NetBSD/sys/dev/ic/mpt_netbsd.c
christos ee17f398d4 move scsipi_strvis -> libkern:strnvisx()
change the prototype to match userland
fix sizes of strings passed to it
2016-05-02 19:18:29 +00:00

2080 lines
52 KiB
C

/* $NetBSD: mpt_netbsd.c,v 1.33 2016/05/02 19:18:29 christos Exp $ */
/*
* Copyright (c) 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2000, 2001 by Greg Ansley
* Partially derived from Matt Jacob's ISP driver.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Additional Copyright (c) 2002 by Matthew Jacob under same license.
*/
/*
* mpt_netbsd.c:
*
* NetBSD-specific routines for LSI Fusion adapters. Includes some
* bus_dma glue, and SCSIPI glue.
*
* Adapted from the FreeBSD "mpt" driver by Jason R. Thorpe for
* Wasabi Systems, Inc.
*
* Additional contributions by Garrett D'Amore on behalf of TELES AG.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mpt_netbsd.c,v 1.33 2016/05/02 19:18:29 christos Exp $");
#include "bio.h"
#include <dev/ic/mpt.h> /* pulls in all headers */
#include <sys/scsiio.h>
#if NBIO > 0
#include <dev/biovar.h>
#endif
static int mpt_poll(mpt_softc_t *, struct scsipi_xfer *, int);
static void mpt_timeout(void *);
static void mpt_restart(mpt_softc_t *, request_t *);
static void mpt_done(mpt_softc_t *, uint32_t);
static int mpt_drain_queue(mpt_softc_t *);
static void mpt_run_xfer(mpt_softc_t *, struct scsipi_xfer *);
static void mpt_set_xfer_mode(mpt_softc_t *, struct scsipi_xfer_mode *);
static void mpt_get_xfer_mode(mpt_softc_t *, struct scsipi_periph *);
static void mpt_ctlop(mpt_softc_t *, void *vmsg, uint32_t);
static void mpt_event_notify_reply(mpt_softc_t *, MSG_EVENT_NOTIFY_REPLY *);
static void mpt_bus_reset(mpt_softc_t *);
static void mpt_scsipi_request(struct scsipi_channel *,
scsipi_adapter_req_t, void *);
static void mpt_minphys(struct buf *);
static int mpt_ioctl(struct scsipi_channel *, u_long, void *, int,
struct proc *);
#if NBIO > 0
static bool mpt_is_raid(mpt_softc_t *);
static int mpt_bio_ioctl(device_t, u_long, void *);
static int mpt_bio_ioctl_inq(mpt_softc_t *, struct bioc_inq *);
static int mpt_bio_ioctl_vol(mpt_softc_t *, struct bioc_vol *);
static int mpt_bio_ioctl_disk(mpt_softc_t *, struct bioc_disk *);
static int mpt_bio_ioctl_disk_novol(mpt_softc_t *, struct bioc_disk *);
static int mpt_bio_ioctl_setstate(mpt_softc_t *, struct bioc_setstate *);
#endif
void
mpt_scsipi_attach(mpt_softc_t *mpt)
{
struct scsipi_adapter *adapt = &mpt->sc_adapter;
struct scsipi_channel *chan = &mpt->sc_channel;
int maxq;
mpt->bus = 0; /* XXX ?? */
maxq = (mpt->mpt_global_credits < MPT_MAX_REQUESTS(mpt)) ?
mpt->mpt_global_credits : MPT_MAX_REQUESTS(mpt);
/* Fill in the scsipi_adapter. */
memset(adapt, 0, sizeof(*adapt));
adapt->adapt_dev = mpt->sc_dev;
adapt->adapt_nchannels = 1;
adapt->adapt_openings = maxq - 2; /* Reserve 2 for driver use*/
adapt->adapt_max_periph = maxq - 2;
adapt->adapt_request = mpt_scsipi_request;
adapt->adapt_minphys = mpt_minphys;
adapt->adapt_ioctl = mpt_ioctl;
/* Fill in the scsipi_channel. */
memset(chan, 0, sizeof(*chan));
chan->chan_adapter = adapt;
if (mpt->is_sas) {
chan->chan_bustype = &scsi_sas_bustype;
} else if (mpt->is_fc) {
chan->chan_bustype = &scsi_fc_bustype;
} else {
chan->chan_bustype = &scsi_bustype;
}
chan->chan_channel = 0;
chan->chan_flags = 0;
chan->chan_nluns = 8;
chan->chan_ntargets = mpt->mpt_max_devices;
chan->chan_id = mpt->mpt_ini_id;
/*
* Save the output of the config so we can rescan the bus in case of
* errors
*/
mpt->sc_scsibus_dv = config_found(mpt->sc_dev, &mpt->sc_channel,
scsiprint);
#if NBIO > 0
if (mpt_is_raid(mpt)) {
if (bio_register(mpt->sc_dev, mpt_bio_ioctl) != 0)
panic("%s: controller registration failed",
device_xname(mpt->sc_dev));
}
#endif
}
int
mpt_dma_mem_alloc(mpt_softc_t *mpt)
{
bus_dma_segment_t reply_seg, request_seg;
int reply_rseg, request_rseg;
bus_addr_t pptr, end;
char *vptr;
size_t len;
int error, i;
/* Check if we have already allocated the reply memory. */
if (mpt->reply != NULL)
return (0);
/*
* Allocate the request pool. This isn't really DMA'd memory,
* but it's a convenient place to do it.
*/
len = sizeof(request_t) * MPT_MAX_REQUESTS(mpt);
mpt->request_pool = malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
if (mpt->request_pool == NULL) {
aprint_error_dev(mpt->sc_dev, "unable to allocate request pool\n");
return (ENOMEM);
}
/*
* Allocate DMA resources for reply buffers.
*/
error = bus_dmamem_alloc(mpt->sc_dmat, PAGE_SIZE, PAGE_SIZE, 0,
&reply_seg, 1, &reply_rseg, 0);
if (error) {
aprint_error_dev(mpt->sc_dev, "unable to allocate reply area, error = %d\n",
error);
goto fail_0;
}
error = bus_dmamem_map(mpt->sc_dmat, &reply_seg, reply_rseg, PAGE_SIZE,
(void **) &mpt->reply, BUS_DMA_COHERENT/*XXX*/);
if (error) {
aprint_error_dev(mpt->sc_dev, "unable to map reply area, error = %d\n",
error);
goto fail_1;
}
error = bus_dmamap_create(mpt->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
0, 0, &mpt->reply_dmap);
if (error) {
aprint_error_dev(mpt->sc_dev, "unable to create reply DMA map, error = %d\n",
error);
goto fail_2;
}
error = bus_dmamap_load(mpt->sc_dmat, mpt->reply_dmap, mpt->reply,
PAGE_SIZE, NULL, 0);
if (error) {
aprint_error_dev(mpt->sc_dev, "unable to load reply DMA map, error = %d\n",
error);
goto fail_3;
}
mpt->reply_phys = mpt->reply_dmap->dm_segs[0].ds_addr;
/*
* Allocate DMA resources for request buffers.
