NetBSD/sys/dev/ic/ath.c
ozaki-r d938d837b3 Introduce m_set_rcvif and m_reset_rcvif
The API is used to set (or reset) a received interface of a mbuf.
They are counterpart of m_get_rcvif, which will come in another
commit, hide internal of rcvif operation, and reduce the diff of
the upcoming change.

No functional change.
2016-06-10 13:27:10 +00:00

5462 lines
153 KiB
C

/* $NetBSD: ath.c,v 1.122 2016/06/10 13:27:13 ozaki-r Exp $ */
/*-
* Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
#ifdef __FreeBSD__
__FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
#endif
#ifdef __NetBSD__
__KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.122 2016/06/10 13:27:13 ozaki-r Exp $");
#endif
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#endif
#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/if_ether.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_var.h>
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#endif
#include <sys/device.h>
#include <dev/ic/ath_netbsd.h>
#define AR_DEBUG
#include <dev/ic/athvar.h>
#include "ah_desc.h"
#include "ah_devid.h" /* XXX for softled */
#include "opt_ah.h"
#ifdef ATH_TX99_DIAG
#include <dev/ath/ath_tx99/ath_tx99.h>
#endif
/* unaligned little endian access */
#define LE_READ_2(p) \
((u_int16_t) \
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
#define LE_READ_4(p) \
((u_int32_t) \
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
(((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
enum {
ATH_LED_TX,
ATH_LED_RX,
ATH_LED_POLL,
};
#ifdef AH_NEED_DESC_SWAP
#define HTOAH32(x) htole32(x)
#else
#define HTOAH32(x) (x)
#endif
static int ath_ifinit(struct ifnet *);
static int ath_init(struct ath_softc *);
static void ath_stop_locked(struct ifnet *, int);
static void ath_stop(struct ifnet *, int);
static void ath_start(struct ifnet *);
static int ath_media_change(struct ifnet *);
static void ath_watchdog(struct ifnet *);
static int ath_ioctl(struct ifnet *, u_long, void *);
static void ath_fatal_proc(void *, int);
static void ath_rxorn_proc(void *, int);
static void ath_bmiss_proc(void *, int);
static void ath_radar_proc(void *, int);
static int ath_key_alloc(struct ieee80211com *,
const struct ieee80211_key *,
ieee80211_keyix *, ieee80211_keyix *);
static int ath_key_delete(struct ieee80211com *,
const struct ieee80211_key *);
static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
const u_int8_t mac[IEEE80211_ADDR_LEN]);
static void ath_key_update_begin(struct ieee80211com *);
static void ath_key_update_end(struct ieee80211com *);
static void ath_mode_init(struct ath_softc *);
static void ath_setslottime(struct ath_softc *);
static void ath_updateslot(struct ifnet *);
static int ath_beaconq_setup(struct ath_hal *);
static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
static void ath_beacon_proc(void *, int);
static void ath_bstuck_proc(void *, int);
static void ath_beacon_free(struct ath_softc *);
static void ath_beacon_config(struct ath_softc *);
static void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *, ath_bufhead *);
static int ath_desc_alloc(struct ath_softc *);
static void ath_desc_free(struct ath_softc *);
static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
static void ath_node_free(struct ieee80211_node *);
static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
struct ieee80211_node *ni,
int subtype, int rssi, u_int32_t rstamp);
static void ath_setdefantenna(struct ath_softc *, u_int);
static void ath_rx_proc(void *, int);
static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
static int ath_tx_setup(struct ath_softc *, int, int);
static int ath_wme_update(struct ieee80211com *);
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
static void ath_tx_cleanup(struct ath_softc *);
static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
struct ath_buf *, struct mbuf *);
static void ath_tx_proc_q0(void *, int);
static void ath_tx_proc_q0123(void *, int);
static void ath_tx_proc(void *, int);
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
static void ath_draintxq(struct ath_softc *);
static void ath_stoprecv(struct ath_softc *);
static int ath_startrecv(struct ath_softc *);
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
static void ath_next_scan(void *);
static void ath_calibrate(void *);
static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void ath_setup_stationkey(struct ieee80211_node *);
static void ath_newassoc(struct ieee80211_node *, int);
static int ath_getchannels(struct ath_softc *, u_int cc,
HAL_BOOL outdoor, HAL_BOOL xchanmode);
static void ath_led_event(struct ath_softc *, int);
static void ath_update_txpow(struct ath_softc *);
static void ath_freetx(struct mbuf *);
static void ath_restore_diversity(struct ath_softc *);
static int ath_rate_setup(struct ath_softc *, u_int mode);
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
static void ath_bpfattach(struct ath_softc *);
static void ath_announce(struct ath_softc *);
int ath_dwelltime = 200; /* 5 channels/second */
int ath_calinterval = 30; /* calibrate every 30 secs */
int ath_outdoor = AH_TRUE; /* outdoor operation */
int ath_xchanmode = AH_TRUE; /* enable extended channels */
int ath_countrycode = CTRY_DEFAULT; /* country code */
int ath_regdomain = 0; /* regulatory domain */
int ath_debug = 0;
int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
#ifdef AR_DEBUG
enum {
ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
ATH_DEBUG_RATE = 0x00000010, /* rate control */
ATH_DEBUG_RESET = 0x00000020, /* reset processing */
ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
ATH_DEBUG_INTR = 0x00001000, /* ISR */
ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
ATH_DEBUG_NODE = 0x00080000, /* node management */
ATH_DEBUG_LED = 0x00100000, /* led management */
ATH_DEBUG_FF = 0x00200000, /* fast frames */
ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
ATH_DEBUG_ANY = 0xffffffff
};
#define IFF_DUMPPKTS(sc, m) \
((sc->sc_debug & (m)) || \
(sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
#define DPRINTF(sc, m, fmt, ...) do { \
if (sc->sc_debug & (m)) \
printf(fmt, __VA_ARGS__); \
} while (0)
#define KEYPRINTF(sc, ix, hk, mac) do { \
if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
ath_keyprint(__func__, ix, hk, mac); \
} while (0)
static void ath_printrxbuf(struct ath_buf *bf, int);
static void ath_printtxbuf(struct ath_buf *bf, int);
#else
#define IFF_DUMPPKTS(sc, m) \
((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
#define DPRINTF(m, fmt, ...)
#define KEYPRINTF(sc, k, ix, mac)
#endif
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
int
ath_attach(u_int16_t devid, struct ath_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = NULL;
HAL_STATUS status;
int error = 0, i;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
if (ah == NULL) {
if_printf(ifp, "unable to attach hardware; HAL status %u\n",
status);
error = ENXIO;
goto bad;
}
if (ah->ah_abi != HAL_ABI_VERSION) {
if_printf(ifp, "HAL ABI mismatch detected "
"(HAL:0x%x != driver:0x%x)\n",
ah->ah_abi, HAL_ABI_VERSION);
error = ENXIO;
goto bad;
}
sc->sc_ah = ah;
if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
"pmf-powerdown", false))
goto bad;
/*
* Check if the MAC has multi-rate retry support.
* We do this by trying to setup a fake extended
* descriptor. MAC's that don't have support will
* return false w/o doing anything. MAC's that do
* support it will return true w/o doing anything.
*/
sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
/*
* Check if the device has hardware counters for PHY
* errors. If so we need to enable the MIB interrupt
* so we can act on stat triggers.
*/
if (ath_hal_hwphycounters(ah))
sc->sc_needmib = 1;
/*
* Get the hardware key cache size.
*/
sc->sc_keymax = ath_hal_keycachesize(ah);
if (sc->sc_keymax > ATH_KEYMAX) {
if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
ATH_KEYMAX, sc->sc_keymax);
sc->sc_keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
/*
* Mark key cache slots associated with global keys
* as in use. If we knew TKIP was not to be used we
* could leave the +32, +64, and +32+64 slots free.
* XXX only for splitmic.
*/
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
setbit(sc->sc_keymap, i);
setbit(sc->sc_keymap, i+32);
setbit(sc->sc_keymap, i+64);
setbit(sc->sc_keymap, i+32+64);
}
/*
* Collect the channel list using the default country
* code and including outdoor channels. The 802.11 layer
* is resposible for filtering this list based on settings
* like the phy mode.
*/
error = ath_getchannels(sc, ath_countrycode,
ath_outdoor, ath_xchanmode);
if (error != 0)
goto bad;
/*
* Setup rate tables for all potential media types.
*/
ath_rate_setup(sc, IEEE80211_MODE_11A);
ath_rate_setup(sc, IEEE80211_MODE_11B);
ath_rate_setup(sc, IEEE80211_MODE_11G);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
/* NB: setup here so ath_rate_update is happy */
ath_setcurmode(sc, IEEE80211_MODE_11A);
/*
* Allocate tx+rx descriptors and populate the lists.
*/
error = ath_desc_alloc(sc);
if (error != 0) {
if_printf(ifp, "failed to allocate descriptors: %d\n", error);
goto bad;
}
ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
#if 0
ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
#endif
ATH_TXBUF_LOCK_INIT(sc);
TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that the hal handles reseting
* these queues at the needed time.
*
* XXX PS-Poll
*/
sc->sc_bhalq = ath_beaconq_setup(ah);
if (sc->sc_bhalq == (u_int) -1) {
if_printf(ifp, "unable to setup a beacon xmit queue!\n");
error = EIO;
goto bad2;
}
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
if (sc->sc_cabq == NULL) {
if_printf(ifp, "unable to setup CAB xmit queue!\n");
error = EIO;
goto bad2;
}
/* NB: insure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
ieee80211_wme_acnames[WME_AC_BK]);
error = EIO;
goto bad2;
}
if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
!ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
!ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
/*
* Not enough hardware tx queues to properly do WME;
* just punt and assign them all to the same h/w queue.
* We could do a better job of this if, for example,
* we allocate queues when we switch from station to
* AP mode.
*/
if (sc->sc_ac2q[WME_AC_VI] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
if (sc->sc_ac2q[WME_AC_BE] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
}
/*
* Special case certain configurations. Note the
* CAB queue is handled by these specially so don't
* include them when checking the txq setup mask.
*/
switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
case 0x01:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
break;
case 0x0f:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
break;
default:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
break;
}
/*
* Setup rate control. Some rate control modules
* call back to change the anntena state so expose
* the necessary entry points.
* XXX maybe belongs in struct ath_ratectrl?
*/
sc->sc_setdefantenna = ath_setdefantenna;
sc->sc_rc = ath_rate_attach(sc);
if (sc->sc_rc == NULL) {
error = EIO;
goto bad2;
}
sc->sc_blinking = 0;
sc->sc_ledstate = 1;
sc->sc_ledon = 0; /* low true */
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
/*
* Auto-enable soft led processing for IBM cards and for
* 5211 minipci cards. Users can also manually enable/disable
* support with a sysctl.
*/
sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
if (sc->sc_softled) {
ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
HAL_GPIO_MUX_MAC_NETWORK_LED);
ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
}
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
ifp->if_start = ath_start;
ifp->if_stop = ath_stop;
ifp->if_watchdog = ath_watchdog;
ifp->if_ioctl = ath_ioctl;
ifp->if_init = ath_ifinit;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_reset = ath_reset;
ic->ic_newassoc = ath_newassoc;
ic->ic_updateslot = ath_updateslot;
ic->ic_wme.wme_update = ath_wme_update;
/* XXX not right but it's not used anywhere important */
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps =
IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
| IEEE80211_C_TXFRAG /* handle tx frags */
;
/*
* Query the hal to figure out h/w crypto support.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
ic->ic_caps |= IEEE80211_C_WEP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
ic->ic_caps |= IEEE80211_C_AES;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
ic->ic_caps |= IEEE80211_C_AES_CCM;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
ic->ic_caps |= IEEE80211_C_CKIP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
ic->ic_caps |= IEEE80211_C_TKIP;
/*
* Check if h/w does the MIC and/or whether the
* separate key cache entries are required to
* handle both tx+rx MIC keys.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
ic->ic_caps |= IEEE80211_C_TKIPMIC;
/*
* If the h/w supports storing tx+rx MIC keys
* in one cache slot automatically enable use.
*/
if (ath_hal_hastkipsplit(ah) ||
!ath_hal_settkipsplit(ah, AH_FALSE))
sc->sc_splitmic = 1;
/*
* If the h/w can do TKIP MIC together with WME then
* we use it; otherwise we force the MIC to be done
* in software by the net80211 layer.
*/
if (ath_hal_haswmetkipmic(ah))
ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
}
sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
/*
* Mark key cache slots associated with global keys
* as in use. If we knew TKIP was not to be used we
* could leave the +32, +64, and +32+64 slots free.
*/
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
setbit(sc->sc_keymap, i);
setbit(sc->sc_keymap, i+64);
if (sc->sc_splitmic) {
setbit(sc->sc_keymap, i+32);
setbit(sc->sc_keymap, i+32+64);
}
}
/*
* TPC support can be done either with a global cap or
* per-packet support. The latter is not available on
* all parts. We're a bit pedantic here as all parts
* support a global cap.
*/
if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
ic->ic_caps |= IEEE80211_C_TXPMGT;
/*
* Mark WME capability only if we have sufficient
* hardware queues to do proper priority scheduling.
*/
if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
ic->ic_caps |= IEEE80211_C_WME;
/*
* Check for misc other capabilities.
*/
if (ath_hal_hasbursting(ah))
ic->ic_caps |= IEEE80211_C_BURST;
/*
* Indicate we need the 802.11 header padded to a
* 32-bit boundary for 4-address and QoS frames.
*/
ic->ic_flags |= IEEE80211_F_DATAPAD;
/*
* Query the hal about antenna support.
*/
sc->sc_defant = ath_hal_getdefantenna(ah);
/*
* Not all chips have the VEOL support we want to
* use with IBSS beacons; check here for it.
*/
sc->sc_hasveol = ath_hal_hasveol(ah);
/* get mac address from hardware */
ath_hal_getmac(ah, ic->ic_myaddr);
if_attach(ifp);
/* call MI attach routine. */
ieee80211_ifattach(ic);
/* override default methods */
ic->ic_node_alloc = ath_node_alloc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = ath_node_free;
ic->ic_node_getrssi = ath_node_getrssi;
sc->sc_recv_mgmt = ic->ic_recv_mgmt;
ic->ic_recv_mgmt = ath_recv_mgmt;
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = ath_newstate;
ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
ic->ic_crypto.cs_key_alloc = ath_key_alloc;
ic->ic_crypto.cs_key_delete = ath_key_delete;
ic->ic_crypto.cs_key_set = ath_key_set;
ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
ic->ic_crypto.cs_key_update_end = ath_key_update_end;
/* complete initialization */
ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
ath_bpfattach(sc);
sc->sc_flags |= ATH_ATTACHED;
/*
* Setup dynamic sysctl's now that country code and
* regdomain are available from the hal.
*/
ath_sysctlattach(sc);
ieee80211_announce(ic);
ath_announce(sc);
return 0;
bad2:
ath_tx_cleanup(sc);
ath_desc_free(sc);
bad:
if (ah)
ath_hal_detach(ah);
/* XXX don't get under the abstraction like this */
sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
return error;
}
int
ath_detach(struct ath_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
int s;
if ((sc->sc_flags & ATH_ATTACHED) == 0)
return (0);
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
s = splnet();
ath_stop(ifp, 1);
bpf_detach(ifp);
/*
* NB: the order of these is important:
* o call the 802.11 layer before detaching the hal to
* insure callbacks into the driver to delete global
* key cache entries can be handled
* o reclaim the tx queue data structures after calling
* the 802.11 layer as we'll get called back to reclaim
* node state and potentially want to use them
* o to cleanup the tx queues the hal is called, so detach
* it last
* Other than that, it's straightforward...
