NetBSD/usr.sbin/sysinst/disklabel.c

1363 lines
37 KiB
C

/* $NetBSD: disklabel.c,v 1.51 2023/01/06 15:05:52 martin Exp $ */
/*
* Copyright 2018 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY PIERMONT INFORMATION SYSTEMS INC. ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL PIERMONT INFORMATION SYSTEMS INC. BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "defs.h"
#include "md.h"
#include <assert.h>
#include <util.h>
#include <paths.h>
#include <sys/ioctl.h>
#include <sys/param.h>
const struct disk_partitioning_scheme disklabel_parts;
/*************** disklabel ******************************************/
/* a disklabel based disk_partitions interface */
struct disklabel_disk_partitions {
struct disk_partitions dp;
struct disklabel l;
daddr_t ptn_alignment, install_target;
char last_mounted[MAXPARTITIONS][MOUNTLEN];
uint fs_sub_type[MAXPARTITIONS], fs_opt3[MAXPARTITIONS];
};
/*
* Maximum number of disklabel partitions the current kernel supports
*/
size_t dl_maxpart;
/* index into this array is the type code */
static struct part_type_desc dl_types[__arraycount(fstypenames)-1];
struct dl_custom_ptype {
unsigned int type;
char short_desc[6], description[30];
struct part_type_desc desc;
};
struct dl_custom_ptype * dl_custom_ptypes;
size_t dl_custom_ptype_count;
static uint8_t dl_part_type_from_generic(const struct part_type_desc*);
static void
disklabel_init_default_alignment(struct disklabel_disk_partitions *parts,
uint track)
{
if (track == 0)
track = MEG / parts->dp.bytes_per_sector;
if (dl_maxpart == 0)
dl_maxpart = getmaxpartitions();
#ifdef MD_DISKLABEL_SET_ALIGN_PRE
if (MD_DISKLABEL_SET_ALIGN_PRE(parts->ptn_alignment, track))
return;
#endif
/* Use 1MB alignemnt for large (>128GB) disks */
if (parts->dp.disk_size > HUGE_DISK_SIZE) {
parts->ptn_alignment = 2048;
} else if (parts->dp.disk_size > TINY_DISK_SIZE ||
parts->dp.bytes_per_sector > 512) {
parts->ptn_alignment = 64;
} else {
parts->ptn_alignment = 1;
}
#ifdef MD_DISKLABEL_SET_ALIGN_POST
MD_DISKLABEL_SET_ALIGN_POST(parts->ptn_alignment, track);
#endif
}
static bool
disklabel_change_geom(struct disk_partitions *arg, int ncyl, int nhead,
int nsec)
{
struct disklabel_disk_partitions *parts =
(struct disklabel_disk_partitions*)arg;
assert(parts->l.d_secsize != 0);
assert(parts->l.d_nsectors != 0);
assert(parts->l.d_ntracks != 0);
assert(parts->l.d_ncylinders != 0);
assert(parts->l.d_secpercyl != 0);
disklabel_init_default_alignment(parts, nhead * nsec);
if (ncyl*nhead*nsec <= TINY_DISK_SIZE)
set_default_sizemult(arg->disk,
arg->bytes_per_sector, arg->bytes_per_sector);
else
set_default_sizemult(arg->disk, MEG,
arg->bytes_per_sector);
return true;
}
static size_t
disklabel_cylinder_size(const struct disk_partitions *arg)
{
const struct disklabel_disk_partitions *parts =
(const struct disklabel_disk_partitions*)arg;
return parts->l.d_secpercyl;
}
#ifdef NO_DISKLABEL_BOOT
static bool
disklabel_non_bootable(const char *disk)
{
return false;
}
#endif
static struct disk_partitions *
disklabel_parts_new(const char *dev, daddr_t start, daddr_t len,
bool is_boot_drive, struct disk_partitions *parent)
{
struct disklabel_disk_partitions *parts;
struct disk_geom geo;
daddr_t total_size;
if (!get_disk_geom(dev, &geo))
return NULL;
parts = calloc(1, sizeof(*parts));
if (parts == NULL)
return NULL;
parts->install_target = -1;
total_size = geo.dg_secperunit;
if (len*(geo.dg_secsize/512) > disklabel_parts.size_limit)
len = disklabel_parts.size_limit/(geo.dg_secsize/512);
if (total_size*(geo.dg_secsize/512) > disklabel_parts.size_limit)
total_size = disklabel_parts.size_limit/(geo.dg_secsize/512);
parts->l.d_ncylinders = geo.dg_ncylinders;
parts->l.d_ntracks = geo.dg_ntracks;