*/
error = bus_dmamem_alloc(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt),
PAGE_SIZE, 0, &request_seg, 1, &request_rseg, 0);
if (error) {
aprint_error_dev(mpt->sc_dev, "unable to allocate request area, "
"error = %d\n", error);
goto fail_4;
}
error = bus_dmamem_map(mpt->sc_dmat, &request_seg, request_rseg,
MPT_REQ_MEM_SIZE(mpt), (void **) &mpt->request, 0);
if (error) {
aprint_error_dev(mpt->sc_dev, "unable to map request area, error = %d\n",
error);
goto fail_5;
}
error = bus_dmamap_create(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt), 1,
MPT_REQ_MEM_SIZE(mpt), 0, 0, &mpt->request_dmap);
if (error) {
aprint_error_dev(mpt->sc_dev, "unable to create request DMA map, "
"error = %d\n", error);
goto fail_6;
}
error = bus_dmamap_load(mpt->sc_dmat, mpt->request_dmap, mpt->request,
MPT_REQ_MEM_SIZE(mpt), NULL, 0);
if (error) {
aprint_error_dev(mpt->sc_dev, "unable to load request DMA map, error = %d\n",
error);
goto fail_7;
}
mpt->request_phys = mpt->request_dmap->dm_segs[0].ds_addr;
pptr = mpt->request_phys;
vptr = (void *) mpt->request;
end = pptr + MPT_REQ_MEM_SIZE(mpt);
for (i = 0; pptr < end; i++) {
request_t *req = &mpt->request_pool[i];
req->index = i;
/* Store location of Request Data */
req->req_pbuf = pptr;
req->req_vbuf = vptr;
pptr += MPT_REQUEST_AREA;
vptr += MPT_REQUEST_AREA;
req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
error = bus_dmamap_create(mpt->sc_dmat, MAXPHYS,
MPT_SGL_MAX, MAXPHYS, 0, 0, &req->dmap);
if (error) {
aprint_error_dev(mpt->sc_dev, "unable to create req %d DMA map, "
"error = %d\n", i, error);
goto fail_8;
}
}
return (0);
fail_8:
for (--i; i >= 0; i--) {
request_t *req = &mpt->request_pool[i];
if (req->dmap != NULL)
bus_dmamap_destroy(mpt->sc_dmat, req->dmap);
}
bus_dmamap_unload(mpt->sc_dmat, mpt->request_dmap);
fail_7:
bus_dmamap_destroy(mpt->sc_dmat, mpt->request_dmap);
fail_6:
bus_dmamem_unmap(mpt->sc_dmat, (void *)mpt->request, PAGE_SIZE);
fail_5:
bus_dmamem_free(mpt->sc_dmat, &request_seg, request_rseg);
fail_4:
bus_dmamap_unload(mpt->sc_dmat, mpt->reply_dmap);
fail_3:
bus_dmamap_destroy(mpt->sc_dmat, mpt->reply_dmap);
fail_2:
bus_dmamem_unmap(mpt->sc_dmat, (void *)mpt->reply, PAGE_SIZE);
fail_1:
bus_dmamem_free(mpt->sc_dmat, &reply_seg, reply_rseg);
fail_0:
free(mpt->request_pool, M_DEVBUF);
mpt->reply = NULL;
mpt->request = NULL;
mpt->request_pool = NULL;
return (error);
}
int
mpt_intr(void *arg)
{
mpt_softc_t *mpt = arg;
int nrepl = 0;
if ((mpt_read(mpt, MPT_OFFSET_INTR_STATUS) & MPT_INTR_REPLY_READY) == 0)
return (0);
nrepl = mpt_drain_queue(mpt);
return (nrepl != 0);
}
void
mpt_prt(mpt_softc_t *mpt, const char *fmt, ...)
{
va_list ap;
printf("%s: ", device_xname(mpt->sc_dev));
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf("\n");
}
static int
mpt_poll(mpt_softc_t *mpt, struct scsipi_xfer *xs, int count)
{
/* Timeouts are in msec, so we loop in 1000usec cycles */
while (count) {
mpt_intr(mpt);
if (xs->xs_status & XS_STS_DONE)
return (0);
delay(1000); /* only happens in boot, so ok */
count--;
}
return (1);
}
static void
mpt_timeout(void *arg)
{
request_t *req = arg;
struct scsipi_xfer *xs;
struct scsipi_periph *periph;
mpt_softc_t *mpt;
uint32_t oseq;
int s, nrepl = 0;
if (req->xfer == NULL) {
printf("mpt_timeout: NULL xfer for request index 0x%x, sequenc 0x%x\n",
req->index, req->sequence);
return;
}
xs = req->xfer;
periph = xs->xs_periph;
mpt = device_private(periph->periph_channel->chan_adapter->adapt_dev);
scsipi_printaddr(periph);
printf("command timeout\n");
s = splbio();
oseq = req->sequence;
mpt->timeouts++;
if (mpt_intr(mpt)) {
if (req->sequence != oseq) {
mpt->success++;
mpt_prt(mpt, "recovered from command timeout");
splx(s);
return;
}
}
/*
* Ensure the IOC is really done giving us data since it appears it can
* sometimes fail to give us interrupts under heavy load.
*/
nrepl = mpt_drain_queue(mpt);
if (nrepl ) {
mpt_prt(mpt, "mpt_timeout: recovered %d commands",nrepl);
}
if (req->sequence != oseq) {
mpt->success++;
splx(s);
return;
}
mpt_prt(mpt,
"timeout on request index = 0x%x, seq = 0x%08x",
req->index, req->sequence);
mpt_check_doorbell(mpt);
mpt_prt(mpt, "Status 0x%08x, Mask 0x%08x, Doorbell 0x%08x",
mpt_read(mpt, MPT_OFFSET_INTR_STATUS),
mpt_read(mpt, MPT_OFFSET_INTR_MASK),
mpt_read(mpt, MPT_OFFSET_DOORBELL));
mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug));
if (mpt->verbose > 1)
mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf);
xs->error = XS_TIMEOUT;
splx(s);
mpt_restart(mpt, req);
}
static void
mpt_restart(mpt_softc_t *mpt, request_t *req0)
{
int i, s, nreq;
request_t *req;
struct scsipi_xfer *xs;
/* first, reset the IOC, leaving stopped so all requests are idle */
if (mpt_soft_reset(mpt) != MPT_OK) {
mpt_prt(mpt, "soft reset failed");
/*
* Don't try a hard reset since this mangles the PCI
* configuration registers.
*/
return;
}
/* Freeze the channel so scsipi doesn't queue more commands. */
scsipi_channel_freeze(&mpt->sc_channel, 1);
/* Return all pending requests to scsipi and de-allocate them. */
s = splbio();
nreq = 0;
for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
req = &mpt->request_pool[i];
xs = req->xfer;
if (xs != NULL) {
if (xs->datalen != 0)
bus_dmamap_unload(mpt->sc_dmat, req->dmap);
req->xfer = NULL;
callout_stop(&xs->xs_callout);
if (req != req0) {
nreq++;
xs->error = XS_REQUEUE;
}
scsipi_done(xs);
/*
* Don't need to mpt_free_request() since mpt_init()
* below will free all requests anyway.
*/
mpt_free_request(mpt, req);
}
}
splx(s);
if (nreq > 0)
mpt_prt(mpt, "re-queued %d requests", nreq);
/* Re-initialize the IOC (which restarts it). */
if (mpt_init(mpt, MPT_DB_INIT_HOST) == 0)
mpt_prt(mpt, "restart succeeded");
/* else error message already printed */
/* Thaw the channel, causing scsipi to re-queue the commands. */
scsipi_channel_thaw(&mpt->sc_channel, 1);
}
static int
mpt_drain_queue(mpt_softc_t *mpt)
{
int nrepl = 0;
uint32_t reply;
reply = mpt_pop_reply_queue(mpt);
while (reply != MPT_REPLY_EMPTY) {
nrepl++;
if (mpt->verbose > 1) {
if ((reply & MPT_CONTEXT_REPLY) != 0) {
/* Address reply; IOC has something to say */
mpt_print_reply(MPT_REPLY_PTOV(mpt, reply));
} else {
/* Context reply; all went well */
mpt_prt(mpt, "context %u reply OK", reply);
}
}
mpt_done(mpt, reply);
reply = mpt_pop_reply_queue(mpt);
}
return (nrepl);
}
static void
mpt_done(mpt_softc_t *mpt, uint32_t reply)
{
struct scsipi_xfer *xs = NULL;
struct scsipi_periph *periph;
int index;
request_t *req;
MSG_REQUEST_HEADER *mpt_req;
MSG_SCSI_IO_REPLY *mpt_reply;
int restart = 0; /* nonzero if we need to restart the IOC*/
if (__predict_true((reply & MPT_CONTEXT_REPLY) == 0)) {
/* context reply (ok) */
mpt_reply = NULL;
index = reply & MPT_CONTEXT_MASK;
} else {
/* address reply (error) */
/* XXX BUS_DMASYNC_POSTREAD XXX */
mpt_reply = MPT_REPLY_PTOV(mpt, reply);
if (mpt_reply != NULL) {
if (mpt->verbose > 1) {
uint32_t *pReply = (uint32_t *) mpt_reply;
mpt_prt(mpt, "Address Reply (index %u):",
le32toh(mpt_reply->MsgContext) & 0xffff);
mpt_prt(mpt, "%08x %08x %08x %08x", pReply[0],
pReply[1], pReply[2], pReply[3]);
mpt_prt(mpt, "%08x %08x %08x %08x", pReply[4],
pReply[5], pReply[6], pReply[7]);
mpt_prt(mpt, "%08x %08x %08x %08x", pReply[8],
pReply[9], pReply[10], pReply[11]);
}
index = le32toh(mpt_reply->MsgContext);
} else
index = reply & MPT_CONTEXT_MASK;
}
/*
* Address reply with MessageContext high bit set.