*/
ieee80211_ifdetach(&sc->sc_ic);
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->detach(sc->sc_tx99);
#endif
ath_rate_detach(sc->sc_rc);
ath_desc_free(sc);
ath_tx_cleanup(sc);
sysctl_teardown(&sc->sc_sysctllog);
ath_hal_detach(sc->sc_ah);
if_detach(ifp);
splx(s);
return 0;
}
void
ath_suspend(struct ath_softc *sc)
{
#if notyet
/*
* Set the chip in full sleep mode. Note that we are
* careful to do this only when bringing the interface
* completely to a stop. When the chip is in this state
* it must be carefully woken up or references to
* registers in the PCI clock domain may freeze the bus
* (and system). This varies by chip and is mostly an
* issue with newer parts that go to sleep more quickly.
*/
ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
#endif
}
bool
ath_resume(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
HAL_STATUS status;
int i;
#if notyet
ath_hal_setpower(ah, HAL_PM_AWAKE);
#else
ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
#endif
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
ath_hal_resettxqueue(ah, sc->sc_bhalq);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_hal_resettxqueue(ah, i);
if (sc->sc_softled) {
ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
HAL_GPIO_MUX_MAC_NETWORK_LED);
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
}
return true;
}
/*
* Interrupt handler. Most of the actual processing is deferred.
*/
int
ath_intr(void *arg)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
struct ath_hal *ah = sc->sc_ah;
HAL_INT status = 0;
if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
/*
* The hardware is not ready/present, don't touch anything.
* Note this can happen early on if the IRQ is shared.
*/
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
return 0;
}
if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
return 0;
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
__func__, ifp->if_flags);
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
return 1; /* XXX */
}
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
status &= sc->sc_imask; /* discard unasked for bits */
if (status & HAL_INT_FATAL) {
/*
* Fatal errors are unrecoverable. Typically
* these are caused by DMA errors. Unfortunately
* the exact reason is not (presently) returned
* by the hal.
*/
sc->sc_stats.ast_hardware++;
ath_hal_intrset(ah, 0); /* disable intr's until reset */
TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
} else if (status & HAL_INT_RXORN) {
sc->sc_stats.ast_rxorn++;
ath_hal_intrset(ah, 0); /* disable intr's until reset */
TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
} else {
if (status & HAL_INT_SWBA) {
/*
* Software beacon alert--time to send a beacon.
* Handle beacon transmission directly; deferring
* this is too slow to meet timing constraints
* under load.
*/
ath_beacon_proc(sc, 0);
}
if (status & HAL_INT_RXEOL) {
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work at
* least on older hardware revs.
*/
sc->sc_stats.ast_rxeol++;
sc->sc_rxlink = NULL;
}
if (status & HAL_INT_TXURN) {
sc->sc_stats.ast_txurn++;
/* bump tx trigger level */
ath_hal_updatetxtriglevel(ah, AH_TRUE);
}
if (status & HAL_INT_RX)
TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
if (status & HAL_INT_TX)
TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
if (status & HAL_INT_BMISS) {
sc->sc_stats.ast_bmiss++;
TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
}
if (status & HAL_INT_MIB) {
sc->sc_stats.ast_mib++;
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to fire.
*/
ath_hal_intrset(ah, 0);
/*
* Let the hal handle the event. We assume it will
* clear whatever condition caused the interrupt.
*/
ath_hal_mibevent(ah, &sc->sc_halstats);
ath_hal_intrset(ah, sc->sc_imask);
}
}
return 1;
}
/* Swap transmit descriptor.
* if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
* function.
*/
static inline void
ath_desc_swap(struct ath_desc *ds)
{
#ifdef AH_NEED_DESC_SWAP
ds->ds_link = htole32(ds->ds_link);
ds->ds_data = htole32(ds->ds_data);
ds->ds_ctl0 = htole32(ds->ds_ctl0);
ds->ds_ctl1 = htole32(ds->ds_ctl1);
ds->ds_hw[0] = htole32(ds->ds_hw[0]);
ds->ds_hw[1] = htole32(ds->ds_hw[1]);
#endif
}
static void
ath_fatal_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
if_printf(ifp, "hardware error; resetting\n");
ath_reset(ifp);
}
static void
ath_rxorn_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
if_printf(ifp, "rx FIFO overrun; resetting\n");
ath_reset(ifp);
}
static void
ath_bmiss_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
"unexpect operating mode %u", ic->ic_opmode);
if (ic->ic_state == IEEE80211_S_RUN) {
u_int64_t lastrx = sc->sc_lastrx;
u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: tsf %" PRIu64 " lastrx %" PRId64
" (%" PRIu64 ") bmiss %u\n",
__func__, tsf, tsf - lastrx, lastrx,
ic->ic_bmisstimeout*1024);
/*
* Workaround phantom bmiss interrupts by sanity-checking
* the time of our last rx'd frame. If it is within the
* beacon miss interval then ignore the interrupt. If it's
* truly a bmiss we'll get another interrupt soon and that'll
* be dispatched up for processing.
*/
if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
NET_LOCK_GIANT();
ieee80211_beacon_miss(ic);
NET_UNLOCK_GIANT();
} else
sc->sc_stats.ast_bmiss_phantom++;
}
}
static void
ath_radar_proc(void *arg, int pending)
{
#if 0
struct ath_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
struct ath_hal *ah = sc->sc_ah;
HAL_CHANNEL hchan;
if (ath_hal_procdfs(ah, &hchan)) {
if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
hchan.channel, hchan.channelFlags, hchan.privFlags);
/*
* Initiate channel change.
*/
/* XXX not yet */
}
#endif
}
static u_int
ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
{
#define N(a) (sizeof(a) / sizeof(a[0]))
static const u_int modeflags[] = {
0, /* IEEE80211_MODE_AUTO */
CHANNEL_A, /* IEEE80211_MODE_11A */
CHANNEL_B, /* IEEE80211_MODE_11B */
CHANNEL_PUREG, /* IEEE80211_MODE_11G */
0, /* IEEE80211_MODE_FH */
CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
};
enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
return modeflags[mode];
#undef N
}
static int
ath_ifinit(struct ifnet *ifp)
{
struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
return ath_init(sc);
}
static void
ath_settkipmic(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
if ((ic->ic_caps & IEEE80211_C_TKIP) &&
!(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
if (ic->ic_flags & IEEE80211_F_WME) {
(void)ath_hal_settkipmic(ah, AH_FALSE);
ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
} else {
(void)ath_hal_settkipmic(ah, AH_TRUE);
ic->ic_caps |= IEEE80211_C_TKIPMIC;
}
}
}
static int
ath_init(struct ath_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
int error = 0, s;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
__func__, ifp->if_flags);
if (device_is_active(sc->sc_dev)) {
s = splnet();
} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
!device_is_active(sc->sc_dev))
return 0;
else
s = splnet();
/*
* Stop anything previously setup. This is safe
* whether this is the first time through or not.
*/
ath_stop_locked(ifp, 0);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
ath_settkipmic(sc);
sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
if_printf(ifp, "unable to reset hardware; hal status %u\n",
status);
error = EIO;
goto done;
}
/*
* This is needed only to setup initial state
* but it's best done after a reset.
*/
ath_update_txpow(sc);
/*
* Likewise this is set during reset so update
* state cached in the driver.
*/
ath_restore_diversity(sc);
sc->sc_calinterval = 1;
sc->sc_caltries = 0;
/*
* Setup the hardware after reset: the key cache
* is filled as needed and the receive engine is
* set going. Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if ((error = ath_startrecv(sc)) != 0) {
if_printf(ifp, "unable to start recv logic\n");
goto done;
}
/*
* Enable interrupts.
*/
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
| HAL_INT_RXEOL | HAL_INT_RXORN
| HAL_INT_FATAL | HAL_INT_GLOBAL;
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
sc->sc_imask |= HAL_INT_MIB;
ath_hal_intrset(ah, sc->sc_imask);
ifp->if_flags |= IFF_RUNNING;
ic->ic_state = IEEE80211_S_INIT;
/*
* The hardware should be ready to go now so it's safe
* to kick the 802.11 state machine as it's likely to
* immediately call back to us to send mgmt frames.
*/
ath_chan_change(sc, ic->ic_curchan);
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->start(sc->sc_tx99);
else
#endif
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
} else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
done:
splx(s);
return error;
}
static void
ath_stop_locked(struct ifnet *ifp, int disable)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
/* KASSERT() IPL_NET */
if (ifp->if_flags & IFF_RUNNING) {
/*
* Shutdown the hardware and driver:
* reset 802.11 state machine
* turn off timers
* disable interrupts
* turn off the radio
* clear transmit machinery
* clear receive machinery
* drain and release tx queues
* reclaim beacon resources
* power down hardware
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->stop(sc->sc_tx99);
#endif
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
ifp->if_flags &= ~IFF_RUNNING;
ifp->if_timer = 0;
if (device_is_enabled(sc->sc_dev)) {
if (sc->sc_softled) {
callout_stop(&sc->sc_ledtimer);
ath_hal_gpioset(ah, sc->sc_ledpin,
!sc->sc_ledon);
sc->sc_blinking = 0;
}
ath_hal_intrset(ah, 0);
}
ath_draintxq(sc);
if (device_is_enabled(sc->sc_dev)) {
ath_stoprecv(sc);
ath_hal_phydisable(ah);
} else
sc->sc_rxlink = NULL;
IF_PURGE(&ifp->if_snd);
ath_beacon_free(sc);
}
if (disable)
pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
}
static void
ath_stop(struct ifnet *ifp, int disable)
{
int s;
s = splnet();
ath_stop_locked(ifp, disable);
splx(s);
}
static void
ath_restore_diversity(struct ath_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct ath_hal *ah = sc->sc_ah;
if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
sc->sc_diversity != ath_hal_getdiversity(ah)) {
if_printf(ifp, "could not restore diversity setting %d\n",
sc->sc_diversity);
sc->sc_diversity = ath_hal_getdiversity(ah);
}
}
/*
* Reset the hardware w/o losing operational state. This is
* basically a more efficient way of doing ath_stop, ath_init,
* followed by state transitions to the current 802.11
* operational state. Used to recover from various errors and
* to reset or reload hardware state.
*/
int
ath_reset(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_channel *c;
HAL_STATUS status;
/*
* Convert to a HAL channel description with the flags
* constrained to reflect the current operating mode.
*/
c = ic->ic_curchan;
sc->sc_curchan.channel = c->ic_freq;
sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_draintxq(sc); /* stop xmit side */
ath_stoprecv(sc); /* stop recv side */
ath_settkipmic(sc); /* configure TKIP MIC handling */
/* NB: indicate channel change so we do a full reset */
if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
__func__, status);
ath_update_txpow(sc); /* update tx power state */
ath_restore_diversity(sc);
sc->sc_calinterval = 1;
sc->sc_caltries = 0;
if (ath_startrecv(sc) != 0) /* restart recv */
if_printf(ifp, "%s: unable to start recv logic\n", __func__);
/*
* We may be doing a reset in response to an ioctl
* that changes the channel so update any state that
* might change as a result.
*/
ath_chan_change(sc, c);
if (ic->ic_state == IEEE80211_S_RUN)
ath_beacon_config(sc); /* restart beacons */
ath_hal_intrset(ah, sc->sc_imask);
ath_start(ifp); /* restart xmit */
return 0;
}
/*
* Cleanup driver resources when we run out of buffers
* while processing fragments; return the tx buffers
* allocated and drop node references.
*/
static void
ath_txfrag_cleanup(struct ath_softc *sc,
ath_bufhead *frags, struct ieee80211_node *ni)
{
struct ath_buf *bf;
ATH_TXBUF_LOCK_ASSERT(sc);
while ((bf = STAILQ_FIRST(frags)) != NULL) {
STAILQ_REMOVE_HEAD(frags, bf_list);
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
sc->sc_if.if_flags &= ~IFF_OACTIVE;
ieee80211_node_decref(ni);
}
}
/*
* Setup xmit of a fragmented frame. Allocate a buffer
* for each frag and bump the node reference count to
* reflect the held reference to be setup by ath_tx_start.
*/
static int
ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
struct mbuf *m0, struct ieee80211_node *ni)
{
struct mbuf *m;
struct ath_buf *bf;
ATH_TXBUF_LOCK(sc);
for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
bf = STAILQ_FIRST(&sc->sc_txbuf);
if (bf == NULL) { /* out of buffers, cleanup */
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
__func__);
sc->sc_if.if_flags |= IFF_OACTIVE;
ath_txfrag_cleanup(sc, frags, ni);
break;
}
STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
ieee80211_node_incref(ni);
STAILQ_INSERT_TAIL(frags, bf, bf_list);
}
ATH_TXBUF_UNLOCK(sc);
return !STAILQ_EMPTY(frags);
}
static void
ath_start(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ath_buf *bf;
struct mbuf *m, *next;
struct ieee80211_frame *wh;
struct ether_header *eh;
ath_bufhead frags;
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
!device_is_active(sc->sc_dev))
return;
if (sc->sc_flags & ATH_KEY_UPDATING)
return;
for (;;) {
/*
* Grab a TX buffer and associated resources.
*/
ATH_TXBUF_LOCK(sc);
bf = STAILQ_FIRST(&sc->sc_txbuf);
if (bf != NULL)
STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
ATH_TXBUF_UNLOCK(sc);
if (bf == NULL) {
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
__func__);
sc->sc_stats.ast_tx_qstop++;
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* Poll the management queue for frames; they
* have priority over normal data frames.
*/
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m == NULL) {
/*
* No data frames go out unless we're associated.
*/
if (ic->ic_state != IEEE80211_S_RUN) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: discard data packet, state %s\n",
__func__,
ieee80211_state_name[ic->ic_state]);
sc->sc_stats.ast_tx_discard++;
ATH_TXBUF_LOCK(sc);
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
ATH_TXBUF_UNLOCK(sc);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
if (m == NULL) {
ATH_TXBUF_LOCK(sc);
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
ATH_TXBUF_UNLOCK(sc);
break;
}
STAILQ_INIT(&frags);
/*
* Find the node for the destination so we can do
* things like power save and fast frames aggregation.
*/
if (m->m_len < sizeof(struct ether_header) &&
(m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
ic->ic_stats.is_tx_nobuf++; /* XXX */
ni = NULL;
goto bad;
}
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
/* NB: ieee80211_find_txnode does stat+msg */
m_freem(m);
goto bad;
}
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
(m->m_flags & M_PWR_SAV) == 0) {
/*
* Station in power save mode; pass the frame
* to the 802.11 layer and continue. We'll get
* the frame back when the time is right.
*/
ieee80211_pwrsave(ic, ni, m);
goto reclaim;
}
/* calculate priority so we can find the tx queue */
if (ieee80211_classify(ic, m, ni)) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: discard, classification failure\n",
__func__);
m_freem(m);
goto bad;
}
ifp->if_opackets++;
bpf_mtap(ifp, m);
/*
* Encapsulate the packet in prep for transmission.
*/
m = ieee80211_encap(ic, m, ni);
if (m == NULL) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: encapsulation failure\n",
__func__);
sc->sc_stats.ast_tx_encap++;
goto bad;
}
/*
* Check for fragmentation. If this has frame
* has been broken up verify we have enough
* buffers to send all the fragments so all
* go out or none...
*/
if ((m->m_flags & M_FRAG) &&
!ath_txfrag_setup(sc, &frags, m, ni)) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: out of txfrag buffers\n", __func__);
ic->ic_stats.is_tx_nobuf++; /* XXX */
ath_freetx(m);
goto bad;
}
} else {
/*
* Hack! The referenced node pointer is in the
* rcvif field of the packet header. This is
* placed there by ieee80211_mgmt_output because
* we need to hold the reference with the frame
* and there's no other way (other than packet
* tags which we consider too expensive to use)
* to pass it along.
