__, __LINE__, ring, n)
static __inline void
auring_push_(const char *func, int line, audio_ring_t *ring, int n)
{
DIAGNOSTIC_ring(ring);
KASSERT(n >= 0);
KASSERTMSG(ring->used + n <= ring->capacity,
"called from %s:%d: ring->used=%d n=%d ring->capacity=%d",
func, line, ring->used, n, ring->capacity);
ring->used += n;
}
/*
* Return the number of contiguous frames in used.
*/
static __inline int
auring_get_contig_used(const audio_ring_t *ring)
{
DIAGNOSTIC_ring(ring);
if (ring->head + ring->used <= ring->capacity) {
return ring->used;
} else {
return ring->capacity - ring->head;
}
}
/*
* Return the number of contiguous free frames.
*/
static __inline int
auring_get_contig_free(const audio_ring_t *ring)
{
DIAGNOSTIC_ring(ring);
if (ring->head + ring->used < ring->capacity) {
return ring->capacity - (ring->head + ring->used);
} else {
return ring->capacity - ring->used;
}
}
#endif /* _KERNEL */
#endif /* !_SYS_DEV_AUDIO_AUDIODEF_H_ */