* This is most likely a notify message, so we try
* to process it, then free it.
*/
if (__predict_false((index & 0x80000000) != 0)) {
if (mpt_reply != NULL)
mpt_ctlop(mpt, mpt_reply, reply);
else
mpt_prt(mpt, "%s: index 0x%x, NULL reply", __func__,
index);
return;
}
/* Did we end up with a valid index into the table? */
if (__predict_false(index < 0 || index >= MPT_MAX_REQUESTS(mpt))) {
mpt_prt(mpt, "%s: invalid index (0x%x) in reply", __func__,
index);
return;
}
req = &mpt->request_pool[index];
/* Make sure memory hasn't been trashed. */
if (__predict_false(req->index != index)) {
mpt_prt(mpt, "%s: corrupted request_t (0x%x)", __func__,
index);
return;
}
MPT_SYNC_REQ(mpt, req, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
mpt_req = req->req_vbuf;
/* Short cut for task management replies; nothing more for us to do. */
if (__predict_false(mpt_req->Function == MPI_FUNCTION_SCSI_TASK_MGMT)) {
if (mpt->verbose > 1)
mpt_prt(mpt, "%s: TASK MGMT", __func__);
KASSERT(req == mpt->mngt_req);
mpt->mngt_req = NULL;
goto done;
}
if (__predict_false(mpt_req->Function == MPI_FUNCTION_PORT_ENABLE))
goto done;
/*
* At this point, it had better be a SCSI I/O command, but don't
* crash if it isn't.
*/
if (__predict_false(mpt_req->Function !=
MPI_FUNCTION_SCSI_IO_REQUEST)) {
if (mpt->verbose > 1)
mpt_prt(mpt, "%s: unknown Function 0x%x (0x%x)",
__func__, mpt_req->Function, index);
goto done;
}
/* Recover scsipi_xfer from the request structure. */
xs = req->xfer;
/* Can't have a SCSI command without a scsipi_xfer. */
if (__predict_false(xs == NULL)) {
mpt_prt(mpt,
"%s: no scsipi_xfer, index = 0x%x, seq = 0x%08x", __func__,
req->index, req->sequence);
mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug));
mpt_prt(mpt, "mpt_request:");
mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf);
if (mpt_reply != NULL) {
mpt_prt(mpt, "mpt_reply:");
mpt_print_reply(mpt_reply);
} else {
mpt_prt(mpt, "context reply: 0x%08x", reply);
}
goto done;
}
callout_stop(&xs->xs_callout);
periph = xs->xs_periph;
/*
* If we were a data transfer, unload the map that described
* the data buffer.
*/
if (__predict_true(xs->datalen != 0)) {
bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
req->dmap->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD
: BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(mpt->sc_dmat, req->dmap);
}
if (__predict_true(mpt_reply == NULL)) {
/*
* Context reply; report that the command was
* successful!
*
* Also report the xfer mode, if necessary.
*/
if (__predict_false(mpt->mpt_report_xfer_mode != 0)) {
if ((mpt->mpt_report_xfer_mode &
(1 << periph->periph_target)) != 0)
mpt_get_xfer_mode(mpt, periph);
}
xs->error = XS_NOERROR;
xs->status = SCSI_OK;
xs->resid = 0;
mpt_free_request(mpt, req);
scsipi_done(xs);
return;
}
xs->status = mpt_reply->SCSIStatus;
switch (le16toh(mpt_reply->IOCStatus) & MPI_IOCSTATUS_MASK) {
case MPI_IOCSTATUS_SCSI_DATA_OVERRUN:
xs->error = XS_DRIVER_STUFFUP;
mpt_prt(mpt, "%s: IOC overrun!", __func__);
break;
case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN:
/*
* Yikes! Tagged queue full comes through this path!
*
* So we'll change it to a status error and anything
* that returns status should probably be a status
* error as well.
*/
xs->resid = xs->datalen - le32toh(mpt_reply->TransferCount);
if (mpt_reply->SCSIState &
MPI_SCSI_STATE_NO_SCSI_STATUS) {
xs->error = XS_DRIVER_STUFFUP;
break;
}
/* FALLTHROUGH */
case MPI_IOCSTATUS_SUCCESS:
case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR:
switch (xs->status) {
case SCSI_OK:
/* Report the xfer mode, if necessary. */
if ((mpt->mpt_report_xfer_mode &
(1 << periph->periph_target)) != 0)
mpt_get_xfer_mode(mpt, periph);
xs->resid = 0;
break;
case SCSI_CHECK:
xs->error = XS_SENSE;
break;
case SCSI_BUSY:
case SCSI_QUEUE_FULL:
xs->error = XS_BUSY;
break;
default:
scsipi_printaddr(periph);
printf("invalid status code %d\n", xs->status);
xs->error = XS_DRIVER_STUFFUP;
break;
}
break;
case MPI_IOCSTATUS_BUSY:
case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES:
xs->error = XS_RESOURCE_SHORTAGE;
break;
case MPI_IOCSTATUS_SCSI_INVALID_BUS:
case MPI_IOCSTATUS_SCSI_INVALID_TARGETID:
case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
xs->error = XS_SELTIMEOUT;
break;
case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
xs->error = XS_DRIVER_STUFFUP;
mpt_prt(mpt, "%s: IOC SCSI residual mismatch!", __func__);
restart = 1;
break;
case MPI_IOCSTATUS_SCSI_TASK_TERMINATED:
/* XXX What should we do here? */
mpt_prt(mpt, "%s: IOC SCSI task terminated!", __func__);
restart = 1;
break;
case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
/* XXX */
xs->error = XS_DRIVER_STUFFUP;
mpt_prt(mpt, "%s: IOC SCSI task failed!", __func__);
restart = 1;
break;
case MPI_IOCSTATUS_SCSI_IOC_TERMINATED:
/* XXX */
xs->error = XS_DRIVER_STUFFUP;
mpt_prt(mpt, "%s: IOC task terminated!", __func__);
restart = 1;
break;
case MPI_IOCSTATUS_SCSI_EXT_TERMINATED:
/* XXX This is a bus-reset */
xs->error = XS_DRIVER_STUFFUP;
mpt_prt(mpt, "%s: IOC SCSI bus reset!", __func__);
restart = 1;
break;
case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR:
/*
* FreeBSD and Linux indicate this is a phase error between
* the IOC and the drive itself. When this happens, the IOC
* becomes unhappy and stops processing all transactions.
* Call mpt_timeout which knows how to get the IOC back
* on its feet.