*/
ni = M_GETCTX(m, struct ieee80211_node *);
M_CLEARCTX(m);
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
/* fill time stamp */
u_int64_t tsf;
u_int32_t *tstamp;
tsf = ath_hal_gettsf64(ah);
/* XXX: adjust 100us delay to xmit */
tsf += 100;
tstamp = (u_int32_t *)&wh[1];
tstamp[0] = htole32(tsf & 0xffffffff);
tstamp[1] = htole32(tsf >> 32);
}
sc->sc_stats.ast_tx_mgmt++;
}
nextfrag:
next = m->m_nextpkt;
if (ath_tx_start(sc, ni, bf, m)) {
bad:
ifp->if_oerrors++;
reclaim:
ATH_TXBUF_LOCK(sc);
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
ath_txfrag_cleanup(sc, &frags, ni);
ATH_TXBUF_UNLOCK(sc);
if (ni != NULL)
ieee80211_free_node(ni);
continue;
}
if (next != NULL) {
m = next;
bf = STAILQ_FIRST(&frags);
KASSERTMSG(bf != NULL, "no buf for txfrag");
STAILQ_REMOVE_HEAD(&frags, bf_list);
goto nextfrag;
}
ifp->if_timer = 1;
}
}
static int
ath_media_change(struct ifnet *ifp)
{
#define IS_UP(ifp) \
((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
int error;
error = ieee80211_media_change(ifp);
if (error == ENETRESET) {
if (IS_UP(ifp))
ath_init(ifp->if_softc); /* XXX lose error */
error = 0;
}
return error;
#undef IS_UP
}
#ifdef AR_DEBUG
static void
ath_keyprint(const char *tag, u_int ix,
const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
{
static const char *ciphers[] = {
"WEP",
"AES-OCB",
"AES-CCM",
"CKIP",
"TKIP",
"CLR",
};
int i, n;
printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
for (i = 0, n = hk->kv_len; i < n; i++)
printf("%02x", hk->kv_val[i]);
printf(" mac %s", ether_sprintf(mac));
if (hk->kv_type == HAL_CIPHER_TKIP) {
printf(" mic ");
for (i = 0; i < sizeof(hk->kv_mic); i++)
printf("%02x", hk->kv_mic[i]);
}
printf("\n");
}
#endif
/*
* Set a TKIP key into the hardware. This handles the
* potential distribution of key state to multiple key
* cache slots for TKIP.
*/
static int
ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
{
#define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
struct ath_hal *ah = sc->sc_ah;
KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
"got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
if (sc->sc_splitmic) {
/*
* TX key goes at first index, RX key at the rx index.
* The hal handles the MIC keys at index+64.
*/
memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
zerobssid))
return 0;
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
/* XXX delete tx key on failure? */
return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
hk, mac);
} else {
/*
* Room for both TX+RX MIC keys in one key cache
* slot, just set key at the first index; the HAL
* will handle the reset.
*/
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
KEYPRINTF(sc, k->wk_keyix, hk, mac);
return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
}
} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
if (sc->sc_splitmic) {
/*
* NB: must pass MIC key in expected location when
* the keycache only holds one MIC key per entry.
*/
memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
} else
memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
KEYPRINTF(sc, k->wk_keyix, hk, mac);
return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
} else if (k->wk_flags & IEEE80211_KEY_RECV) {
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
KEYPRINTF(sc, k->wk_keyix, hk, mac);
return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
}
return 0;
#undef IEEE80211_KEY_XR
}
/*
* Set a net80211 key into the hardware. This handles the
* potential distribution of key state to multiple key
* cache slots for TKIP with hardware MIC support.
*/
static int
ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
const u_int8_t mac0[IEEE80211_ADDR_LEN],
struct ieee80211_node *bss)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
static const u_int8_t ciphermap[] = {
HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
(u_int8_t) -1, /* 4 is not allocated */
HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
};
struct ath_hal *ah = sc->sc_ah;
const struct ieee80211_cipher *cip = k->wk_cipher;
u_int8_t gmac[IEEE80211_ADDR_LEN];
const u_int8_t *mac;
HAL_KEYVAL hk;
memset(&hk, 0, sizeof(hk));
/*
* Software crypto uses a "clear key" so non-crypto
* state kept in the key cache are maintained and
* so that rx frames have an entry to match.
*/
if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
KASSERTMSG(cip->ic_cipher < N(ciphermap),
"invalid cipher type %u", cip->ic_cipher);
hk.kv_type = ciphermap[cip->ic_cipher];
hk.kv_len = k->wk_keylen;
memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
} else
hk.kv_type = HAL_CIPHER_CLR;
if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
/*
* Group keys on hardware that supports multicast frame
* key search use a mac that is the sender's address with
* the high bit set instead of the app-specified address.
*/
IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
gmac[0] |= 0x80;
mac = gmac;
} else
mac = mac0;
if ((hk.kv_type == HAL_CIPHER_TKIP &&
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
return ath_keyset_tkip(sc, k, &hk, mac);
} else {
KEYPRINTF(sc, k->wk_keyix, &hk, mac);
return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
}
#undef N
}
/*
* Allocate tx/rx key slots for TKIP. We allocate two slots for
* each key, one for decrypt/encrypt and the other for the MIC.
*/
static u_int16_t
key_alloc_2pair(struct ath_softc *sc,
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
u_int i, keyix;
KASSERTMSG(sc->sc_splitmic, "key cache !split");
/* XXX could optimize */
for (i = 0; i < N(sc->sc_keymap)/4; i++) {
u_int8_t b = sc->sc_keymap[i];
if (b != 0xff) {
/*
* One or more slots in this byte are free.
*/
keyix = i*NBBY;
while (b & 1) {
again:
keyix++;
b >>= 1;
}
/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
if (isset(sc->sc_keymap, keyix+32) ||
isset(sc->sc_keymap, keyix+64) ||
isset(sc->sc_keymap, keyix+32+64)) {
/* full pair unavailable */
/* XXX statistic */
if (keyix == (i+1)*NBBY) {
/* no slots were appropriate, advance */
continue;
}
goto again;
}
setbit(sc->sc_keymap, keyix);
setbit(sc->sc_keymap, keyix+64);
setbit(sc->sc_keymap, keyix+32);
setbit(sc->sc_keymap, keyix+32+64);
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
"%s: key pair %u,%u %u,%u\n",
__func__, keyix, keyix+64,
keyix+32, keyix+32+64);
*txkeyix = keyix;
*rxkeyix = keyix+32;
return keyix;
}
}
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
return IEEE80211_KEYIX_NONE;
#undef N
}
/*
* Allocate tx/rx key slots for TKIP. We allocate two slots for
* each key, one for decrypt/encrypt and the other for the MIC.
*/
static int
key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
ieee80211_keyix *rxkeyix)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
u_int i, keyix;
KASSERTMSG(!sc->sc_splitmic, "key cache split");
/* XXX could optimize */
for (i = 0; i < N(sc->sc_keymap)/4; i++) {
uint8_t b = sc->sc_keymap[i];
if (b != 0xff) {
/*
* One or more slots in this byte are free.
*/
keyix = i*NBBY;
while (b & 1) {
again:
keyix++;
b >>= 1;
}
if (isset(sc->sc_keymap, keyix+64)) {
/* full pair unavailable */
/* XXX statistic */
if (keyix == (i+1)*NBBY) {
/* no slots were appropriate, advance */
continue;
}
goto again;
}
setbit(sc->sc_keymap, keyix);
setbit(sc->sc_keymap, keyix+64);
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
"%s: key pair %u,%u\n",
__func__, keyix, keyix+64);
*txkeyix = *rxkeyix = keyix;
return 1;
}
}
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
return 0;
#undef N
}
/*
* Allocate a single key cache slot.
*/
static int
key_alloc_single(struct ath_softc *sc,
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
u_int i, keyix;
/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
for (i = 0; i < N(sc->sc_keymap); i++) {
u_int8_t b = sc->sc_keymap[i];
if (b != 0xff) {
/*
* One or more slots are free.
*/
keyix = i*NBBY;
while (b & 1)
keyix++, b >>= 1;
setbit(sc->sc_keymap, keyix);
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
__func__, keyix);
*txkeyix = *rxkeyix = keyix;
return 1;
}
}
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
return 0;
#undef N
}
/*
* Allocate one or more key cache slots for a uniacst key. The
* key itself is needed only to identify the cipher. For hardware
* TKIP with split cipher+MIC keys we allocate two key cache slot
* pairs so that we can setup separate TX and RX MIC keys. Note
* that the MIC key for a TKIP key at slot i is assumed by the
* hardware to be at slot i+64. This limits TKIP keys to the first
* 64 entries.
*/
static int
ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
/*
* Group key allocation must be handled specially for
* parts that do not support multicast key cache search
* functionality. For those parts the key id must match
* the h/w key index so lookups find the right key. On
* parts w/ the key search facility we install the sender's
* mac address (with the high bit set) and let the hardware
* find the key w/o using the key id. This is preferred as
* it permits us to support multiple users for adhoc and/or
* multi-station operation.
*/
if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
if (!(&ic->ic_nw_keys[0] <= k &&
k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
/* should not happen */
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
"%s: bogus group key\n", __func__);
return 0;
}
/*
* XXX we pre-allocate the global keys so
* have no way to check if they've already been allocated.
*/
*keyix = *rxkeyix = k - ic->ic_nw_keys;
return 1;
}
/*
* We allocate two pair for TKIP when using the h/w to do
* the MIC. For everything else, including software crypto,
* we allocate a single entry. Note that s/w crypto requires
* a pass-through slot on the 5211 and 5212. The 5210 does
* not support pass-through cache entries and we map all
* those requests to slot 0.
*/
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
return key_alloc_single(sc, keyix, rxkeyix);
} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
if (sc->sc_splitmic)
return key_alloc_2pair(sc, keyix, rxkeyix);
else
return key_alloc_pair(sc, keyix, rxkeyix);
} else {
return key_alloc_single(sc, keyix, rxkeyix);
}
}
/*
* Delete an entry in the key cache allocated by ath_key_alloc.
*/
static int
ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
const struct ieee80211_cipher *cip = k->wk_cipher;
u_int keyix = k->wk_keyix;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
if (!device_has_power(sc->sc_dev)) {
aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
k->wk_keyix);
}
ath_hal_keyreset(ah, keyix);
/*
* Handle split tx/rx keying required for TKIP with h/w MIC.
*/
if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
ath_hal_keyreset(ah, keyix+32); /* RX key */
if (keyix >= IEEE80211_WEP_NKID) {
/*
* Don't touch keymap entries for global keys so
* they are never considered for dynamic allocation.
*/
clrbit(sc->sc_keymap, keyix);
if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
if (sc->sc_splitmic) {
/* +32 for RX key, +32+64 for RX key MIC */
clrbit(sc->sc_keymap, keyix+32);
clrbit(sc->sc_keymap, keyix+32+64);
}
}
}
return 1;
}
/*
* Set the key cache contents for the specified key. Key cache
* slot(s) must already have been allocated by ath_key_alloc.
*/
static int
ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
const u_int8_t mac[IEEE80211_ADDR_LEN])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
if (!device_has_power(sc->sc_dev)) {
aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
k->wk_keyix);
}
return ath_keyset(sc, k, mac, ic->ic_bss);
}
/*
* Block/unblock tx+rx processing while a key change is done.
* We assume the caller serializes key management operations
* so we only need to worry about synchronization with other
* uses that originate in the driver.
*/
static void
ath_key_update_begin(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
#if 0
tasklet_disable(&sc->sc_rxtq);
#endif
sc->sc_flags |= ATH_KEY_UPDATING;
}
static void
ath_key_update_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
sc->sc_flags &= ~ATH_KEY_UPDATING;
#if 0
tasklet_enable(&sc->sc_rxtq);
#endif
}
/*
* Calculate the receive filter according to the
* operating mode and state:
*
* o always accept unicast, broadcast, and multicast traffic
* o maintain current state of phy error reception (the hal
* may enable phy error frames for noise immunity work)
* o probe request frames are accepted only when operating in
* hostap, adhoc, or monitor modes
* o enable promiscuous mode according to the interface state
* o accept beacons:
* - when operating in adhoc mode so the 802.11 layer creates
* node table entries for peers,
* - when operating in station mode for collecting rssi data when
* the station is otherwise quiet, or
* - when scanning
*/
static u_int32_t
ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = &sc->sc_if;
u_int32_t rfilt;
rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
| HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
if (ic->ic_opmode != IEEE80211_M_STA)
rfilt |= HAL_RX_FILTER_PROBEREQ;
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
(ifp->if_flags & IFF_PROMISC))
rfilt |= HAL_RX_FILTER_PROM;
if (ifp->if_flags & IFF_PROMISC)
rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
if (ic->ic_opmode == IEEE80211_M_STA ||
ic->ic_opmode == IEEE80211_M_IBSS ||
state == IEEE80211_S_SCAN)
rfilt |= HAL_RX_FILTER_BEACON;
return rfilt;
}
static void
ath_mode_init(struct ath_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
struct ether_multi *enm;
struct ether_multistep estep;
u_int32_t rfilt, mfilt[2], val;
int i;
uint8_t pos;
/* configure rx filter */
rfilt = ath_calcrxfilter(sc, ic->ic_state);
ath_hal_setrxfilter(ah, rfilt);
/* configure operational mode */
ath_hal_setopmode(ah);
/* Write keys to hardware; it may have been powered down. */
ath_key_update_begin(ic);
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
ath_key_set(ic,
&ic->ic_crypto.cs_nw_keys[i],
ic->ic_myaddr);
}
ath_key_update_end(ic);
/*
* Handle any link-level address change. Note that we only
* need to force ic_myaddr; any other addresses are handled
* as a byproduct of the ifnet code marking the interface
* down then up.
*
* XXX should get from lladdr instead of arpcom but that's more work
*/
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
ath_hal_setmac(ah, ic->ic_myaddr);
/* calculate and install multicast filter */
ifp->if_flags &= ~IFF_ALLMULTI;
mfilt[0] = mfilt[1] = 0;
ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
while (enm != NULL) {
void *dl;
/* XXX Punt on ranges. */
if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
mfilt[0] = mfilt[1] = 0xffffffff;
ifp->if_flags |= IFF_ALLMULTI;
break;
}
dl = enm->enm_addrlo;
val = LE_READ_4((char *)dl + 0);
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
val = LE_READ_4((char *)dl + 3);
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
pos &= 0x3f;
mfilt[pos / 32] |= (1 << (pos % 32));
ETHER_NEXT_MULTI(estep, enm);
}
ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
__func__, rfilt, mfilt[0], mfilt[1]);
}
/*
* Set the slot time based on the current setting.
*/
static void
ath_setslottime(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
if (ic->ic_flags & IEEE80211_F_SHSLOT)
ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
else
ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
sc->sc_updateslot = OK;
}
/*
* Callback from the 802.11 layer to update the
* slot time based on the current setting.
*/
static void
ath_updateslot(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
/*
* When not coordinating the BSS, change the hardware
* immediately. For other operation we defer the change
* until beacon updates have propagated to the stations.
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
sc->sc_updateslot = UPDATE;
else
ath_setslottime(sc);
}
/*
* Setup a h/w transmit queue for beacons.
*/
static int
ath_beaconq_setup(struct ath_hal *ah)
{
HAL_TXQ_INFO qi;
memset(&qi, 0, sizeof(qi));
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
/* NB: for dynamic turbo, don't enable any other interrupts */
qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
}
/*
* Setup the transmit queue parameters for the beacon queue.
*/
static int
ath_beaconq_config(struct ath_softc *sc)
{
#define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
/*
* Always burst out beacon and CAB traffic.
*/
qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
} else {
struct wmeParams *wmep =
&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
/*
* Adhoc mode; important thing is to use 2x cwmin.
*/
qi.tqi_aifs = wmep->wmep_aifsn;
qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
}
if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
device_printf(sc->sc_dev, "unable to update parameters for "
"beacon hardware queue!\n");
return 0;
} else {
ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
return 1;
}
#undef ATH_EXPONENT_TO_VALUE
}
/*
* Allocate and setup an initial beacon frame.