parts->l.d_nsectors = geo.dg_nsectors;
parts->l.d_secsize = geo.dg_secsize;
parts->l.d_secpercyl = geo.dg_nsectors * geo.dg_ntracks;
parts->dp.pscheme = &disklabel_parts;
parts->dp.disk = strdup(dev);
parts->dp.disk_start = start;
parts->dp.disk_size = parts->dp.free_space = len;
parts->dp.bytes_per_sector = parts->l.d_secsize;
disklabel_init_default_alignment(parts, parts->l.d_secpercyl);
parts->dp.parent = parent;
strncpy(parts->l.d_packname, "fictious", sizeof parts->l.d_packname);
#if RAW_PART == 3
if (parts->dp.parent != NULL) {
parts->l.d_partitions[RAW_PART-1].p_fstype = FS_UNUSED;
parts->l.d_partitions[RAW_PART-1].p_offset = start;
parts->l.d_partitions[RAW_PART-1].p_size = len;
parts->dp.num_part++;
}
#endif
parts->l.d_partitions[RAW_PART].p_fstype = FS_UNUSED;
parts->l.d_partitions[RAW_PART].p_offset = 0;
parts->l.d_partitions[RAW_PART].p_size = total_size;
parts->dp.num_part++;
parts->l.d_npartitions = RAW_PART+1;
return &parts->dp;
}
static struct disk_partitions *
disklabel_parts_read(const char *disk, daddr_t start, daddr_t len, size_t bps,
const struct disk_partitioning_scheme *scheme)
{
int fd;
char diskpath[MAXPATHLEN];
uint flags;
bool have_own_label = false;
/* read partitions */
struct disklabel_disk_partitions *parts = calloc(1, sizeof(*parts));
if (parts == NULL)
return NULL;
parts->install_target = -1;
fd = opendisk(disk, O_RDONLY, diskpath, sizeof(diskpath), 0);
if (fd == -1) {
free(parts);
return NULL;
}
/*
* We should actually try to read the label inside the start/len
* boundary, but for simplicity just rely on the kernel and
* instead verify a FS_UNUSED partition at RAW_PART-1 (if
* RAW_PART > 'c') is within the given limits.
*/
if (ioctl(fd, DIOCGDINFO, &parts->l) < 0) {
free(parts);
close(fd);
return NULL;
}
#if RAW_PART == 3
if (parts->l.d_partitions[RAW_PART-1].p_fstype == FS_UNUSED) {
daddr_t dlstart = parts->l.d_partitions[RAW_PART-1].p_offset;
daddr_t dlend = start +
parts->l.d_partitions[RAW_PART-1].p_size;
if (dlstart < start || dlend > (start+len)) {
/*
* Kernel assumes different outer partition
* (probably not yet written back to disk)
* so this label is invalid.
*/
free(parts);
close(fd);
return NULL;
}
}
#endif
if (len > disklabel_parts.size_limit)
len = disklabel_parts.size_limit;
parts->dp.pscheme = scheme;
parts->dp.disk = strdup(disk);
parts->dp.disk_start = start;
parts->dp.disk_size = parts->dp.free_space = len;
parts->l.d_secsize = bps;
parts->dp.bytes_per_sector = bps;
disklabel_init_default_alignment(parts, parts->l.d_secpercyl);
for (int part = 0; part < parts->l.d_npartitions; part++) {
if (parts->l.d_partitions[part].p_fstype == FS_UNUSED
&& parts->l.d_partitions[part].p_size == 0)
continue;
parts->dp.num_part++;
if (parts->l.d_partitions[part].p_fstype == FS_UNUSED)
continue;
flags = 0;
if (parts->l.d_partitions[part].p_fstype == FS_MSDOS)
flags = GLM_MAYBE_FAT32;
else if (parts->l.d_partitions[part].p_fstype == FS_BSDFFS) {
flags = GLM_LIKELY_FFS;
if (parts->install_target < 0)
parts->install_target =
parts->l.d_partitions[part].p_offset;
}
if (flags != 0) {
uint fs_type, fs_sub_type;
const char *lm = get_last_mounted(fd,
parts->l.d_partitions[part].p_offset,
&fs_type, &fs_sub_type, flags);
if (lm != NULL && *lm != 0) {
strlcpy(parts->last_mounted[part], lm,
sizeof(parts->last_mounted[part]));
if (parts->l.d_partitions[part].p_fstype ==
fs_type)
parts->fs_sub_type[part] = fs_sub_type;
canonicalize_last_mounted(
parts->last_mounted[part]);
}
}
if (parts->l.d_partitions[part].p_size > parts->dp.free_space)
parts->dp.free_space = 0;
else
parts->dp.free_space -=
parts->l.d_partitions[part].p_size;
}
close(fd);
/*
* Verify we really have a disklabel on the target disk.