*/
mpt_prt(mpt, "%s: IOC indicates protocol error -- "
"recovering...", __func__);
xs->error = XS_TIMEOUT;
restart = 1;
break;
default:
/* XXX unrecognized HBA error */
xs->error = XS_DRIVER_STUFFUP;
mpt_prt(mpt, "%s: IOC returned unknown code: 0x%x", __func__,
le16toh(mpt_reply->IOCStatus));
restart = 1;
break;
}
if (mpt_reply != NULL) {
if (mpt_reply->SCSIState & MPI_SCSI_STATE_AUTOSENSE_VALID) {
memcpy(&xs->sense.scsi_sense, req->sense_vbuf,
sizeof(xs->sense.scsi_sense));
} else if (mpt_reply->SCSIState &
MPI_SCSI_STATE_AUTOSENSE_FAILED) {
/*
* This will cause the scsipi layer to issue
* a REQUEST SENSE.
*/
if (xs->status == SCSI_CHECK)
xs->error = XS_BUSY;
}
}
done:
if (mpt_reply != NULL && le16toh(mpt_reply->IOCStatus) &
MPI_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
mpt_prt(mpt, "%s: IOC has error - logging...\n", __func__);
mpt_ctlop(mpt, mpt_reply, reply);
}
/* If IOC done with this request, free it up. */
if (mpt_reply == NULL || (mpt_reply->MsgFlags & 0x80) == 0)
mpt_free_request(mpt, req);
/* If address reply, give the buffer back to the IOC. */
if (mpt_reply != NULL)
mpt_free_reply(mpt, (reply << 1));
if (xs != NULL)
scsipi_done(xs);
if (restart) {
mpt_prt(mpt, "%s: IOC fatal error: restarting...", __func__);
mpt_restart(mpt, NULL);
}
}
static void
mpt_run_xfer(mpt_softc_t *mpt, struct scsipi_xfer *xs)
{
struct scsipi_periph *periph = xs->xs_periph;
request_t *req;
MSG_SCSI_IO_REQUEST *mpt_req;
int error, s;
s = splbio();
req = mpt_get_request(mpt);
if (__predict_false(req == NULL)) {
/* This should happen very infrequently. */
xs->error = XS_RESOURCE_SHORTAGE;
scsipi_done(xs);
splx(s);
return;
}
splx(s);
/* Link the req and the scsipi_xfer. */
req->xfer = xs;
/* Now we build the command for the IOC */
mpt_req = req->req_vbuf;
memset(mpt_req, 0, sizeof(*mpt_req));
mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST;
mpt_req->Bus = mpt->bus;
mpt_req->SenseBufferLength =
(sizeof(xs->sense.scsi_sense) < MPT_SENSE_SIZE) ?
sizeof(xs->sense.scsi_sense) : MPT_SENSE_SIZE;
/*
* We use the message context to find the request structure when
* we get the command completion interrupt from the IOC.
*/
mpt_req->MsgContext = htole32(req->index);
/* Which physical device to do the I/O on. */
mpt_req->TargetID = periph->periph_target;
mpt_req->LUN[1] = periph->periph_lun;
/* Set the direction of the transfer. */
if (xs->xs_control & XS_CTL_DATA_IN)
mpt_req->Control = MPI_SCSIIO_CONTROL_READ;
else if (xs->xs_control & XS_CTL_DATA_OUT)
mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE;
else
mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER;
/* Set the queue behavior. */
if (__predict_true((!mpt->is_scsi) ||
(mpt->mpt_tag_enable &
(1 << periph->periph_target)))) {
switch (XS_CTL_TAGTYPE(xs)) {
case XS_CTL_HEAD_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ;
break;
#if 0 /* XXX */
case XS_CTL_ACA_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ;
break;
#endif
case XS_CTL_ORDERED_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ;
break;
case XS_CTL_SIMPLE_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
break;
default:
if (mpt->is_scsi)
mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
else
mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
break;
}
} else
mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
if (__predict_false(mpt->is_scsi &&
(mpt->mpt_disc_enable &
(1 << periph->periph_target)) == 0))
mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT;
mpt_req->Control = htole32(mpt_req->Control);
/* Copy the SCSI command block into place. */
memcpy(mpt_req->CDB, xs->cmd, xs->cmdlen);
mpt_req->CDBLength = xs->cmdlen;
mpt_req->DataLength = htole32(xs->datalen);
mpt_req->SenseBufferLowAddr = htole32(req->sense_pbuf);
/*
* Map the DMA transfer.
*/
if (xs->datalen) {
SGE_SIMPLE32 *se;
error = bus_dmamap_load(mpt->sc_dmat, req->dmap, xs->data,
xs->datalen, NULL,
((xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT
: BUS_DMA_WAITOK) |
BUS_DMA_STREAMING |
((xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMA_READ
: BUS_DMA_WRITE));
switch (error) {
case 0:
break;
case ENOMEM:
case EAGAIN:
xs->error = XS_RESOURCE_SHORTAGE;
goto out_bad;
default:
xs->error = XS_DRIVER_STUFFUP;
mpt_prt(mpt, "error %d loading DMA map", error);
out_bad:
s = splbio();
mpt_free_request(mpt, req);
scsipi_done(xs);
splx(s);
return;
}
if (req->dmap->dm_nsegs > MPT_NSGL_FIRST(mpt)) {
int seg, i, nleft = req->dmap->dm_nsegs;
uint32_t flags;
SGE_CHAIN32 *ce;
seg = 0;
flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
if (xs->xs_control & XS_CTL_DATA_OUT)
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
se = (SGE_SIMPLE32 *) &mpt_req->SGL;
for (i = 0; i < MPT_NSGL_FIRST(mpt) - 1;
i++, se++, seg++) {
uint32_t tf;
memset(se, 0, sizeof(*se));
se->Address =
htole32(req->dmap->dm_segs[seg].ds_addr);
MPI_pSGE_SET_LENGTH(se,
req->dmap->dm_segs[seg].ds_len);
tf = flags;
if (i == MPT_NSGL_FIRST(mpt) - 2)
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
nleft--;
}
/*
* Tell the IOC where to find the first chain element.
*/
mpt_req->ChainOffset =
((char *)se - (char *)mpt_req) >> 2;
/*
* Until we're finished with all segments...
*/
while (nleft) {
int ntodo;
/*
* Construct the chain element that points to
* the next segment.
*/
ce = (SGE_CHAIN32 *) se++;
if (nleft > MPT_NSGL(mpt)) {
ntodo = MPT_NSGL(mpt) - 1;
ce->NextChainOffset = (MPT_RQSL(mpt) -
sizeof(SGE_SIMPLE32)) >> 2;
ce->Length = htole16(MPT_NSGL(mpt)
* sizeof(SGE_SIMPLE32));
} else {
ntodo = nleft;
ce->NextChainOffset = 0;
ce->Length = htole16(ntodo
* sizeof(SGE_SIMPLE32));
}
ce->Address = htole32(req->req_pbuf +
((char *)se - (char *)mpt_req));
ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT;
for (i = 0; i < ntodo; i++, se++, seg++) {
uint32_t tf;
memset(se, 0, sizeof(*se));
se->Address = htole32(
req->dmap->dm_segs[seg].ds_addr);
MPI_pSGE_SET_LENGTH(se,
req->dmap->dm_segs[seg].ds_len);
tf = flags;
if (i == ntodo - 1) {
tf |=
MPI_SGE_FLAGS_LAST_ELEMENT;
if (ce->NextChainOffset == 0) {
tf |=
MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength =
htole32(se->FlagsLength);
nleft--;
}
}
bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
req->dmap->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ?