*/
static int
ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_buf *bf;
struct mbuf *m;
int error;
bf = STAILQ_FIRST(&sc->sc_bbuf);
if (bf == NULL) {
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
sc->sc_stats.ast_be_nombuf++; /* XXX */
return ENOMEM; /* XXX */
}
/*
* NB: the beacon data buffer must be 32-bit aligned;
* we assume the mbuf routines will return us something
* with this alignment (perhaps should assert).
*/
m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
if (m == NULL) {
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
__func__);
sc->sc_stats.ast_be_nombuf++;
return ENOMEM;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
BUS_DMA_NOWAIT);
if (error == 0) {
bf->bf_m = m;
bf->bf_node = ieee80211_ref_node(ni);
} else {
m_freem(m);
}
return error;
}
/*
* Setup the beacon frame for transmit.
*/
static void
ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
{
#define USE_SHPREAMBLE(_ic) \
(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
== IEEE80211_F_SHPREAMBLE)
struct ieee80211_node *ni = bf->bf_node;
struct ieee80211com *ic = ni->ni_ic;
struct mbuf *m = bf->bf_m;
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds;
int flags, antenna;
const HAL_RATE_TABLE *rt;
u_int8_t rix, rate;
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
__func__, m, m->m_len);
/* setup descriptors */
ds = bf->bf_desc;
flags = HAL_TXDESC_NOACK;
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
flags |= HAL_TXDESC_VEOL;
/*
* Let hardware handle antenna switching unless
* the user has selected a transmit antenna
* (sc_txantenna is not 0).
*/
antenna = sc->sc_txantenna;
} else {
ds->ds_link = 0;
/*
* Switch antenna every 4 beacons, unless the user
* has selected a transmit antenna (sc_txantenna
* is not 0).
*
* XXX assumes two antenna
*/
if (sc->sc_txantenna == 0)
antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
else
antenna = sc->sc_txantenna;
}
KASSERTMSG(bf->bf_nseg == 1,
"multi-segment beacon frame; nseg %u", bf->bf_nseg);
ds->ds_data = bf->bf_segs[0].ds_addr;
/*
* Calculate rate code.
* XXX everything at min xmit rate
*/
rix = sc->sc_minrateix;
rt = sc->sc_currates;
rate = rt->info[rix].rateCode;
if (USE_SHPREAMBLE(ic))
rate |= rt->info[rix].shortPreamble;
ath_hal_setuptxdesc(ah, ds
, m->m_len + IEEE80211_CRC_LEN /* frame length */
, sizeof(struct ieee80211_frame)/* header length */
, HAL_PKT_TYPE_BEACON /* Atheros packet type */
, ni->ni_txpower /* txpower XXX */
, rate, 1 /* series 0 rate/tries */
, HAL_TXKEYIX_INVALID /* no encryption */
, antenna /* antenna mode */
, flags /* no ack, veol for beacons */
, 0 /* rts/cts rate */
, 0 /* rts/cts duration */
);
/* NB: beacon's BufLen must be a multiple of 4 bytes */
ath_hal_filltxdesc(ah, ds
, roundup(m->m_len, 4) /* buffer length */
, AH_TRUE /* first segment */
, AH_TRUE /* last segment */
, ds /* first descriptor */
);
/* NB: The desc swap function becomes void, if descriptor swapping
* is not enabled
*/
ath_desc_swap(ds);
#undef USE_SHPREAMBLE
}
/*
* Transmit a beacon frame at SWBA. Dynamic updates to the
* frame contents are done as needed and the slot time is
* also adjusted based on current state.
*/
static void
ath_beacon_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
struct ieee80211_node *ni = bf->bf_node;
struct ieee80211com *ic = ni->ni_ic;
struct ath_hal *ah = sc->sc_ah;
struct mbuf *m;
int ncabq, error, otherant;
DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
__func__, pending);
if (ic->ic_opmode == IEEE80211_M_STA ||
ic->ic_opmode == IEEE80211_M_MONITOR ||
bf == NULL || bf->bf_m == NULL) {
DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
return;
}
/*
* Check if the previous beacon has gone out. If
* not don't try to post another, skip this period
* and wait for the next. Missed beacons indicate
* a problem and should not occur. If we miss too
* many consecutive beacons reset the device.
*/
if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
sc->sc_bmisscount++;
DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
"%s: missed %u consecutive beacons\n",
__func__, sc->sc_bmisscount);
if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
return;
}
if (sc->sc_bmisscount != 0) {
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: resume beacon xmit after %u misses\n",
__func__, sc->sc_bmisscount);
sc->sc_bmisscount = 0;
}
/*
* Update dynamic beacon contents. If this returns
* non-zero then we need to remap the memory because
* the beacon frame changed size (probably because
* of the TIM bitmap).
*/
m = bf->bf_m;
ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
/* XXX too conservative? */
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
BUS_DMA_NOWAIT);
if (error != 0) {
if_printf(&sc->sc_if,
"%s: bus_dmamap_load_mbuf failed, error %u\n",
__func__, error);
return;
}
}
/*
* Handle slot time change when a non-ERP station joins/leaves
* an 11g network. The 802.11 layer notifies us via callback,
* we mark updateslot, then wait one beacon before effecting
* the change. This gives associated stations at least one
* beacon interval to note the state change.
*/
/* XXX locking */
if (sc->sc_updateslot == UPDATE)
sc->sc_updateslot = COMMIT; /* commit next beacon */
else if (sc->sc_updateslot == COMMIT)
ath_setslottime(sc); /* commit change to h/w */
/*
* Check recent per-antenna transmit statistics and flip
* the default antenna if noticeably more frames went out
* on the non-default antenna.
* XXX assumes 2 anntenae
*/
otherant = sc->sc_defant & 1 ? 2 : 1;
if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
ath_setdefantenna(sc, otherant);
sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
/*
* Construct tx descriptor.
*/
ath_beacon_setup(sc, bf);
/*
* Stop any current dma and put the new frame on the queue.
* This should never fail since we check above that no frames
* are still pending on the queue.
*/
if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: beacon queue %u did not stop?\n",
__func__, sc->sc_bhalq);
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
/*
* Enable the CAB queue before the beacon queue to
* insure cab frames are triggered by this beacon.
*/
if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
ath_hal_txstart(ah, sc->sc_bhalq);
DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
"%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
sc->sc_stats.ast_be_xmit++;
}
/*
* Reset the hardware after detecting beacons have stopped.
*/
static void
ath_bstuck_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
sc->sc_bmisscount);
ath_reset(ifp);
}
/*
* Reclaim beacon resources.
*/
static void
ath_beacon_free(struct ath_softc *sc)
{
struct ath_buf *bf;
STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
if (bf->bf_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
if (bf->bf_node != NULL) {
ieee80211_free_node(bf->bf_node);
bf->bf_node = NULL;
}
}
}
/*
* Configure the beacon and sleep timers.
*
* When operating as an AP this resets the TSF and sets
* up the hardware to notify us when we need to issue beacons.
*
* When operating in station mode this sets up the beacon
* timers according to the timestamp of the last received
* beacon and the current TSF, configures PCF and DTIM
* handling, programs the sleep registers so the hardware
* will wakeup in time to receive beacons, and configures
* the beacon miss handling so we'll receive a BMISS
* interrupt when we stop seeing beacons from the AP
* we've associated with.
*/
static void
ath_beacon_config(struct ath_softc *sc)
{
#define TSF_TO_TU(_h,_l) \
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
#define FUDGE 2
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
u_int32_t nexttbtt, intval, tsftu;
u_int64_t tsf;
/* extract tstamp from last beacon and convert to TU */
nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
LE_READ_4(ni->ni_tstamp.data));
/* NB: the beacon interval is kept internally in TU's */
intval = ni->ni_intval & HAL_BEACON_PERIOD;
if (nexttbtt == 0) /* e.g. for ap mode */
nexttbtt = intval;
else if (intval) /* NB: can be 0 for monitor mode */
nexttbtt = roundup(nexttbtt, intval);
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
__func__, nexttbtt, intval, ni->ni_intval);
if (ic->ic_opmode == IEEE80211_M_STA) {
HAL_BEACON_STATE bs;
int dtimperiod, dtimcount;
int cfpperiod, cfpcount;
/*
* Setup dtim and cfp parameters according to
* last beacon we received (which may be none).
*/
dtimperiod = ni->ni_dtim_period;
if (dtimperiod <= 0) /* NB: 0 if not known */
dtimperiod = 1;
dtimcount = ni->ni_dtim_count;
if (dtimcount >= dtimperiod) /* NB: sanity check */
dtimcount = 0; /* XXX? */
cfpperiod = 1; /* NB: no PCF support yet */
cfpcount = 0;
/*
* Pull nexttbtt forward to reflect the current
* TSF and calculate dtim+cfp state for the result.
*/
tsf = ath_hal_gettsf64(ah);
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
do {
nexttbtt += intval;
if (--dtimcount < 0) {
dtimcount = dtimperiod - 1;
if (--cfpcount < 0)
cfpcount = cfpperiod - 1;
}
} while (nexttbtt < tsftu);
memset(&bs, 0, sizeof(bs));
bs.bs_intval = intval;
bs.bs_nexttbtt = nexttbtt;
bs.bs_dtimperiod = dtimperiod*intval;
bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
bs.bs_cfpmaxduration = 0;
#if 0
/*
* The 802.11 layer records the offset to the DTIM
* bitmap while receiving beacons; use it here to
* enable h/w detection of our AID being marked in
* the bitmap vector (to indicate frames for us are
* pending at the AP).
* XXX do DTIM handling in s/w to WAR old h/w bugs
* XXX enable based on h/w rev for newer chips
*/
bs.bs_timoffset = ni->ni_timoff;
#endif
/*
* Calculate the number of consecutive beacons to miss
* before taking a BMISS interrupt. The configuration
* is specified in ms, so we need to convert that to
* TU's and then calculate based on the beacon interval.
* Note that we clamp the result to at most 10 beacons.
*/
bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
if (bs.bs_bmissthreshold > 10)
bs.bs_bmissthreshold = 10;
else if (bs.bs_bmissthreshold <= 0)
bs.bs_bmissthreshold = 1;
/*
* Calculate sleep duration. The configuration is
* given in ms. We insure a multiple of the beacon
* period is used. Also, if the sleep duration is
* greater than the DTIM period then it makes senses
* to make it a multiple of that.
*
* XXX fixed at 100ms
*/
bs.bs_sleepduration =
roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
if (bs.bs_sleepduration > bs.bs_dtimperiod)
bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
, __func__
, tsf, tsftu
, bs.bs_intval
, bs.bs_nexttbtt
, bs.bs_dtimperiod
, bs.bs_nextdtim
, bs.bs_bmissthreshold
, bs.bs_sleepduration
, bs.bs_cfpperiod
, bs.bs_cfpmaxduration
, bs.bs_cfpnext
, bs.bs_timoffset
);
ath_hal_intrset(ah, 0);
ath_hal_beacontimers(ah, &bs);
sc->sc_imask |= HAL_INT_BMISS;
ath_hal_intrset(ah, sc->sc_imask);
} else {
ath_hal_intrset(ah, 0);
if (nexttbtt == intval)
intval |= HAL_BEACON_RESET_TSF;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
/*
* In IBSS mode enable the beacon timers but only
* enable SWBA interrupts if we need to manually
* prepare beacon frames. Otherwise we use a
* self-linked tx descriptor and let the hardware
* deal with things.
*/
intval |= HAL_BEACON_ENA;
if (!sc->sc_hasveol)
sc->sc_imask |= HAL_INT_SWBA;
if ((intval & HAL_BEACON_RESET_TSF) == 0) {
/*
* Pull nexttbtt forward to reflect
* the current TSF.
*/
tsf = ath_hal_gettsf64(ah);
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
do {
nexttbtt += intval;
} while (nexttbtt < tsftu);
}
ath_beaconq_config(sc);
} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
/*
* In AP mode we enable the beacon timers and
* SWBA interrupts to prepare beacon frames.
*/
intval |= HAL_BEACON_ENA;
sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
ath_beaconq_config(sc);
}
ath_hal_beaconinit(ah, nexttbtt, intval);
sc->sc_bmisscount = 0;
ath_hal_intrset(ah, sc->sc_imask);
/*
* When using a self-linked beacon descriptor in
* ibss mode load it once here.
*/
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
ath_beacon_proc(sc, 0);
}
sc->sc_syncbeacon = 0;
#undef UNDEF
#undef TSF_TO_TU
}
static int
ath_descdma_setup(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head,
const char *name, int nbuf, int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
struct ifnet *ifp = &sc->sc_if;
struct ath_desc *ds;
struct ath_buf *bf;
int i, bsize, error;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
__func__, name, nbuf, ndesc);
dd->dd_name = name;
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
/*
* Setup DMA descriptor area.
*/
dd->dd_dmat = sc->sc_dmat;
error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
if (error != 0) {
if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
"error %u\n", nbuf * ndesc, dd->dd_name, error);
goto fail0;
}
error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
if (error != 0) {
if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
nbuf * ndesc, dd->dd_name, error);
goto fail1;
}
/* allocate descriptors */
error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
if (error != 0) {
if_printf(ifp, "unable to create dmamap for %s descriptors, "
"error %u\n", dd->dd_name, error);
goto fail2;
}
error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
if_printf(ifp, "unable to map %s descriptors, error %u\n",
dd->dd_name, error);
goto fail3;
}
ds = dd->dd_desc;
dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
__func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
(uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
/* allocate rx buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
if (bf == NULL) {
if_printf(ifp, "malloc of %s buffers failed, size %u\n",
dd->dd_name, bsize);
goto fail4;
}
dd->dd_bufptr = bf;
STAILQ_INIT(head);
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
if (error != 0) {
if_printf(ifp, "unable to create dmamap for %s "
"buffer %u, error %u\n", dd->dd_name, i, error);
ath_descdma_cleanup(sc, dd, head);
return error;
}
STAILQ_INSERT_TAIL(head, bf, bf_list);
}
return 0;
fail4:
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
fail3:
bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
fail2:
bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
fail1:
bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
fail0:
memset(dd, 0, sizeof(*dd));
return error;
#undef DS2PHYS
}
static void
ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head)
{
struct ath_buf *bf;
struct ieee80211_node *ni;
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
STAILQ_FOREACH(bf, head, bf_list) {
if (bf->bf_m) {
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
if (bf->bf_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
bf->bf_dmamap = NULL;
}
ni = bf->bf_node;
bf->bf_node = NULL;
if (ni != NULL) {
/*
* Reclaim node reference.
*/
ieee80211_free_node(ni);
}
}
STAILQ_INIT(head);
free(dd->dd_bufptr, M_ATHDEV);
memset(dd, 0, sizeof(*dd));
}
static int
ath_desc_alloc(struct ath_softc *sc)
{
int error;
error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
"rx", ath_rxbuf, 1);
if (error != 0)
return error;
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
"tx", ath_txbuf, ATH_TXDESC);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
return error;
}
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
"beacon", 1, 1);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
return error;
}
return 0;
}
static void
ath_desc_free(struct ath_softc *sc)
{
if (sc->sc_bdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
if (sc->sc_txdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
if (sc->sc_rxdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
}
static struct ieee80211_node *
ath_node_alloc(struct ieee80211_node_table *nt)
{
struct ieee80211com *ic = nt->nt_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
struct ath_node *an;
an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
if (an == NULL) {
/* XXX stat+msg */
return NULL;
}
an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
ath_rate_node_init(sc, an);
DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
return &an->an_node;
}
static void
ath_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
ath_rate_node_cleanup(sc, ATH_NODE(ni));
sc->sc_node_free(ni);
}
static u_int8_t
ath_node_getrssi(const struct ieee80211_node *ni)
{
#define HAL_EP_RND(x, mul) \
((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
int32_t rssi;
/*
* When only one frame is received there will be no state in
* avgrssi so fallback on the value recorded by the 802.11 layer.
*/
if (avgrssi != ATH_RSSI_DUMMY_MARKER)
rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
else
rssi = ni->ni_rssi;
return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
#undef HAL_EP_RND
}
static int
ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
int error;
struct mbuf *m;
struct ath_desc *ds;
m = bf->bf_m;
if (m == NULL) {
/*
* NB: by assigning a page to the rx dma buffer we
* implicitly satisfy the Atheros requirement that
* this buffer be cache-line-aligned and sized to be
* multiple of the cache line size. Not doing this
* causes weird stuff to happen (for the 5210 at least).
*/
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: no mbuf/cluster\n", __func__);
sc->sc_stats.ast_rx_nombuf++;
return ENOMEM;
}
bf->bf_m = m;
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
error = bus_dmamap_load_mbuf(sc->sc_dmat,
bf->bf_dmamap, m,
BUS_DMA_NOWAIT);
if (error != 0) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: bus_dmamap_load_mbuf failed; error %d\n",
__func__, error);
sc->sc_stats.ast_rx_busdma++;
return error;
}
KASSERTMSG(bf->bf_nseg == 1,
"multi-segment packet; nseg %u", bf->bf_nseg);
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
/*
* Setup descriptors. For receive we always terminate
* the descriptor list with a self-linked entry so we'll
* not get overrun under high load (as can happen with a
* 5212 when ANI processing enables PHY error frames).
*
* To insure the last descriptor is self-linked we create
* each descriptor as self-linked and add it to the end. As
* each additional descriptor is added the previous self-linked
* entry is ``fixed'' naturally. This should be safe even
* if DMA is happening. When processing RX interrupts we
* never remove/process the last, self-linked, entry on the
* descriptor list. This insures the hardware always has
* someplace to write a new frame.
*/
ds = bf->bf_desc;
ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
ds->ds_data = bf->bf_segs[0].ds_addr;
/* ds->ds_vdata = mtod(m, void *); for radar */
ath_hal_setuprxdesc(ah, ds
, m->m_len /* buffer size */
, 0
);
if (sc->sc_rxlink != NULL)
*sc->sc_rxlink = bf->bf_daddr;
sc->sc_rxlink = &ds->ds_link;
return 0;
}
/*
* Extend 15-bit time stamp from rx descriptor to
* a full 64-bit TSF using the specified TSF.
*/
static inline u_int64_t
ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
{
if ((tsf & 0x7fff) < rstamp)
tsf -= 0x8000;
return ((tsf &~ 0x7fff) | rstamp);
}
/*
* Intercept management frames to collect beacon rssi data
* and to do ibss merges.
*/
static void
ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
struct ieee80211_node *ni,
int subtype, int rssi, u_int32_t rstamp)
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
/*
* Call up first so subsequent work can use information
* potentially stored in the node (e.g. for ibss merge).
*/
sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_BEACON:
/* update rssi statistics for use by the hal */
ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
if (sc->sc_syncbeacon &&
ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
/*
* Resync beacon timers using the tsf of the beacon
* frame we just received.
*/
ath_beacon_config(sc);
}
/* fall thru... */
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
if (ic->ic_opmode == IEEE80211_M_IBSS &&
ic->ic_state == IEEE80211_S_RUN) {
u_int64_t tsf = ath_extend_tsf(rstamp,
ath_hal_gettsf64(sc->sc_ah));
/*
* Handle ibss merge as needed; check the tsf on the
* frame before attempting the merge. The 802.11 spec
* says the station should change its bssid to match
* the oldest station with the same ssid, where oldest
* is determined by the tsf. Note that hardware
* reconfiguration happens through callback to
* ath_newstate as the state machine will go from
* RUN -> RUN when this happens.
*/
if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
DPRINTF(sc, ATH_DEBUG_STATE,
"ibss merge, rstamp %u tsf %ju "
"tstamp %ju\n", rstamp, (uintmax_t)tsf,
(uintmax_t)ni->ni_tstamp.tsf);
(void) ieee80211_ibss_merge(ni);
}
}
break;
}
}
/*
* Set the default antenna.
*/
static void
ath_setdefantenna(struct ath_softc *sc, u_int antenna)
{
struct ath_hal *ah = sc->sc_ah;
/* XXX block beacon interrupts */
ath_hal_setdefantenna(ah, antenna);
if (sc->sc_defant != antenna)
sc->sc_stats.ast_ant_defswitch++;
sc->sc_defant = antenna;
sc->sc_rxotherant = 0;
}
static void
ath_handle_micerror(struct ieee80211com *ic,
struct ieee80211_frame *wh, int keyix)
{
struct ieee80211_node *ni;
/* XXX recheck MIC to deal w/ chips that lie */
/* XXX discard MIC errors on !data frames */
ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
if (ni != NULL) {
ieee80211_notify_michael_failure(ic, wh, keyix);
ieee80211_free_node(ni);
}
}
static void
ath_rx_proc(void *arg, int npending)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
struct ath_softc *sc = arg;
struct ath_buf *bf;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds;
struct mbuf *m;
struct ieee80211_node *ni;
struct ath_node *an;
int len, ngood, type;
u_int phyerr;
HAL_STATUS status;
int16_t nf;
u_int64_t tsf;
uint8_t rxerr_tap, rxerr_mon;
NET_LOCK_GIANT(); /* XXX */
rxerr_tap =
(ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
else if (ifp->if_flags & IFF_PROMISC)
rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
ngood = 0;
nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
tsf = ath_hal_gettsf64(ah);
do {
bf = STAILQ_FIRST(&sc->sc_rxbuf);
if (bf == NULL) { /* NB: shouldn't happen */
if_printf(ifp, "%s: no buffer!\n", __func__);
break;
}
ds = bf->bf_desc;
if (ds->ds_link == bf->bf_daddr) {
/* NB: never process the self-linked entry at the end */
break;
}
m = bf->bf_m;
if (m == NULL) { /* NB: shouldn't happen */
if_printf(ifp, "%s: no mbuf!\n", __func__);
break;
}
/* XXX sync descriptor memory */
/*
* Must provide the virtual address of the current
* descriptor, the physical address, and the virtual
* address of the next descriptor in the h/w chain.
* This allows the HAL to look ahead to see if the
* hardware is done with a descriptor by checking the
* done bit in the following descriptor and the address
* of the current descriptor the DMA engine is working
* on. All this is necessary because of our use of
* a self-linked list to avoid rx overruns.
*/
status = ath_hal_rxprocdesc(ah, ds,
bf->bf_daddr, PA2DESC(sc, ds->ds_link),
&ds->ds_rxstat);
#ifdef AR_DEBUG
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
ath_printrxbuf(bf, status == HAL_OK);
#endif
if (status == HAL_EINPROGRESS)
break;
STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
if (ds->ds_rxstat.rs_more) {
/*
* Frame spans multiple descriptors; this
* cannot happen yet as we don't support
* jumbograms. If not in monitor mode,
* discard the frame.
*/
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
sc->sc_stats.ast_rx_toobig++;
goto rx_next;
}
/* fall thru for monitor mode handling... */
} else if (ds->ds_rxstat.rs_status != 0) {
if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
sc->sc_stats.ast_rx_crcerr++;
if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
sc->sc_stats.ast_rx_fifoerr++;
if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
sc->sc_stats.ast_rx_phyerr++;
phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
sc->sc_stats.ast_rx_phy[phyerr]++;
goto rx_next;
}
if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
/*
* Decrypt error. If the error occurred
* because there was no hardware key, then
* let the frame through so the upper layers
* can process it. This is necessary for 5210
* parts which have no way to setup a ``clear''
* key cache entry.
*
* XXX do key cache faulting
*/
if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
goto rx_accept;
sc->sc_stats.ast_rx_badcrypt++;
}
if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
sc->sc_stats.ast_rx_badmic++;
/*
* Do minimal work required to hand off
* the 802.11 header for notifcation.
*/
/* XXX frag's and qos frames */
len = ds->ds_rxstat.rs_datalen;
if (len >= sizeof (struct ieee80211_frame)) {
bus_dmamap_sync(sc->sc_dmat,
bf->bf_dmamap,
0, bf->bf_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
ath_handle_micerror(ic,
mtod(m, struct ieee80211_frame *),
sc->sc_splitmic ?
ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
}
}
ifp->if_ierrors++;
/*
* Reject error frames, we normally don't want
* to see them in monitor mode (in monitor mode
* allow through packets that have crypto problems).
*/
if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
goto rx_next;
}
rx_accept:
/*
* Sync and unmap the frame. At this point we're
* committed to passing the mbuf somewhere so clear
* bf_m; this means a new sk_buff must be allocated
* when the rx descriptor is setup again to receive
* another frame.
*/
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
0, bf->bf_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
bf->bf_m = NULL;
m_set_rcvif(m, ifp);
len = ds->ds_rxstat.rs_datalen;
m->m_pkthdr.len = m->m_len = len;
sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
if (sc->sc_drvbpf) {
u_int8_t rix;
/*
* Discard anything shorter than an ack or cts.
*/
if (len < IEEE80211_ACK_LEN) {
DPRINTF(sc, ATH_DEBUG_RECV,
"%s: runt packet %d\n",
__func__, len);
sc->sc_stats.ast_rx_tooshort++;
m_freem(m);
goto rx_next;
}
rix = ds->ds_rxstat.rs_rate;
sc->sc_rx_th.wr_tsf = htole64(
ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
if (ds->ds_rxstat.rs_status &
(HAL_RXERR_CRC|HAL_RXERR_PHY)) {
sc->sc_rx_th.wr_flags |=
IEEE80211_RADIOTAP_F_BADFCS;
}
sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
sc->sc_rx_th.wr_antnoise = nf;
sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
sc->sc_rx_th_len, m);
}
if (ds->ds_rxstat.rs_status & rxerr_tap) {
m_freem(m);
goto rx_next;
}
/*
* From this point on we assume the frame is at least
* as large as ieee80211_frame_min; verify that.
*/
if (len < IEEE80211_MIN_LEN) {
DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
__func__, len);
sc->sc_stats.ast_rx_tooshort++;
m_freem(m);
goto rx_next;
}
if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
ieee80211_dump_pkt(mtod(m, void *), len,
sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
ds->ds_rxstat.rs_rssi);
}
m_adj(m, -IEEE80211_CRC_LEN);
/*
* Locate the node for sender, track state, and then
* pass the (referenced) node up to the 802.11 layer
* for its use.
*/
ni = ieee80211_find_rxnode_withkey(ic,
mtod(m, const struct ieee80211_frame_min *),
ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
/*
* Track rx rssi and do any rx antenna management.
*/
an = ATH_NODE(ni);
ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
/*
* Send frame up for processing.
*/
type = ieee80211_input(ic, m, ni,
ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
ieee80211_free_node(ni);
if (sc->sc_diversity) {
/*
* When using fast diversity, change the default rx
* antenna if diversity chooses the other antenna 3
* times in a row.
*/
if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
if (++sc->sc_rxotherant >= 3)
ath_setdefantenna(sc,
ds->ds_rxstat.rs_antenna);
} else
sc->sc_rxotherant = 0;
}
if (sc->sc_softled) {
/*
* Blink for any data frame. Otherwise do a
* heartbeat-style blink when idle. The latter
* is mainly for station mode where we depend on
* periodic beacon frames to trigger the poll event.
*/
if (type == IEEE80211_FC0_TYPE_DATA) {
sc->sc_rxrate = ds->ds_rxstat.rs_rate;
ath_led_event(sc, ATH_LED_RX);
} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
ath_led_event(sc, ATH_LED_POLL);
}
/*
* Arrange to update the last rx timestamp only for
* frames from our ap when operating in station mode.
* This assumes the rx key is always setup when associated.
*/
if (ic->ic_opmode == IEEE80211_M_STA &&
ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
ngood++;
rx_next:
STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
} while (ath_rxbuf_init(sc, bf) == 0);
/* rx signal state monitoring */
ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
#if 0
if (ath_hal_radar_event(ah))
TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
#endif
if (ngood)
sc->sc_lastrx = tsf;
#ifdef __NetBSD__
/* XXX Why isn't this necessary in FreeBSD? */
if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
ath_start(ifp);
#endif /* __NetBSD__ */
NET_UNLOCK_GIANT(); /* XXX */
#undef PA2DESC
}
/*
* Setup a h/w transmit queue.
*/
static struct ath_txq *
ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
int qnum;
memset(&qi, 0, sizeof(qi));
qi.tqi_subtype = subtype;
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise waiting for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*/
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
if (qnum == -1) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return NULL;
}
if (qnum >= N(sc->sc_txq)) {
device_printf(sc->sc_dev,
"hal qnum %u out of range, max %zu!\n",
qnum, N(sc->sc_txq));
ath_hal_releasetxqueue(ah, qnum);
return NULL;
}
if (!ATH_TXQ_SETUP(sc, qnum)) {
struct ath_txq *txq = &sc->sc_txq[qnum];
txq->axq_qnum = qnum;
txq->axq_depth = 0;
txq->axq_intrcnt = 0;
txq->axq_link = NULL;
STAILQ_INIT(&txq->axq_q);
ATH_TXQ_LOCK_INIT(sc, txq);
sc->sc_txqsetup |= 1<<qnum;
}
return &sc->sc_txq[qnum];
#undef N
}
/*
* Setup a hardware data transmit queue for the specified
* access control. The hal may not support all requested
* queues in which case it will return a reference to a
* previously setup queue. We record the mapping from ac's
* to h/w queues for use by ath_tx_start and also track
* the set of h/w queues being used to optimize work in the
* transmit interrupt handler and related routines.
*/
static int
ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_txq *txq;
if (ac >= N(sc->sc_ac2q)) {
device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
ac, N(sc->sc_ac2q));
return 0;
}
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
if (txq != NULL) {
sc->sc_ac2q[ac] = txq;
return 1;
} else
return 0;
#undef N
}
/*
* Update WME parameters for a transmit queue.
*/
static int
ath_txq_update(struct ath_softc *sc, int ac)
{
#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
#define ATH_TXOP_TO_US(v) (v<<5)
struct ieee80211com *ic = &sc->sc_ic;
struct ath_txq *txq = sc->sc_ac2q[ac];
struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
qi.tqi_aifs = wmep->wmep_aifsn;
qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
device_printf(sc->sc_dev, "unable to update hardware queue "
"parameters for %s traffic!\n",
ieee80211_wme_acnames[ac]);
return 0;
} else {
ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
return 1;
}
#undef ATH_TXOP_TO_US
#undef ATH_EXPONENT_TO_VALUE
}
/*
* Callback from the 802.11 layer to update WME parameters.
*/
static int
ath_wme_update(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
return !ath_txq_update(sc, WME_AC_BE) ||
!ath_txq_update(sc, WME_AC_BK) ||
!ath_txq_update(sc, WME_AC_VI) ||
!ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
}
/*
* Reclaim resources for a setup queue.
*/
static void
ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
{
ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
ATH_TXQ_LOCK_DESTROY(txq);
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
}
/*
* Reclaim all tx queue resources.
*/
static void
ath_tx_cleanup(struct ath_softc *sc)
{
int i;
ATH_TXBUF_LOCK_DESTROY(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
}
/*
* Defragment an mbuf chain, returning at most maxfrags separate
* mbufs+clusters. If this is not possible NULL is returned and
* the original mbuf chain is left in its present (potentially
* modified) state. We use two techniques: collapsing consecutive
* mbufs and replacing consecutive mbufs by a cluster.
*/
static struct mbuf *
ath_defrag(struct mbuf *m0, int how, int maxfrags)
{
struct mbuf *m, *n, *n2, **prev;
u_int curfrags;
/*
* Calculate the current number of frags.