BUS_DMASYNC_PREREAD
: BUS_DMASYNC_PREWRITE);
} else {
int i;
uint32_t flags;
flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
if (xs->xs_control & XS_CTL_DATA_OUT)
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
/* Copy the segments into our SG list. */
se = (SGE_SIMPLE32 *) &mpt_req->SGL;
for (i = 0; i < req->dmap->dm_nsegs;
i++, se++) {
uint32_t tf;
memset(se, 0, sizeof(*se));
se->Address =
htole32(req->dmap->dm_segs[i].ds_addr);
MPI_pSGE_SET_LENGTH(se,
req->dmap->dm_segs[i].ds_len);
tf = flags;
if (i == req->dmap->dm_nsegs - 1) {
tf |=
MPI_SGE_FLAGS_LAST_ELEMENT |
MPI_SGE_FLAGS_END_OF_BUFFER |
MPI_SGE_FLAGS_END_OF_LIST;
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
}
bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
req->dmap->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ?
BUS_DMASYNC_PREREAD
: BUS_DMASYNC_PREWRITE);
}
} else {
/*
* No data to transfer; just make a single simple SGL
* with zero length.
*/
SGE_SIMPLE32 *se = (SGE_SIMPLE32 *) &mpt_req->SGL;
memset(se, 0, sizeof(*se));
MPI_pSGE_SET_FLAGS(se,
(MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
se->FlagsLength = htole32(se->FlagsLength);
}
if (mpt->verbose > 1)
mpt_print_scsi_io_request(mpt_req);
if (xs->timeout == 0) {
mpt_prt(mpt, "mpt_run_xfer: no timeout specified for request: 0x%x\n",
req->index);
xs->timeout = 500;
}
s = splbio();
if (__predict_true((xs->xs_control & XS_CTL_POLL) == 0))
callout_reset(&xs->xs_callout,
mstohz(xs->timeout), mpt_timeout, req);
mpt_send_cmd(mpt, req);
splx(s);
if (__predict_true((xs->xs_control & XS_CTL_POLL) == 0))
return;
/*
* If we can't use interrupts, poll on completion.
*/
if (mpt_poll(mpt, xs, xs->timeout))
mpt_timeout(req);
}
static void
mpt_set_xfer_mode(mpt_softc_t *mpt, struct scsipi_xfer_mode *xm)
{
fCONFIG_PAGE_SCSI_DEVICE_1 tmp;
/*
* Always allow disconnect; we don't have a way to disable
* it right now, in any case.
*/
mpt->mpt_disc_enable |= (1 << xm->xm_target);
if (xm->xm_mode & PERIPH_CAP_TQING)
mpt->mpt_tag_enable |= (1 << xm->xm_target);
else
mpt->mpt_tag_enable &= ~(1 << xm->xm_target);
if (mpt->is_scsi) {
/*
* SCSI transport settings only make any sense for
* SCSI
*/
tmp = mpt->mpt_dev_page1[xm->xm_target];
/*
* Set the wide/narrow parameter for the target.
*/
if (xm->xm_mode & PERIPH_CAP_WIDE16)
tmp.RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE;
else
tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE;
/*
* Set the synchronous parameters for the target.
*
* XXX If we request sync transfers, we just go ahead and
* XXX request the maximum available. We need finer control
* XXX in order to implement Domain Validation.
*/
tmp.RequestedParameters &= ~(MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK |
MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK |
MPI_SCSIDEVPAGE1_RP_DT | MPI_SCSIDEVPAGE1_RP_QAS |
MPI_SCSIDEVPAGE1_RP_IU);
if (xm->xm_mode & PERIPH_CAP_SYNC) {
int factor, offset, np;
factor = (mpt->mpt_port_page0.Capabilities >> 8) & 0xff;
offset = (mpt->mpt_port_page0.Capabilities >> 16) & 0xff;
np = 0;
if (factor < 0x9) {
/* Ultra320 */
np |= MPI_SCSIDEVPAGE1_RP_QAS | MPI_SCSIDEVPAGE1_RP_IU;
}
if (factor < 0xa) {
/* at least Ultra160 */
np |= MPI_SCSIDEVPAGE1_RP_DT;
}
np |= (factor << 8) | (offset << 16);
tmp.RequestedParameters |= np;
}
host2mpt_config_page_scsi_device_1(&tmp);
if (mpt_write_cfg_page(mpt, xm->xm_target, &tmp.Header)) {
mpt_prt(mpt, "unable to write Device Page 1");
return;
}
if (mpt_read_cfg_page(mpt, xm->xm_target, &tmp.Header)) {
mpt_prt(mpt, "unable to read back Device Page 1");
return;
}
mpt2host_config_page_scsi_device_1(&tmp);
mpt->mpt_dev_page1[xm->xm_target] = tmp;
if (mpt->verbose > 1) {
mpt_prt(mpt,
"SPI Target %d Page 1: RequestedParameters %x Config %x",
xm->xm_target,
mpt->mpt_dev_page1[xm->xm_target].RequestedParameters,
mpt->mpt_dev_page1[xm->xm_target].Configuration);
}
}
/*
* Make a note that we should perform an async callback at the
* end of the next successful command completion to report the
* negotiated transfer mode.
*/
mpt->mpt_report_xfer_mode |= (1 << xm->xm_target);
}
static void
mpt_get_xfer_mode(mpt_softc_t *mpt, struct scsipi_periph *periph)
{
fCONFIG_PAGE_SCSI_DEVICE_0 tmp;
struct scsipi_xfer_mode xm;
int period, offset;
tmp = mpt->mpt_dev_page0[periph->periph_target];
host2mpt_config_page_scsi_device_0(&tmp);
if (mpt_read_cfg_page(mpt, periph->periph_target, &tmp.Header)) {
mpt_prt(mpt, "unable to read Device Page 0");
return;
}
mpt2host_config_page_scsi_device_0(&tmp);
if (mpt->verbose > 1) {
mpt_prt(mpt,
"SPI Tgt %d Page 0: NParms %x Information %x",
periph->periph_target,
tmp.NegotiatedParameters, tmp.Information);
}
xm.xm_target = periph->periph_target;
xm.xm_mode = 0;
if (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE)
xm.xm_mode |= PERIPH_CAP_WIDE16;
period = (tmp.NegotiatedParameters >> 8) & 0xff;
offset = (tmp.NegotiatedParameters >> 16) & 0xff;
if (offset) {
xm.xm_period = period;
xm.xm_offset = offset;
xm.xm_mode |= PERIPH_CAP_SYNC;
}
/*
* Tagged queueing is all controlled by us; there is no
* other setting to query.
*/
if (mpt->mpt_tag_enable & (1 << periph->periph_target))
xm.xm_mode |= PERIPH_CAP_TQING;
/*
* We're going to deliver the async event, so clear the marker.