*/
curfrags = 0;
for (m = m0; m != NULL; m = m->m_next)
curfrags++;
/*
* First, try to collapse mbufs. Note that we always collapse
* towards the front so we don't need to deal with moving the
* pkthdr. This may be suboptimal if the first mbuf has much
* less data than the following.
*/
m = m0;
again:
for (;;) {
n = m->m_next;
if (n == NULL)
break;
if (n->m_len < M_TRAILINGSPACE(m)) {
memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
n->m_len);
m->m_len += n->m_len;
m->m_next = n->m_next;
m_free(n);
if (--curfrags <= maxfrags)
return m0;
} else
m = n;
}
KASSERTMSG(maxfrags > 1,
"maxfrags %u, but normal collapse failed", maxfrags);
/*
* Collapse consecutive mbufs to a cluster.
*/
prev = &m0->m_next; /* NB: not the first mbuf */
while ((n = *prev) != NULL) {
if ((n2 = n->m_next) != NULL &&
n->m_len + n2->m_len < MCLBYTES) {
m = m_getcl(how, MT_DATA, 0);
if (m == NULL)
goto bad;
bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
n2->m_len);
m->m_len = n->m_len + n2->m_len;
m->m_next = n2->m_next;
*prev = m;
m_free(n);
m_free(n2);
if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
return m0;
/*
* Still not there, try the normal collapse
* again before we allocate another cluster.
*/
goto again;
}
prev = &n->m_next;
}
/*
* No place where we can collapse to a cluster; punt.
* This can occur if, for example, you request 2 frags
* but the packet requires that both be clusters (we
* never reallocate the first mbuf to avoid moving the
* packet header).
*/
bad:
return NULL;
}
/*
* Return h/w rate index for an IEEE rate (w/o basic rate bit).
*/
static int
ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
{
int i;
for (i = 0; i < rt->rateCount; i++)
if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
return i;
return 0; /* NB: lowest rate */
}
static void
ath_freetx(struct mbuf *m)
{
struct mbuf *next;
do {
next = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
} while ((m = next) != NULL);
}
static int
deduct_pad_bytes(int len, int hdrlen)
{
/* XXX I am suspicious that this code, which I extracted
* XXX from ath_tx_start() for reuse, does the right thing.
*/
return len - (hdrlen & 3);
}
static int
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
struct mbuf *m0)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = &sc->sc_if;
const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
int i, error, iswep, ismcast, isfrag, ismrr;
int keyix, hdrlen, pktlen, try0;
u_int8_t rix, txrate, ctsrate;
u_int8_t cix = 0xff; /* NB: silence compiler */
struct ath_desc *ds, *ds0;
struct ath_txq *txq;
struct ieee80211_frame *wh;
u_int subtype, flags, ctsduration;
HAL_PKT_TYPE atype;
const HAL_RATE_TABLE *rt;
HAL_BOOL shortPreamble;
struct ath_node *an;
struct mbuf *m;
u_int pri;
wh = mtod(m0, struct ieee80211_frame *);
iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
isfrag = m0->m_flags & M_FRAG;
hdrlen = ieee80211_anyhdrsize(wh);
/*
* Packet length must not include any
* pad bytes; deduct them here.
*/
pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
if (iswep) {
const struct ieee80211_cipher *cip;
struct ieee80211_key *k;
/*
* Construct the 802.11 header+trailer for an encrypted
* frame. The only reason this can fail is because of an
* unknown or unsupported cipher/key type.
*/
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
/*
* This can happen when the key is yanked after the
* frame was queued. Just discard the frame; the
* 802.11 layer counts failures and provides
* debugging/diagnostics.
*/
ath_freetx(m0);
return EIO;
}
/*
* Adjust the packet + header lengths for the crypto
* additions and calculate the h/w key index. When
* a s/w mic is done the frame will have had any mic
* added to it prior to entry so m0->m_pkthdr.len above will
* account for it. Otherwise we need to add it to the
* packet length.
*/
cip = k->wk_cipher;
hdrlen += cip->ic_header;
pktlen += cip->ic_header + cip->ic_trailer;
/* NB: frags always have any TKIP MIC done in s/w */
if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
pktlen += cip->ic_miclen;
keyix = k->wk_keyix;
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
/*
* Use station key cache slot, if assigned.
*/
keyix = ni->ni_ucastkey.wk_keyix;
if (keyix == IEEE80211_KEYIX_NONE)
keyix = HAL_TXKEYIX_INVALID;
} else
keyix = HAL_TXKEYIX_INVALID;
pktlen += IEEE80211_CRC_LEN;
/*
* Load the DMA map so any coalescing is done. This
* also calculates the number of descriptors we need.
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
BUS_DMA_NOWAIT);
if (error == EFBIG) {
/* XXX packet requires too many descriptors */
bf->bf_nseg = ATH_TXDESC+1;
} else if (error != 0) {
sc->sc_stats.ast_tx_busdma++;
ath_freetx(m0);
return error;
}
/*
* Discard null packets and check for packets that
* require too many TX descriptors. We try to convert
* the latter to a cluster.
*/
if (error == EFBIG) { /* too many desc's, linearize */
sc->sc_stats.ast_tx_linear++;
m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
if (m == NULL) {
ath_freetx(m0);
sc->sc_stats.ast_tx_nombuf++;
return ENOMEM;
}
m0 = m;
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
BUS_DMA_NOWAIT);
if (error != 0) {
sc->sc_stats.ast_tx_busdma++;
ath_freetx(m0);
return error;
}
KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
"too many segments after defrag; nseg %u", bf->bf_nseg);
} else if (bf->bf_nseg == 0) { /* null packet, discard */
sc->sc_stats.ast_tx_nodata++;
ath_freetx(m0);
return EIO;
}
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
bf->bf_m = m0;
bf->bf_node = ni; /* NB: held reference */
/* setup descriptors */
ds = bf->bf_desc;
rt = sc->sc_currates;
KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
/*
* NB: the 802.11 layer marks whether or not we should
* use short preamble based on the current mode and
* negotiated parameters.
*/
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
shortPreamble = AH_TRUE;
sc->sc_stats.ast_tx_shortpre++;
} else {
shortPreamble = AH_FALSE;
}
an = ATH_NODE(ni);
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
ismrr = 0; /* default no multi-rate retry*/
/*
* Calculate Atheros packet type from IEEE80211 packet header,
* setup for rate calculations, and select h/w transmit queue.
*/
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_MGT:
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
atype = HAL_PKT_TYPE_BEACON;
else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
atype = HAL_PKT_TYPE_PROBE_RESP;
else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
atype = HAL_PKT_TYPE_ATIM;
else
atype = HAL_PKT_TYPE_NORMAL; /* XXX */
rix = sc->sc_minrateix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = ATH_TXMGTTRY;
/* NB: force all management frames to highest queue */
if (ni->ni_flags & IEEE80211_NODE_QOS) {
/* NB: force all management frames to highest queue */
pri = WME_AC_VO;
} else
pri = WME_AC_BE;
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
break;
case IEEE80211_FC0_TYPE_CTL:
atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
rix = sc->sc_minrateix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = ATH_TXMGTTRY;
/* NB: force all ctl frames to highest queue */
if (ni->ni_flags & IEEE80211_NODE_QOS) {
/* NB: force all ctl frames to highest queue */
pri = WME_AC_VO;
} else
pri = WME_AC_BE;
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
break;
case IEEE80211_FC0_TYPE_DATA:
atype = HAL_PKT_TYPE_NORMAL; /* default */
/*
* Data frames: multicast frames go out at a fixed rate,
* otherwise consult the rate control module for the
* rate to use.
*/
if (ismcast) {
/*
* Check mcast rate setting in case it's changed.
* XXX move out of fastpath
*/
if (ic->ic_mcast_rate != sc->sc_mcastrate) {
sc->sc_mcastrix =
ath_tx_findrix(rt, ic->ic_mcast_rate);
sc->sc_mcastrate = ic->ic_mcast_rate;
}
rix = sc->sc_mcastrix;
txrate = rt->info[rix].rateCode;
try0 = 1;
} else {
ath_rate_findrate(sc, an, shortPreamble, pktlen,
&rix, &try0, &txrate);
sc->sc_txrate = txrate; /* for LED blinking */
if (try0 != ATH_TXMAXTRY)
ismrr = 1;
}
pri = M_WME_GETAC(m0);
if (cap->cap_wmeParams[pri].wmep_noackPolicy)
flags |= HAL_TXDESC_NOACK;
break;
default:
if_printf(ifp, "bogus frame type 0x%x (%s)\n",
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
/* XXX statistic */
ath_freetx(m0);
return EIO;
}
txq = sc->sc_ac2q[pri];
/*
* When servicing one or more stations in power-save mode
* multicast frames must be buffered until after the beacon.
* We use the CAB queue for that.
*/
if (ismcast && ic->ic_ps_sta) {
txq = sc->sc_cabq;
/* XXX? more bit in 802.11 frame header */
}
/*
* Calculate miscellaneous flags.
*/
if (ismcast) {
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
} else if (pktlen > ic->ic_rtsthreshold) {
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
cix = rt->info[rix].controlRate;
sc->sc_stats.ast_tx_rts++;
}
if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
sc->sc_stats.ast_tx_noack++;
/*
* If 802.11g protection is enabled, determine whether
* to use RTS/CTS or just CTS. Note that this is only
* done for OFDM unicast frames.
*/
if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
rt->info[rix].phy == IEEE80211_T_OFDM &&
(flags & HAL_TXDESC_NOACK) == 0) {
/* XXX fragments must use CCK rates w/ protection */
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
flags |= HAL_TXDESC_RTSENA;
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
flags |= HAL_TXDESC_CTSENA;
if (isfrag) {
/*
* For frags it would be desirable to use the
* highest CCK rate for RTS/CTS. But stations
* farther away may detect it at a lower CCK rate
* so use the configured protection rate instead
* (for now).
*/
cix = rt->info[sc->sc_protrix].controlRate;
} else
cix = rt->info[sc->sc_protrix].controlRate;
sc->sc_stats.ast_tx_protect++;
}
/*
* Calculate duration. This logically belongs in the 802.11
* layer but it lacks sufficient information to calculate it.
*/
if ((flags & HAL_TXDESC_NOACK) == 0 &&
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
u_int16_t dur;
/*
* XXX not right with fragmentation.
*/
if (shortPreamble)
dur = rt->info[rix].spAckDuration;
else
dur = rt->info[rix].lpAckDuration;
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
dur += dur; /* additional SIFS+ACK */
KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
/*
* Include the size of next fragment so NAV is
* updated properly. The last fragment uses only
* the ACK duration
*/
dur += ath_hal_computetxtime(ah, rt,
deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
hdrlen) -
deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
rix, shortPreamble);
}
if (isfrag) {
/*
* Force hardware to use computed duration for next
* fragment by disabling multi-rate retry which updates
* duration based on the multi-rate duration table.
*/
try0 = ATH_TXMAXTRY;
}
*(u_int16_t *)wh->i_dur = htole16(dur);
}
/*
* Calculate RTS/CTS rate and duration if needed.
*/
ctsduration = 0;
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
/*
* CTS transmit rate is derived from the transmit rate
* by looking in the h/w rate table. We must also factor
* in whether or not a short preamble is to be used.
*/
/* NB: cix is set above where RTS/CTS is enabled */
KASSERTMSG(cix != 0xff, "cix not setup");
ctsrate = rt->info[cix].rateCode;
/*
* Compute the transmit duration based on the frame
* size and the size of an ACK frame. We call into the
* HAL to do the computation since it depends on the
* characteristics of the actual PHY being used.
*
* NB: CTS is assumed the same size as an ACK so we can
* use the precalculated ACK durations.
*/
if (shortPreamble) {
ctsrate |= rt->info[cix].shortPreamble;
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
ctsduration += rt->info[cix].spAckDuration;
ctsduration += ath_hal_computetxtime(ah,
rt, pktlen, rix, AH_TRUE);
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
ctsduration += rt->info[rix].spAckDuration;
} else {
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
ctsduration += rt->info[cix].lpAckDuration;
ctsduration += ath_hal_computetxtime(ah,
rt, pktlen, rix, AH_FALSE);
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
ctsduration += rt->info[rix].lpAckDuration;
}
/*
* Must disable multi-rate retry when using RTS/CTS.
*/
ismrr = 0;
try0 = ATH_TXMGTTRY; /* XXX */
} else
ctsrate = 0;
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
sc->sc_hwmap[txrate].ieeerate, -1);
bpf_mtap3(ic->ic_rawbpf, m0);
if (sc->sc_drvbpf) {
u_int64_t tsf = ath_hal_gettsf64(ah);
sc->sc_tx_th.wt_tsf = htole64(tsf);
sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
if (iswep)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
if (isfrag)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
sc->sc_tx_th.wt_txpower = ni->ni_txpower;
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
}
/*
* Determine if a tx interrupt should be generated for
* this descriptor. We take a tx interrupt to reap
* descriptors when the h/w hits an EOL condition or
* when the descriptor is specifically marked to generate
* an interrupt. We periodically mark descriptors in this
* way to insure timely replenishing of the supply needed
* for sending frames. Defering interrupts reduces system
* load and potentially allows more concurrent work to be
* done but if done to aggressively can cause senders to
* backup.
*
* NB: use >= to deal with sc_txintrperiod changing
* dynamically through sysctl.
*/
if (flags & HAL_TXDESC_INTREQ) {
txq->axq_intrcnt = 0;
} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
flags |= HAL_TXDESC_INTREQ;
txq->axq_intrcnt = 0;
}
/*
* Formulate first tx descriptor with tx controls.
*/
/* XXX check return value? */
ath_hal_setuptxdesc(ah, ds
, pktlen /* packet length */
, hdrlen /* header length */
, atype /* Atheros packet type */
, ni->ni_txpower /* txpower */
, txrate, try0 /* series 0 rate/tries */
, keyix /* key cache index */
, sc->sc_txantenna /* antenna mode */
, flags /* flags */
, ctsrate /* rts/cts rate */
, ctsduration /* rts/cts duration */
);
bf->bf_flags = flags;
/*
* Setup the multi-rate retry state only when we're
* going to use it. This assumes ath_hal_setuptxdesc
* initializes the descriptors (so we don't have to)
* when the hardware supports multi-rate retry and
* we don't use it.
*/
if (ismrr)
ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
/*
* Fillin the remainder of the descriptor info.
*/
ds0 = ds;
for (i = 0; i < bf->bf_nseg; i++, ds++) {
ds->ds_data = bf->bf_segs[i].ds_addr;
if (i == bf->bf_nseg - 1)
ds->ds_link = 0;
else
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
ath_hal_filltxdesc(ah, ds
, bf->bf_segs[i].ds_len /* segment length */
, i == 0 /* first segment */
, i == bf->bf_nseg - 1 /* last segment */
, ds0 /* first descriptor */
);
/* NB: The desc swap function becomes void,
* if descriptor swapping is not enabled
*/
ath_desc_swap(ds);
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: %d: %08x %08x %08x %08x %08x %08x\n",
__func__, i, ds->ds_link, ds->ds_data,
ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
}
/*
* Insert the frame on the outbound list and
* pass it on to the hardware.
*/
ATH_TXQ_LOCK(txq);
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
if (txq->axq_link == NULL) {
ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
txq->axq_depth);
} else {
*txq->axq_link = HTOAH32(bf->bf_daddr);
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
__func__, txq->axq_qnum, txq->axq_link,
(uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
}
txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
/*
* The CAB queue is started from the SWBA handler since
* frames only go out on DTIM and to avoid possible races.
*/
if (txq != sc->sc_cabq)
ath_hal_txstart(ah, txq->axq_qnum);
ATH_TXQ_UNLOCK(txq);
return 0;
}
/*
* Process completed xmit descriptors from the specified queue.
*/
static int
ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
struct ath_buf *bf;
struct ath_desc *ds, *ds0;
struct ieee80211_node *ni;
struct ath_node *an;
int sr, lr, pri, nacked;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
__func__, txq->axq_qnum,
(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link);
nacked = 0;
for (;;) {
ATH_TXQ_LOCK(txq);
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
bf = STAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
txq->axq_link = NULL;
ATH_TXQ_UNLOCK(txq);
break;
}
ds0 = &bf->bf_desc[0];
ds = &bf->bf_desc[bf->bf_nseg - 1];
status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
ath_printtxbuf(bf, status == HAL_OK);
if (status == HAL_EINPROGRESS) {
ATH_TXQ_UNLOCK(txq);
break;
}
ATH_TXQ_REMOVE_HEAD(txq, bf_list);
ATH_TXQ_UNLOCK(txq);
ni = bf->bf_node;
if (ni != NULL) {
an = ATH_NODE(ni);
if (ds->ds_txstat.ts_status == 0) {
u_int8_t txant = ds->ds_txstat.ts_antenna;
sc->sc_stats.ast_ant_tx[txant]++;
sc->sc_ant_tx[txant]++;
if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
sc->sc_stats.ast_tx_altrate++;
sc->sc_stats.ast_tx_rssi =
ds->ds_txstat.ts_rssi;
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
ds->ds_txstat.ts_rssi);
pri = M_WME_GETAC(bf->bf_m);
if (pri >= WME_AC_VO)
ic->ic_wme.wme_hipri_traffic++;
ni->ni_inact = ni->ni_inact_reload;
} else {
if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
sc->sc_stats.ast_tx_xretries++;
if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
sc->sc_stats.ast_tx_fifoerr++;
if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
sc->sc_stats.ast_tx_filtered++;
}
sr = ds->ds_txstat.ts_shortretry;
lr = ds->ds_txstat.ts_longretry;
sc->sc_stats.ast_tx_shortretry += sr;
sc->sc_stats.ast_tx_longretry += lr;
/*
* Hand the descriptor to the rate control algorithm.
*/
if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
(bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
/*
* If frame was ack'd update the last rx time
* used to workaround phantom bmiss interrupts.
*/
if (ds->ds_txstat.ts_status == 0)
nacked++;
ath_rate_tx_complete(sc, an, ds, ds0);
}
/*
* Reclaim reference to node.
*
* NB: the node may be reclaimed here if, for example
* this is a DEAUTH message that was sent and the
* node was timed out due to inactivity.
*/
ieee80211_free_node(ni);
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
bf->bf_node = NULL;
ATH_TXBUF_LOCK(sc);
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
sc->sc_if.if_flags &= ~IFF_OACTIVE;
ATH_TXBUF_UNLOCK(sc);
}
return nacked;
}
static inline int
txqactive(struct ath_hal *ah, int qnum)
{
u_int32_t txqs = 1<<qnum;
ath_hal_gettxintrtxqs(ah, &txqs);
return (txqs & (1<<qnum));
}
/*
* Deferred processing of transmit interrupt; special-cased
* for a single hardware transmit queue (e.g. 5210 and 5211).
*/
static void
ath_tx_proc_q0(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
}
if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq);
if (sc->sc_softled)
ath_led_event(sc, ATH_LED_TX);
ath_start(ifp);
}
/*
* Deferred processing of transmit interrupt; special-cased
* for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
*/
static void
ath_tx_proc_q0123(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
int nacked;
/*
* Process each active queue.
*/
nacked = 0;
if (txqactive(sc->sc_ah, 0))
nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
if (txqactive(sc->sc_ah, 1))
nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
if (txqactive(sc->sc_ah, 2))
nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
if (txqactive(sc->sc_ah, 3))
nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq);
if (nacked) {
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
}
if (sc->sc_softled)
ath_led_event(sc, ATH_LED_TX);
ath_start(ifp);
}
/*
* Deferred processing of transmit interrupt.
*/
static void
ath_tx_proc(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
int i, nacked;
/*
* Process each active queue.
*/
nacked = 0;
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
if (nacked) {
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
}
if (sc->sc_softled)
ath_led_event(sc, ATH_LED_TX);
ath_start(ifp);
}
static void
ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_node *ni;
struct ath_buf *bf;
struct ath_desc *ds;
/*
* NB: this assumes output has been stopped and
* we do not need to block ath_tx_tasklet
*/
for (;;) {
ATH_TXQ_LOCK(txq);
bf = STAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
txq->axq_link = NULL;
ATH_TXQ_UNLOCK(txq);
break;
}
ATH_TXQ_REMOVE_HEAD(txq, bf_list);
ATH_TXQ_UNLOCK(txq);
ds = &bf->bf_desc[bf->bf_nseg - 1];
if (sc->sc_debug & ATH_DEBUG_RESET)
ath_printtxbuf(bf,
ath_hal_txprocdesc(ah, bf->bf_desc,
&ds->ds_txstat) == HAL_OK);
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
ni = bf->bf_node;
bf->bf_node = NULL;
if (ni != NULL) {
/*
* Reclaim node reference.
*/
ieee80211_free_node(ni);
}
ATH_TXBUF_LOCK(sc);
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
sc->sc_if.if_flags &= ~IFF_OACTIVE;
ATH_TXBUF_UNLOCK(sc);
}
}
static void
ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
__func__, txq->axq_qnum,
(void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
txq->axq_link);
}
/*
* Drain the transmit queues and reclaim resources.
*/
static void
ath_draintxq(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int i;
/* XXX return value */
if (device_is_active(sc->sc_dev)) {
/* don't touch the hardware if marked invalid */
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: beacon queue %p\n", __func__,
(void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_stopdma(sc, &sc->sc_txq[i]);
}
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_draintxq(sc, &sc->sc_txq[i]);
}
/*
* Disable the receive h/w in preparation for a reset.
*/
static void
ath_stoprecv(struct ath_softc *sc)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
struct ath_hal *ah = sc->sc_ah;
ath_hal_stoppcurecv(ah); /* disable PCU */
ath_hal_setrxfilter(ah, 0); /* clear recv filter */
ath_hal_stopdmarecv(ah); /* disable DMA engine */
DELAY(3000); /* 3ms is long enough for 1 frame */
if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
struct ath_buf *bf;
printf("%s: rx queue %p, link %p\n", __func__,
(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
struct ath_desc *ds = bf->bf_desc;
HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
bf->bf_daddr, PA2DESC(sc, ds->ds_link),
&ds->ds_rxstat);
if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
ath_printrxbuf(bf, status == HAL_OK);
}
}
sc->sc_rxlink = NULL; /* just in case */
#undef PA2DESC
}
/*
* Enable the receive h/w following a reset.
*/
static int
ath_startrecv(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
sc->sc_rxlink = NULL;
STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
int error = ath_rxbuf_init(sc, bf);
if (error != 0) {
DPRINTF(sc, ATH_DEBUG_RECV,
"%s: ath_rxbuf_init failed %d\n",
__func__, error);
return error;
}
}
bf = STAILQ_FIRST(&sc->sc_rxbuf);
ath_hal_putrxbuf(ah, bf->bf_daddr);
ath_hal_rxena(ah); /* enable recv descriptors */
ath_mode_init(sc); /* set filters, etc. */
ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
return 0;
}
/*
* Update internal state after a channel change.
*/
static void
ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
{
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_phymode mode;
u_int16_t flags;
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
mode = ieee80211_chan2mode(ic, chan);
if (mode != sc->sc_curmode)
ath_setcurmode(sc, mode);
/*
* Update BPF state. NB: ethereal et. al. don't handle
* merged flags well so pick a unique mode for their use.
*/
if (IEEE80211_IS_CHAN_A(chan))
flags = IEEE80211_CHAN_A;
/* XXX 11g schizophrenia */
else if (IEEE80211_IS_CHAN_G(chan) ||
IEEE80211_IS_CHAN_PUREG(chan))
flags = IEEE80211_CHAN_G;
else
flags = IEEE80211_CHAN_B;
if (IEEE80211_IS_CHAN_T(chan))
flags |= IEEE80211_CHAN_TURBO;
sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
htole16(chan->ic_freq);
sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
htole16(flags);
}
#if 0
/*
* Poll for a channel clear indication; this is required
* for channels requiring DFS and not previously visited
* and/or with a recent radar detection.
*/
static void
ath_dfswait(void *arg)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
HAL_CHANNEL hchan;
ath_hal_radar_wait(ah, &hchan);
if (hchan.privFlags & CHANNEL_INTERFERENCE) {
if_printf(&sc->sc_if,
"channel %u/0x%x/0x%x has interference\n",
hchan.channel, hchan.channelFlags, hchan.privFlags);
return;
}
if ((hchan.privFlags & CHANNEL_DFS) == 0) {
/* XXX should not happen */
return;
}
if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
sc->sc_if.if_flags &= ~IFF_OACTIVE;
if_printf(&sc->sc_if,
"channel %u/0x%x/0x%x marked clear\n",
hchan.channel, hchan.channelFlags, hchan.privFlags);
} else
callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
}
#endif
/*
* Set/change channels. If the channel is really being changed,
* it's done by reseting the chip. To accomplish this we must
* first cleanup any pending DMA, then restart stuff after a la
* ath_init.
*/
static int
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
{
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
HAL_CHANNEL hchan;
/*
* Convert to a HAL channel description with
* the flags constrained to reflect the current
* operating mode.
*/
hchan.channel = chan->ic_freq;
hchan.channelFlags = ath_chan2flags(ic, chan);
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
__func__,
ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
sc->sc_curchan.channelFlags),
sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
hchan.channel, hchan.channelFlags);
if (hchan.channel != sc->sc_curchan.channel ||
hchan.channelFlags != sc->sc_curchan.channelFlags) {
HAL_STATUS status;
/*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_draintxq(sc); /* clear pending tx frames */
ath_stoprecv(sc); /* turn off frame recv */
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
if_printf(ic->ic_ifp, "%s: unable to reset "
"channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
__func__, ieee80211_chan2ieee(ic, chan),
chan->ic_freq, chan->ic_flags, hchan.channelFlags);
return EIO;
}
sc->sc_curchan = hchan;
ath_update_txpow(sc); /* update tx power state */
ath_restore_diversity(sc);
sc->sc_calinterval = 1;
sc->sc_caltries = 0;
/*
* Re-enable rx framework.
*/
if (ath_startrecv(sc) != 0) {
if_printf(&sc->sc_if,
"%s: unable to restart recv logic\n", __func__);
return EIO;
}
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
ic->ic_ibss_chan = chan;
ath_chan_change(sc, chan);
#if 0
/*
* Handle DFS required waiting period to determine
* if channel is clear of radar traffic.
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
#define DFS_AND_NOT_CLEAR(_c) \
(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
if_printf(&sc->sc_if,
"wait for DFS clear channel signal\n");
/* XXX stop sndq */
sc->sc_if.if_flags |= IFF_OACTIVE;
callout_reset(&sc->sc_dfs_ch,
2 * hz, ath_dfswait, sc);
} else
callout_stop(&sc->sc_dfs_ch);
#undef DFS_NOT_CLEAR
}
#endif
/*
* Re-enable interrupts.
*/
ath_hal_intrset(ah, sc->sc_imask);
}
return 0;
}
static void
ath_next_scan(void *arg)
{
struct ath_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
/* don't call ath_start w/o network interrupts blocked */
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
splx(s);
}
/*
* Periodically recalibrate the PHY to account
* for temperature/environment changes.
*/
static void
ath_calibrate(void *arg)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
HAL_BOOL iqCalDone;
int s;
sc->sc_stats.ast_per_cal++;
s = splnet();
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
/*
* Rfgain is out of bounds, reset the chip
* to load new gain values.
*/
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: rfgain change\n", __func__);
sc->sc_stats.ast_per_rfgain++;
ath_reset(&sc->sc_if);
}
if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: calibration of channel %u failed\n",
__func__, sc->sc_curchan.channel);
sc->sc_stats.ast_per_calfail++;
}
/*
* Calibrate noise floor data again in case of change.
*/
ath_hal_process_noisefloor(ah);
/*
* Poll more frequently when the IQ calibration is in
* progress to speedup loading the final settings.
* We temper this aggressive polling with an exponential
* back off after 4 tries up to ath_calinterval.
*/
if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
sc->sc_caltries = 0;
sc->sc_calinterval = ath_calinterval;
} else if (sc->sc_caltries > 4) {
sc->sc_caltries = 0;
sc->sc_calinterval <<= 1;
if (sc->sc_calinterval > ath_calinterval)
sc->sc_calinterval = ath_calinterval;
}
KASSERTMSG(0 < sc->sc_calinterval &&
sc->sc_calinterval <= ath_calinterval,
"bad calibration interval %u", sc->sc_calinterval);
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: next +%u (%siqCalDone tries %u)\n", __func__,
sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
sc->sc_caltries++;
callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
ath_calibrate, sc);
splx(s);
}
static int
ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_node *ni;
int i, error;
const u_int8_t *bssid;
u_int32_t rfilt;
static const HAL_LED_STATE leds[] = {
HAL_LED_INIT, /* IEEE80211_S_INIT */
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
HAL_LED_RUN, /* IEEE80211_S_RUN */
};
DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[ic->ic_state],
ieee80211_state_name[nstate]);
callout_stop(&sc->sc_scan_ch);
callout_stop(&sc->sc_cal_ch);
#if 0
callout_stop(&sc->sc_dfs_ch);
#endif
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
if (nstate == IEEE80211_S_INIT) {
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
/*
* NB: disable interrupts so we don't rx frames.
*/
ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
/*
* Notify the rate control algorithm.
*/
ath_rate_newstate(sc, nstate);
goto done;
}
ni = ic->ic_bss;
error = ath_chan_set(sc, ic->ic_curchan);
if (error != 0)
goto bad;
rfilt = ath_calcrxfilter(sc, nstate);
if (nstate == IEEE80211_S_SCAN)
bssid = ifp->if_broadcastaddr;
else
bssid = ni->ni_bssid;
ath_hal_setrxfilter(ah, rfilt);
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
__func__, rfilt, ether_sprintf(bssid));
if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
ath_hal_setassocid(ah, bssid, ni->ni_associd);
else
ath_hal_setassocid(ah, bssid, 0);
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath_hal_keyisvalid(ah, i))
ath_hal_keysetmac(ah, i, bssid);
}
/*
* Notify the rate control algorithm so rates
* are setup should ath_beacon_alloc be called.
*/
ath_rate_newstate(sc, nstate);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* nothing to do */;
} else if (nstate == IEEE80211_S_RUN) {
DPRINTF(sc, ATH_DEBUG_STATE,
"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
"capinfo=0x%04x chan=%d\n"
, __func__
, ic->ic_flags
, ni->ni_intval
, ether_sprintf(ni->ni_bssid)
, ni->ni_capinfo
, ieee80211_chan2ieee(ic, ic->ic_curchan));
switch (ic->ic_opmode) {
case IEEE80211_M_HOSTAP:
case IEEE80211_M_IBSS:
/*
* Allocate and setup the beacon frame.
*
* Stop any previous beacon DMA. This may be
* necessary, for example, when an ibss merge
* causes reconfiguration; there will be a state
* transition from RUN->RUN that means we may
* be called with beacon transmission active.
*/
ath_hal_stoptxdma(ah, sc->sc_bhalq);
ath_beacon_free(sc);
error = ath_beacon_alloc(sc, ni);
if (error != 0)
goto bad;
/*
* If joining an adhoc network defer beacon timer
* configuration to the next beacon frame so we
* have a current TSF to use. Otherwise we're
* starting an ibss/bss so there's no need to delay.
*/
if (ic->ic_opmode == IEEE80211_M_IBSS &&
ic->ic_bss->ni_tstamp.tsf != 0)
sc->sc_syncbeacon = 1;
else
ath_beacon_config(sc);
break;
case IEEE80211_M_STA:
/*
* Allocate a key cache slot to the station.