*/
mpt->mpt_report_xfer_mode &= ~(1 << periph->periph_target);
scsipi_async_event(&mpt->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
}
static void
mpt_ctlop(mpt_softc_t *mpt, void *vmsg, uint32_t reply)
{
MSG_DEFAULT_REPLY *dmsg = vmsg;
switch (dmsg->Function) {
case MPI_FUNCTION_EVENT_NOTIFICATION:
mpt_event_notify_reply(mpt, vmsg);
mpt_free_reply(mpt, (reply << 1));
break;
case MPI_FUNCTION_EVENT_ACK:
{
MSG_EVENT_ACK_REPLY *msg = vmsg;
int index = le32toh(msg->MsgContext) & ~0x80000000;
mpt_free_reply(mpt, (reply << 1));
if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
request_t *req = &mpt->request_pool[index];
mpt_free_request(mpt, req);
}
break;
}
case MPI_FUNCTION_PORT_ENABLE:
{
MSG_PORT_ENABLE_REPLY *msg = vmsg;
int index = le32toh(msg->MsgContext) & ~0x80000000;
if (mpt->verbose > 1)
mpt_prt(mpt, "enable port reply index %d", index);
if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
request_t *req = &mpt->request_pool[index];
req->debug = REQ_DONE;
}
mpt_free_reply(mpt, (reply << 1));
break;
}
case MPI_FUNCTION_CONFIG:
{
MSG_CONFIG_REPLY *msg = vmsg;
int index = le32toh(msg->MsgContext) & ~0x80000000;
if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
request_t *req = &mpt->request_pool[index];
req->debug = REQ_DONE;
req->sequence = reply;
} else
mpt_free_reply(mpt, (reply << 1));
break;
}
default:
mpt_prt(mpt, "unknown ctlop: 0x%x", dmsg->Function);
}
}
static void
mpt_event_notify_reply(mpt_softc_t *mpt, MSG_EVENT_NOTIFY_REPLY *msg)
{
switch (le32toh(msg->Event)) {
case MPI_EVENT_LOG_DATA:
{
int i;
/* Some error occurrerd that the Fusion wants logged. */
mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x", msg->IOCLogInfo);
mpt_prt(mpt, "EvtLogData: Event Data:");
for (i = 0; i < msg->EventDataLength; i++) {
if ((i % 4) == 0)
printf("%s:\t", device_xname(mpt->sc_dev));
printf("0x%08x%c", msg->Data[i],
((i % 4) == 3) ? '\n' : ' ');
}
if ((i % 4) != 0)
printf("\n");
break;
}
case MPI_EVENT_UNIT_ATTENTION:
mpt_prt(mpt, "Unit Attn: Bus 0x%02x Target 0x%02x",
(msg->Data[0] >> 8) & 0xff, msg->Data[0] & 0xff);
break;
case MPI_EVENT_IOC_BUS_RESET:
/* We generated a bus reset. */
mpt_prt(mpt, "IOC Bus Reset Port %d",
(msg->Data[0] >> 8) & 0xff);
break;
case MPI_EVENT_EXT_BUS_RESET:
/* Someone else generated a bus reset. */
mpt_prt(mpt, "External Bus Reset");
/*
* These replies don't return EventData like the MPI
* spec says they do.
*/
/* XXX Send an async event? */
break;
case MPI_EVENT_RESCAN:
/*
* In general, thise means a device has been added
* to the loop.
*/
mpt_prt(mpt, "Rescan Port %d", (msg->Data[0] >> 8) & 0xff);
/* XXX Send an async event? */
break;
case MPI_EVENT_LINK_STATUS_CHANGE:
mpt_prt(mpt, "Port %d: Link state %s",
(msg->Data[1] >> 8) & 0xff,
(msg->Data[0] & 0xff) == 0 ? "Failed" : "Active");
break;
case MPI_EVENT_LOOP_STATE_CHANGE:
switch ((msg->Data[0] >> 16) & 0xff) {
case 0x01:
mpt_prt(mpt,
"Port %d: FC Link Event: LIP(%02x,%02x) "
"(Loop Initialization)",
(msg->Data[1] >> 8) & 0xff,
(msg->Data[0] >> 8) & 0xff,
(msg->Data[0] ) & 0xff);
switch ((msg->Data[0] >> 8) & 0xff) {
case 0xf7:
if ((msg->Data[0] & 0xff) == 0xf7)
mpt_prt(mpt, "\tDevice needs AL_PA");
else
mpt_prt(mpt, "\tDevice %02x doesn't "
"like FC performance",
msg->Data[0] & 0xff);
break;
case 0xf8:
if ((msg->Data[0] & 0xff) == 0xf7)
mpt_prt(mpt, "\tDevice detected loop "
"failure before acquiring AL_PA");
else
mpt_prt(mpt, "\tDevice %02x detected "
"loop failure",
msg->Data[0] & 0xff);
break;
default:
mpt_prt(mpt, "\tDevice %02x requests that "
"device %02x reset itself",
msg->Data[0] & 0xff,
(msg->Data[0] >> 8) & 0xff);
break;
}
break;
case 0x02:
mpt_prt(mpt, "Port %d: FC Link Event: LPE(%02x,%02x) "
"(Loop Port Enable)",
(msg->Data[1] >> 8) & 0xff,
(msg->Data[0] >> 8) & 0xff,
(msg->Data[0] ) & 0xff);
break;
case 0x03:
mpt_prt(mpt, "Port %d: FC Link Event: LPB(%02x,%02x) "
"(Loop Port Bypass)",
(msg->Data[1] >> 8) & 0xff,
(msg->Data[0] >> 8) & 0xff,
(msg->Data[0] ) & 0xff);
break;
default:
mpt_prt(mpt, "Port %d: FC Link Event: "
"Unknown event (%02x %02x %02x)",
(msg->Data[1] >> 8) & 0xff,
(msg->Data[0] >> 16) & 0xff,
(msg->Data[0] >> 8) & 0xff,
(msg->Data[0] ) & 0xff);
break;
}
break;
case MPI_EVENT_LOGOUT:
mpt_prt(mpt, "Port %d: FC Logout: N_PortID: %02x",
(msg->Data[1] >> 8) & 0xff, msg->Data[0]);
break;
case MPI_EVENT_EVENT_CHANGE:
/*
* This is just an acknowledgement of our
* mpt_send_event_request().
*/
break;
case MPI_EVENT_SAS_PHY_LINK_STATUS:
switch ((msg->Data[0] >> 12) & 0x0f) {
case 0x00:
mpt_prt(mpt, "Phy %d: Link Status Unknown",
msg->Data[0] & 0xff);
break;
case 0x01:
mpt_prt(mpt, "Phy %d: Link Disabled",
msg->Data[0] & 0xff);
break;
case 0x02:
mpt_prt(mpt, "Phy %d: Failed Speed Negotiation",
msg->Data[0] & 0xff);
break;
case 0x03:
mpt_prt(mpt, "Phy %d: SATA OOB Complete",
msg->Data[0] & 0xff);
break;
case 0x08:
mpt_prt(mpt, "Phy %d: Link Rate 1.5 Gbps",
msg->Data[0] & 0xff);
break;
case 0x09:
mpt_prt(mpt, "Phy %d: Link Rate 3.0 Gbps",
msg->Data[0] & 0xff);
break;
default:
mpt_prt(mpt, "Phy %d: SAS Phy Link Status Event: "
"Unknown event (%0x)",
msg->Data[0] & 0xff, (msg->Data[0] >> 8) & 0xff);
}
break;
case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
case MPI_EVENT_SAS_DISCOVERY:
/* ignore these events for now */
break;
case MPI_EVENT_QUEUE_FULL:
/* This can get a little chatty */
if (mpt->verbose > 0)
mpt_prt(mpt, "Queue Full Event");
break;
default:
mpt_prt(mpt, "Unknown async event: 0x%x", msg->Event);
break;
}
if (msg->AckRequired) {
MSG_EVENT_ACK *ackp;
request_t *req;
if ((req = mpt_get_request(mpt)) == NULL) {
/* XXX XXX XXX XXXJRT */
panic("mpt_event_notify_reply: unable to allocate "
"request structure");
}
ackp = (MSG_EVENT_ACK *) req->req_vbuf;
memset(ackp, 0, sizeof(*ackp));
ackp->Function = MPI_FUNCTION_EVENT_ACK;
ackp->Event = msg->Event;
ackp->EventContext = msg->EventContext;
ackp->MsgContext = htole32(req->index | 0x80000000);
mpt_check_doorbell(mpt);
mpt_send_cmd(mpt, req);
}
}
static void
mpt_bus_reset(mpt_softc_t *mpt)
{
request_t *req;
MSG_SCSI_TASK_MGMT *mngt_req;
int s;
s = splbio();
if (mpt->mngt_req) {
/* request already queued; can't do more */
splx(s);
return;
}
req = mpt_get_request(mpt);
if (__predict_false(req == NULL)) {
mpt_prt(mpt, "no mngt request\n");
splx(s);
return;
}
mpt->mngt_req = req;
splx(s);
mngt_req = req->req_vbuf;
memset(mngt_req, 0, sizeof(*mngt_req));
mngt_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT;
mngt_req->Bus = mpt->bus;
mngt_req->TargetID = 0;
mngt_req->ChainOffset = 0;
mngt_req->TaskType = MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS;
mngt_req->Reserved1 = 0;
mngt_req->MsgFlags =
mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0;
mngt_req->MsgContext = req->index;
mngt_req->TaskMsgContext = 0;
s = splbio();
mpt_send_handshake_cmd(mpt, sizeof(*mngt_req), mngt_req);
splx(s);
}
/*****************************************************************************
* SCSI interface routines
*****************************************************************************/
static void
mpt_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
void *arg)
{
struct scsipi_adapter *adapt = chan->chan_adapter;
mpt_softc_t *mpt = device_private(adapt->adapt_dev);
switch (req) {
case ADAPTER_REQ_RUN_XFER:
mpt_run_xfer(mpt, (struct scsipi_xfer *) arg);
return;
case ADAPTER_REQ_GROW_RESOURCES:
/* Not supported. */
return;
case ADAPTER_REQ_SET_XFER_MODE:
mpt_set_xfer_mode(mpt, (struct scsipi_xfer_mode *) arg);
return;
}
}
static void
mpt_minphys(struct buf *bp)
{
/*
* Subtract one from the SGL limit, since we need an extra one to handle
* an non-page-aligned transfer.
*/
#define MPT_MAX_XFER ((MPT_SGL_MAX - 1) * PAGE_SIZE)
if (bp->b_bcount > MPT_MAX_XFER)
bp->b_bcount = MPT_MAX_XFER;
minphys(bp);
}
static int
mpt_ioctl(struct scsipi_channel *chan, u_long cmd, void *arg,
int flag, struct proc *p)
{
mpt_softc_t *mpt;
int s;
mpt = device_private(chan->chan_adapter->adapt_dev);
switch (cmd) {
case SCBUSIORESET:
mpt_bus_reset(mpt);
s = splbio();
mpt_intr(mpt);
splx(s);
return(0);
default:
return (ENOTTY);
}
}
#if NBIO > 0
static fCONFIG_PAGE_IOC_2 *
mpt_get_cfg_page_ioc2(mpt_softc_t *mpt)
{
fCONFIG_PAGE_HEADER hdr;
fCONFIG_PAGE_IOC_2 *ioc2;
int rv;
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2, 0, &hdr);
if (rv)
return NULL;
ioc2 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
if (ioc2 == NULL)
return NULL;
memcpy(ioc2, &hdr, sizeof(hdr));
rv = mpt_read_cfg_page(mpt, 0, &ioc2->Header);
if (rv)
goto fail;
mpt2host_config_page_ioc_2(ioc2);
return ioc2;
fail:
free(ioc2, M_DEVBUF);
return NULL;
}
static fCONFIG_PAGE_IOC_3 *
mpt_get_cfg_page_ioc3(mpt_softc_t *mpt)
{
fCONFIG_PAGE_HEADER hdr;
fCONFIG_PAGE_IOC_3 *ioc3;
int rv;
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 3, 0, &hdr);
if (rv)
return NULL;
ioc3 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
if (ioc3 == NULL)
return NULL;
memcpy(ioc3, &hdr, sizeof(hdr));
rv = mpt_read_cfg_page(mpt, 0, &ioc3->Header);
if (rv)
goto fail;
return ioc3;
fail:
free(ioc3, M_DEVBUF);
return NULL;
}
static fCONFIG_PAGE_RAID_VOL_0 *
mpt_get_cfg_page_raid_vol0(mpt_softc_t *mpt, int address)
{
fCONFIG_PAGE_HEADER hdr;
fCONFIG_PAGE_RAID_VOL_0 *rvol0;
int rv;
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_RAID_VOLUME, 0,
address, &hdr);
if (rv)
return NULL;
rvol0 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
if (rvol0 == NULL)
return NULL;
memcpy(rvol0, &hdr, sizeof(hdr));
rv = mpt_read_cfg_page(mpt, address, &rvol0->Header);
if (rv)
goto fail;
mpt2host_config_page_raid_vol_0(rvol0);
return rvol0;
fail:
free(rvol0, M_DEVBUF);
return NULL;
}
static fCONFIG_PAGE_RAID_PHYS_DISK_0 *
mpt_get_cfg_page_raid_phys_disk0(mpt_softc_t *mpt, int address)
{
fCONFIG_PAGE_HEADER hdr;
fCONFIG_PAGE_RAID_PHYS_DISK_0 *physdisk0;
int rv;
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_RAID_PHYSDISK, 0,
address, &hdr);
if (rv)
return NULL;
physdisk0 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
if (physdisk0 == NULL)
return NULL;
memcpy(physdisk0, &hdr, sizeof(hdr));
rv = mpt_read_cfg_page(mpt, address, &physdisk0->Header);
if (rv)
goto fail;
mpt2host_config_page_raid_phys_disk_0(physdisk0);
return physdisk0;
fail:
free(physdisk0, M_DEVBUF);
return NULL;
}
static bool
mpt_is_raid(mpt_softc_t *mpt)
{
fCONFIG_PAGE_IOC_2 *ioc2;
bool is_raid = false;
ioc2 = mpt_get_cfg_page_ioc2(mpt);
if (ioc2 == NULL)
return false;
if (ioc2->CapabilitiesFlags != 0xdeadbeef) {
is_raid = !!(ioc2->CapabilitiesFlags &
(MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT|
MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT|
MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT));
}
free(ioc2, M_DEVBUF);
return is_raid;
}
static int
mpt_bio_ioctl(device_t dev, u_long cmd, void *addr)
{
mpt_softc_t *mpt = device_private(dev);
int error, s;
KERNEL_LOCK(1, curlwp);
s = splbio();
switch (cmd) {
case BIOCINQ:
error = mpt_bio_ioctl_inq(mpt, addr);
break;
case BIOCVOL:
error = mpt_bio_ioctl_vol(mpt, addr);
break;
case BIOCDISK_NOVOL:
error = mpt_bio_ioctl_disk_novol(mpt, addr);
break;
case BIOCDISK:
error = mpt_bio_ioctl_disk(mpt, addr);
break;
case BIOCSETSTATE:
error = mpt_bio_ioctl_setstate(mpt, addr);
break;
default:
error = EINVAL;
break;
}
splx(s);
KERNEL_UNLOCK_ONE(curlwp);
return error;
}
static int
mpt_bio_ioctl_inq(mpt_softc_t *mpt, struct bioc_inq *bi)
{
fCONFIG_PAGE_IOC_2 *ioc2;
fCONFIG_PAGE_IOC_3 *ioc3;
ioc2 = mpt_get_cfg_page_ioc2(mpt);
if (ioc2 == NULL)
return EIO;
ioc3 = mpt_get_cfg_page_ioc3(mpt);
if (ioc3 == NULL) {
free(ioc2, M_DEVBUF);
return EIO;
}
strlcpy(bi->bi_dev, device_xname(mpt->sc_dev), sizeof(bi->bi_dev));
bi->bi_novol = ioc2->NumActiveVolumes;
bi->bi_nodisk = ioc3->NumPhysDisks;
free(ioc2, M_DEVBUF);
free(ioc3, M_DEVBUF);
return 0;
}
static int
mpt_bio_ioctl_vol(mpt_softc_t *mpt, struct bioc_vol *bv)
{
fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
struct scsipi_periph *periph;
struct scsipi_inquiry_data inqbuf;
char vendor[9], product[17], revision[5];
int address;
ioc2 = mpt_get_cfg_page_ioc2(mpt);
if (ioc2 == NULL)
return EIO;
if (bv->bv_volid < 0 || bv->bv_volid >= ioc2->NumActiveVolumes)
goto fail;
ioc2rvol = &ioc2->RaidVolume[bv->bv_volid];
address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
if (rvol0 == NULL)
goto fail;
bv->bv_dev[0] = '\0';
bv->bv_vendor[0] = '\0';
periph = scsipi_lookup_periph(&mpt->sc_channel, ioc2rvol->VolumeBus, 0);
if (periph != NULL) {
if (periph->periph_dev != NULL) {
snprintf(bv->bv_dev, sizeof(bv->bv_dev), "%s",
device_xname(periph->periph_dev));
}
memset(&inqbuf, 0, sizeof(inqbuf));