*/
if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
sc->sc_hasclrkey &&
ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
ath_setup_stationkey(ni);
/*
* Defer beacon timer configuration to the next
* beacon frame so we have a current TSF to use
* (any TSF collected when scanning is likely old).
*/
sc->sc_syncbeacon = 1;
break;
default:
break;
}
/*
* Let the hal process statistics collected during a
* scan so it can provide calibrated noise floor data.
*/
ath_hal_process_noisefloor(ah);
/*
* Reset rssi stats; maybe not the best place...
*/
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
} else {
ath_hal_intrset(ah,
sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
}
done:
/*
* Invoke the parent method to complete the work.
*/
error = sc->sc_newstate(ic, nstate, arg);
/*
* Finally, start any timers.
*/
if (nstate == IEEE80211_S_RUN) {
/* start periodic recalibration timer */
callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
ath_calibrate, sc);
} else if (nstate == IEEE80211_S_SCAN) {
/* start ap/neighbor scan timer */
callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
ath_next_scan, sc);
}
bad:
return error;
}
/*
* Allocate a key cache slot to the station so we can
* setup a mapping from key index to node. The key cache
* slot is needed for managing antenna state and for
* compression when stations do not use crypto. We do
* it uniliaterally here; if crypto is employed this slot
* will be reassigned.
*/
static void
ath_setup_stationkey(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
ieee80211_keyix keyix, rxkeyix;
if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
/*
* Key cache is full; we'll fall back to doing
* the more expensive lookup in software. Note
* this also means no h/w compression.
*/
/* XXX msg+statistic */
} else {
/* XXX locking? */
ni->ni_ucastkey.wk_keyix = keyix;
ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
/* NB: this will create a pass-thru key entry */
ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
}
}
/*
* Setup driver-specific state for a newly associated node.
* Note that we're called also on a re-associate, the isnew
* param tells us if this is the first time or not.
*/
static void
ath_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
if (isnew &&
(ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
"new assoc with a unicast key already setup (keyix %u)",
ni->ni_ucastkey.wk_keyix);
ath_setup_stationkey(ni);
}
}
static int
ath_getchannels(struct ath_softc *sc, u_int cc,
HAL_BOOL outdoor, HAL_BOOL xchanmode)
{
#define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ath_hal *ah = sc->sc_ah;
HAL_CHANNEL *chans;
int i, ix, nchan;
chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
M_TEMP, M_NOWAIT);
if (chans == NULL) {
if_printf(ifp, "unable to allocate channel table\n");
return ENOMEM;
}
if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
NULL, 0, NULL,
cc, HAL_MODE_ALL, outdoor, xchanmode)) {
u_int32_t rd;
(void)ath_hal_getregdomain(ah, &rd);
if_printf(ifp, "unable to collect channel list from hal; "
"regdomain likely %u country code %u\n", rd, cc);
free(chans, M_TEMP);
return EINVAL;
}
/*
* Convert HAL channels to ieee80211 ones and insert
* them in the table according to their channel number.
*/
for (i = 0; i < nchan; i++) {
HAL_CHANNEL *c = &chans[i];
u_int16_t flags;
ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
if (ix > IEEE80211_CHAN_MAX) {
if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
ix, c->channel, c->channelFlags);
continue;
}
if (ix < 0) {
/* XXX can't handle stuff <2400 right now */
if (bootverbose)
if_printf(ifp, "hal channel %d (%u/%x) "
"cannot be handled; ignored\n",
ix, c->channel, c->channelFlags);
continue;
}
/*
* Calculate net80211 flags; most are compatible
* but some need massaging. Note the static turbo
* conversion can be removed once net80211 is updated
* to understand static vs. dynamic turbo.
*/
flags = c->channelFlags & COMPAT;
if (c->channelFlags & CHANNEL_STURBO)
flags |= IEEE80211_CHAN_TURBO;
if (ic->ic_channels[ix].ic_freq == 0) {
ic->ic_channels[ix].ic_freq = c->channel;
ic->ic_channels[ix].ic_flags = flags;
} else {
/* channels overlap; e.g. 11g and 11b */
ic->ic_channels[ix].ic_flags |= flags;
}
}
free(chans, M_TEMP);
return 0;
#undef COMPAT
}
static void
ath_led_done(void *arg)
{
struct ath_softc *sc = arg;
sc->sc_blinking = 0;
}
/*
* Turn the LED off: flip the pin and then set a timer so no
* update will happen for the specified duration.
*/
static void
ath_led_off(void *arg)
{
struct ath_softc *sc = arg;
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
}
/*
* Blink the LED according to the specified on/off times.
*/
static void
ath_led_blink(struct ath_softc *sc, int on, int off)
{
DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
sc->sc_blinking = 1;
sc->sc_ledoff = off;
callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
}
static void
ath_led_event(struct ath_softc *sc, int event)
{
sc->sc_ledevent = ticks; /* time of last event */
if (sc->sc_blinking) /* don't interrupt active blink */
return;
switch (event) {
case ATH_LED_POLL:
ath_led_blink(sc, sc->sc_hwmap[0].ledon,
sc->sc_hwmap[0].ledoff);
break;
case ATH_LED_TX:
ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
sc->sc_hwmap[sc->sc_txrate].ledoff);
break;
case ATH_LED_RX:
ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
sc->sc_hwmap[sc->sc_rxrate].ledoff);
break;
}
}
static void
ath_update_txpow(struct ath_softc *sc)
{
#define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
u_int32_t txpow;
if (sc->sc_curtxpow != ic->ic_txpowlimit) {
ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
/* read back in case value is clamped */
(void)ath_hal_gettxpowlimit(ah, &txpow);
ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
}
/*
* Fetch max tx power level for status requests.
*/
(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
ic->ic_bss->ni_txpower = txpow;
}
static void
rate_setup(struct ath_softc *sc,
const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
{
int i, maxrates;
if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: rate table too small (%u > %u)\n",
__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
maxrates = IEEE80211_RATE_MAXSIZE;
} else
maxrates = rt->rateCount;
for (i = 0; i < maxrates; i++)
rs->rs_rates[i] = rt->info[i].dot11Rate;
rs->rs_nrates = maxrates;
}
static int
ath_rate_setup(struct ath_softc *sc, u_int mode)
{
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
const HAL_RATE_TABLE *rt;
switch (mode) {
case IEEE80211_MODE_11A:
rt = ath_hal_getratetable(ah, HAL_MODE_11A);
break;
case IEEE80211_MODE_11B:
rt = ath_hal_getratetable(ah, HAL_MODE_11B);
break;
case IEEE80211_MODE_11G:
rt = ath_hal_getratetable(ah, HAL_MODE_11G);
break;
case IEEE80211_MODE_TURBO_A:
/* XXX until static/dynamic turbo is fixed */
rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
break;
case IEEE80211_MODE_TURBO_G:
rt = ath_hal_getratetable(ah, HAL_MODE_108G);
break;
default:
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
__func__, mode);
return 0;
}
sc->sc_rates[mode] = rt;
if (rt != NULL) {
rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
return 1;
} else
return 0;
}
static void
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
static const struct {
u_int rate; /* tx/rx 802.11 rate */
u_int16_t timeOn; /* LED on time (ms) */
u_int16_t timeOff; /* LED off time (ms) */
} blinkrates[] = {
{ 108, 40, 10 },
{ 96, 44, 11 },
{ 72, 50, 13 },
{ 48, 57, 14 },
{ 36, 67, 16 },
{ 24, 80, 20 },
{ 22, 100, 25 },
{ 18, 133, 34 },
{ 12, 160, 40 },
{ 10, 200, 50 },
{ 6, 240, 58 },
{ 4, 267, 66 },
{ 2, 400, 100 },
{ 0, 500, 130 },
};
const HAL_RATE_TABLE *rt;
int i, j;
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
rt = sc->sc_rates[mode];
KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
for (i = 0; i < rt->rateCount; i++)
sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
for (i = 0; i < 32; i++) {
u_int8_t ix = rt->rateCodeToIndex[i];
if (ix == 0xff) {
sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
continue;
}
sc->sc_hwmap[i].ieeerate =
rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
if (rt->info[ix].shortPreamble ||
rt->info[ix].phy == IEEE80211_T_OFDM)
sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
/* NB: receive frames include FCS */
sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
IEEE80211_RADIOTAP_F_FCS;
/* setup blink rate table to avoid per-packet lookup */
for (j = 0; j < N(blinkrates)-1; j++)
if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
break;
/* NB: this uses the last entry if the rate isn't found */
/* XXX beware of overlow */
sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
}
sc->sc_currates = rt;
sc->sc_curmode = mode;
/*
* All protection frames are transmited at 2Mb/s for
* 11g, otherwise at 1Mb/s.
*/
if (mode == IEEE80211_MODE_11G)
sc->sc_protrix = ath_tx_findrix(rt, 2*2);
else
sc->sc_protrix = ath_tx_findrix(rt, 2*1);
/* rate index used to send management frames */
sc->sc_minrateix = 0;
/*
* Setup multicast rate state.
*/
/* XXX layering violation */
sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
/* NB: caller is responsible for reseting rate control state */
#undef N
}
#ifdef AR_DEBUG
static void
ath_printrxbuf(struct ath_buf *bf, int done)
{
struct ath_desc *ds;
int i;
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
printf("R%d (%p %" PRIx64
") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
(uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
ds->ds_link, ds->ds_data,
ds->ds_ctl0, ds->ds_ctl1,
ds->ds_hw[0], ds->ds_hw[1],
ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
!done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
}
}
static void
ath_printtxbuf(struct ath_buf *bf, int done)
{
struct ath_desc *ds;
int i;
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
printf("T%d (%p %" PRIx64
") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
i, ds,
(uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
ds->ds_link, ds->ds_data,
ds->ds_ctl0, ds->ds_ctl1,
ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
!done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
}
}
#endif /* AR_DEBUG */
static void
ath_watchdog(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ath_txq *axq;
int i;
ifp->if_timer = 0;
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
!device_is_active(sc->sc_dev))
return;
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (!ATH_TXQ_SETUP(sc, i))
continue;
axq = &sc->sc_txq[i];
ATH_TXQ_LOCK(axq);
if (axq->axq_timer == 0)
;
else if (--axq->axq_timer == 0) {
ATH_TXQ_UNLOCK(axq);
if_printf(ifp, "device timeout (txq %d, "
"txintrperiod %d)\n", i, sc->sc_txintrperiod);
if (sc->sc_txintrperiod > 1)
sc->sc_txintrperiod--;
ath_reset(ifp);
ifp->if_oerrors++;
sc->sc_stats.ast_watchdog++;
break;
} else
ifp->if_timer = 1;
ATH_TXQ_UNLOCK(axq);
}
ieee80211_watchdog(ic);
}
/*
* Diagnostic interface to the HAL. This is used by various
* tools to do things like retrieve register contents for
* debugging. The mechanism is intentionally opaque so that
* it can change frequently w/o concern for compatiblity.
*/
static int
ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
{
struct ath_hal *ah = sc->sc_ah;
u_int id = ad->ad_id & ATH_DIAG_ID;
void *indata = NULL;
void *outdata = NULL;
u_int32_t insize = ad->ad_in_size;
u_int32_t outsize = ad->ad_out_size;
int error = 0;
if (ad->ad_id & ATH_DIAG_IN) {
/*
* Copy in data.
*/
indata = malloc(insize, M_TEMP, M_NOWAIT);
if (indata == NULL) {
error = ENOMEM;
goto bad;
}
error = copyin(ad->ad_in_data, indata, insize);
if (error)
goto bad;
}
if (ad->ad_id & ATH_DIAG_DYN) {
/*
* Allocate a buffer for the results (otherwise the HAL
* returns a pointer to a buffer where we can read the
* results). Note that we depend on the HAL leaving this
* pointer for us to use below in reclaiming the buffer;
* may want to be more defensive.
*/
outdata = malloc(outsize, M_TEMP, M_NOWAIT);
if (outdata == NULL) {
error = ENOMEM;
goto bad;
}
}
if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
if (outsize < ad->ad_out_size)
ad->ad_out_size = outsize;
if (outdata != NULL)
error = copyout(outdata, ad->ad_out_data,
ad->ad_out_size);
} else {
error = EINVAL;
}
bad:
if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
free(indata, M_TEMP);
if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
free(outdata, M_TEMP);
return error;
}
static int
ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
#define IS_RUNNING(ifp) \
((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0, s;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
case IFF_UP|IFF_RUNNING:
/*
* To avoid rescanning another access point,
* do not call ath_init() here. Instead,
* only reflect promisc mode settings.
*/
ath_mode_init(sc);
break;
case IFF_UP:
/*
* Beware of being called during attach/detach
* to reset promiscuous mode. In that case we
* will still be marked UP but not RUNNING.
* However trying to re-init the interface
* is the wrong thing to do as we've already
* torn down much of our state. There's
* probably a better way to deal with this.
*/
error = ath_init(sc);
break;
case IFF_RUNNING:
ath_stop_locked(ifp, 1);
break;
case 0:
break;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
ath_mode_init(sc);
error = 0;
}
break;
case SIOCGATHSTATS:
/* NB: embed these numbers to get a consistent view */
sc->sc_stats.ast_tx_packets = ifp->if_opackets;
sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
splx(s);
/*
* NB: Drop the softc lock in case of a page fault;
* we'll accept any potential inconsisentcy in the
* statistics. The alternative is to copy the data
* to a local structure.
*/
return copyout(&sc->sc_stats,
ifr->ifr_data, sizeof (sc->sc_stats));
case SIOCGATHDIAG:
error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
if (error != ENETRESET)
;
else if (IS_RUNNING(ifp) &&
ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
error = ath_init(sc);
else
error = 0;
break;
}
splx(s);
return error;
#undef IS_RUNNING
}
static void
ath_bpfattach(struct ath_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
&sc->sc_drvbpf);
/*
* Initialize constant fields.
* XXX make header lengths a multiple of 32-bits so subsequent
* headers are properly aligned; this is a kludge to keep
* certain applications happy.
*
* NB: the channel is setup each time we transition to the
* RUN state to avoid filling it in for each frame.
*/
sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
}
/*
* Announce various information on device/driver attach.
*/
static void
ath_announce(struct ath_softc *sc)
{
#define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
struct ifnet *ifp = &sc->sc_if;
struct ath_hal *ah = sc->sc_ah;
u_int modes, cc;
if_printf(ifp, "mac %d.%d phy %d.%d",
ah->ah_macVersion, ah->ah_macRev,
ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
/*
* Print radio revision(s). We check the wireless modes
* to avoid falsely printing revs for inoperable parts.
* Dual-band radio revs are returned in the 5 GHz rev number.
*/
ath_hal_getcountrycode(ah, &cc);
modes = ath_hal_getwirelessmodes(ah, cc);
if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
ah->ah_analog5GhzRev >> 4,
ah->ah_analog5GhzRev & 0xf,
ah->ah_analog2GhzRev >> 4,
ah->ah_analog2GhzRev & 0xf);
else
printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
ah->ah_analog5GhzRev & 0xf);
} else
printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
ah->ah_analog5GhzRev & 0xf);
printf("\n");
if (bootverbose) {
int i;
for (i = 0; i <= WME_AC_VO; i++) {
struct ath_txq *txq = sc->sc_ac2q[i];
if_printf(ifp, "Use hw queue %u for %s traffic\n",
txq->axq_qnum, ieee80211_wme_acnames[i]);
}
if_printf(ifp, "Use hw queue %u for CAB traffic\n",
sc->sc_cabq->axq_qnum);
if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
}
if (ath_rxbuf != ATH_RXBUF)
if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
if (ath_txbuf != ATH_TXBUF)
if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
#undef HAL_MODE_DUALBAND
}