if (scsipi_inquire(periph, &inqbuf,
XS_CTL_DISCOVERY | XS_CTL_SILENT) == 0) {
strnvisx(vendor, sizeof(vendor),
inqbuf.vendor, sizeof(inqbuf.vendor),
VIS_TRIM|VIS_SAFE|VIS_OCTAL);
strnvisx(product, sizeof(product),
inqbuf.product, sizeof(inqbuf.product),
VIS_TRIM|VIS_SAFE|VIS_OCTAL);
strnvisx(revision, sizeof(revision),
inqbuf.revision, sizeof(inqbuf.revision),
VIS_TRIM|VIS_SAFE|VIS_OCTAL);
snprintf(bv->bv_vendor, sizeof(bv->bv_vendor),
"%s %s %s", vendor, product, revision);
}
snprintf(bv->bv_dev, sizeof(bv->bv_dev), "%s",
device_xname(periph->periph_dev));
}
bv->bv_nodisk = rvol0->NumPhysDisks;
bv->bv_size = (uint64_t)rvol0->MaxLBA * 512;
bv->bv_stripe_size = rvol0->StripeSize;
bv->bv_percent = -1;
bv->bv_seconds = 0;
switch (rvol0->VolumeStatus.State) {
case MPI_RAIDVOL0_STATUS_STATE_OPTIMAL:
bv->bv_status = BIOC_SVONLINE;
break;
case MPI_RAIDVOL0_STATUS_STATE_DEGRADED:
bv->bv_status = BIOC_SVDEGRADED;
break;
case MPI_RAIDVOL0_STATUS_STATE_FAILED:
bv->bv_status = BIOC_SVOFFLINE;
break;
default:
bv->bv_status = BIOC_SVINVALID;
break;
}
switch (ioc2rvol->VolumeType) {
case MPI_RAID_VOL_TYPE_IS:
bv->bv_level = 0;
break;
case MPI_RAID_VOL_TYPE_IME:
case MPI_RAID_VOL_TYPE_IM:
bv->bv_level = 1;
break;
default:
bv->bv_level = -1;
break;
}
free(ioc2, M_DEVBUF);
free(rvol0, M_DEVBUF);
return 0;
fail:
if (ioc2) free(ioc2, M_DEVBUF);
if (rvol0) free(rvol0, M_DEVBUF);
return EINVAL;
}
static void
mpt_bio_ioctl_disk_common(mpt_softc_t *mpt, struct bioc_disk *bd,
int address)
{
fCONFIG_PAGE_RAID_PHYS_DISK_0 *phys = NULL;
char vendor_id[9], product_id[17], product_rev_level[5];
phys = mpt_get_cfg_page_raid_phys_disk0(mpt, address);
if (phys == NULL)
return;
strnvisx(vendor_id, sizeof(vendor_id),
phys->InquiryData.VendorID, sizeof(phys->InquiryData.VendorID),
VIS_TRIM|VIS_SAFE|VIS_OCTAL);
strnvisx(product_id, sizeof(product_id),
phys->InquiryData.ProductID, sizeof(phys->InquiryData.ProductID),
VIS_TRIM|VIS_SAFE|VIS_OCTAL);
strnvisx(product_rev_level, sizeof(product_rev_level),
phys->InquiryData.ProductRevLevel,
sizeof(phys->InquiryData.ProductRevLevel),
VIS_TRIM|VIS_SAFE|VIS_OCTAL);
snprintf(bd->bd_vendor, sizeof(bd->bd_vendor), "%s %s %s",
vendor_id, product_id, product_rev_level);
strlcpy(bd->bd_serial, phys->InquiryData.Info, sizeof(bd->bd_serial));
bd->bd_procdev[0] = '\0';
bd->bd_channel = phys->PhysDiskBus;
bd->bd_target = phys->PhysDiskID;
bd->bd_lun = 0;
bd->bd_size = (uint64_t)phys->MaxLBA * 512;
switch (phys->PhysDiskStatus.State) {
case MPI_PHYSDISK0_STATUS_ONLINE:
bd->bd_status = BIOC_SDONLINE;
break;
case MPI_PHYSDISK0_STATUS_MISSING:
case MPI_PHYSDISK0_STATUS_FAILED:
bd->bd_status = BIOC_SDFAILED;
break;
case MPI_PHYSDISK0_STATUS_OFFLINE_REQUESTED:
case MPI_PHYSDISK0_STATUS_FAILED_REQUESTED:
case MPI_PHYSDISK0_STATUS_OTHER_OFFLINE:
bd->bd_status = BIOC_SDOFFLINE;
break;
case MPI_PHYSDISK0_STATUS_INITIALIZING:
bd->bd_status = BIOC_SDSCRUB;
break;
case MPI_PHYSDISK0_STATUS_NOT_COMPATIBLE:
default:
bd->bd_status = BIOC_SDINVALID;
break;
}
free(phys, M_DEVBUF);
}
static int
mpt_bio_ioctl_disk_novol(mpt_softc_t *mpt, struct bioc_disk *bd)
{
fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
fCONFIG_PAGE_IOC_3 *ioc3 = NULL;
fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
int address, v, d;
ioc2 = mpt_get_cfg_page_ioc2(mpt);
if (ioc2 == NULL)
return EIO;
ioc3 = mpt_get_cfg_page_ioc3(mpt);
if (ioc3 == NULL) {
free(ioc2, M_DEVBUF);
return EIO;
}
if (bd->bd_diskid < 0 || bd->bd_diskid >= ioc3->NumPhysDisks)
goto fail;
address = ioc3->PhysDisk[bd->bd_diskid].PhysDiskNum;
mpt_bio_ioctl_disk_common(mpt, bd, address);
bd->bd_disknovol = true;
for (v = 0; bd->bd_disknovol && v < ioc2->NumActiveVolumes; v++) {
ioc2rvol = &ioc2->RaidVolume[v];
address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
if (rvol0 == NULL)
continue;
for (d = 0; d < rvol0->NumPhysDisks; d++) {
if (rvol0->PhysDisk[d].PhysDiskNum ==
ioc3->PhysDisk[bd->bd_diskid].PhysDiskNum) {
bd->bd_disknovol = false;
bd->bd_volid = v;
break;
}
}
free(rvol0, M_DEVBUF);
}
free(ioc3, M_DEVBUF);
free(ioc2, M_DEVBUF);
return 0;
fail:
if (ioc3) free(ioc3, M_DEVBUF);
if (ioc2) free(ioc2, M_DEVBUF);
return EINVAL;
}
static int
mpt_bio_ioctl_disk(mpt_softc_t *mpt, struct bioc_disk *bd)
{
fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
int address;
ioc2 = mpt_get_cfg_page_ioc2(mpt);
if (ioc2 == NULL)
return EIO;
if (bd->bd_volid < 0 || bd->bd_volid >= ioc2->NumActiveVolumes)
goto fail;
ioc2rvol = &ioc2->RaidVolume[bd->bd_volid];
address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
if (rvol0 == NULL)
goto fail;
if (bd->bd_diskid < 0 || bd->bd_diskid >= rvol0->NumPhysDisks)
goto fail;
address = rvol0->PhysDisk[bd->bd_diskid].PhysDiskNum;
mpt_bio_ioctl_disk_common(mpt, bd, address);
free(ioc2, M_DEVBUF);
return 0;
fail:
if (ioc2) free(ioc2, M_DEVBUF);
return EINVAL;
}
static int
mpt_bio_ioctl_setstate(mpt_softc_t *mpt, struct bioc_setstate *bs)
{
return ENOTTY;
}
#endif