*/
if (run_program(RUN_SILENT | RUN_ERROR_OK,
"disklabel -r %s", disk) == 0) {
have_own_label = true;
}
#ifdef DISKLABEL_NO_ONDISK_VERIFY
else {
/*
* disklabel(8) with -r checks a native disklabel at
* LABELOFFSET sector, but several ports don't have
* a native label and use emulated one translated from
* port specific MD disk partition information.
* Unfortunately, there is no MI way to check whether
* the disk has a native BSD disklabel by readdisklabel(9)
* via DIOCGDINFO. So check if returned label looks
* defaults set by readdisklabel(9) per MD way.
*/
have_own_label = !md_disklabel_is_default(&parts->l);
}
#endif
if (!have_own_label) {
bool found_real_part = false;
if (parts->l.d_npartitions <= RAW_PART ||
parts->l.d_partitions[RAW_PART].p_size == 0)
goto no_valid_label;
/*
* Check if kernel translation gave us "something" besides
* the raw or the whole-disk partition.
* If not: report missing disklabel.
*/
for (int part = 0; part < parts->l.d_npartitions; part++) {
if (parts->l.d_partitions[part].p_fstype == FS_UNUSED)
continue;
if (/* part == 0 && */ /* PR kern/54882 */
parts->l.d_partitions[part].p_offset ==
parts->l.d_partitions[RAW_PART].p_offset &&
parts->l.d_partitions[part].p_size ==
parts->l.d_partitions[RAW_PART].p_size)
continue;
if (part == RAW_PART)
continue;
found_real_part = true;
break;
}
if (!found_real_part) {
/* no partition there yet */
no_valid_label:
free(parts);
return NULL;
}
}
return &parts->dp;
}
/*
* Escape a string for usage as a tag name in a capfile(5),
* we really know there is enough space in the destination buffer...
*/
static void
escape_capfile(char *dest, const char *src, size_t len)
{
while (*src && len > 0) {
if (*src == ':')
*dest++ = ' ';
else
*dest++ = *src;
src++;
len--;
}
*dest = 0;
}
static bool
disklabel_write_to_disk(struct disk_partitions *arg)
{
struct disklabel_disk_partitions *parts =
(struct disklabel_disk_partitions*)arg;
FILE *f;
char fname[PATH_MAX], packname[sizeof(parts->l.d_packname)+1],
disktype[sizeof(parts->l.d_typename)+1];
int i, rv = 0;
const char *disk = parts->dp.disk, *s;
const struct partition *lp;
char *d;
size_t n;
assert(parts->l.d_secsize != 0);
assert(parts->l.d_nsectors != 0);
assert(parts->l.d_ntracks != 0);
assert(parts->l.d_ncylinders != 0);
assert(parts->l.d_secpercyl != 0);
/* make sure we have a 0 terminated packname */
strlcpy(packname, parts->l.d_packname, sizeof packname);
if (packname[0] == 0)
strcpy(packname, "fictious");
/* fill typename with disk name prefix, if not already set */
if (strlen(parts->l.d_typename) == 0) {
for (n = 0, d = parts->l.d_typename, s = disk;
*s && n < sizeof(parts->l.d_typename); d++, s++, n++) {
if (isdigit((unsigned char)*s))
break;
*d = *s;
}
}
/* we need a valid disk type name, so enforce an arbitrary if
* above did not yield a usable one */
if (strlen(parts->l.d_typename) == 0)
strncpy(parts->l.d_typename, "SCSI",
sizeof(parts->l.d_typename));
escape_capfile(disktype, parts->l.d_typename,
sizeof(parts->l.d_typename));
sprintf(fname, "/tmp/disklabel.%u", getpid());
f = fopen(fname, "w");
if (f == NULL)
return false;
lp = parts->l.d_partitions;
scripting_fprintf(NULL, "cat <<EOF >%s\n", fname);
scripting_fprintf(f, "%s|NetBSD installation generated:\\\n",
disktype);
scripting_fprintf(f, "\t:nc#%d:nt#%d:ns#%d:\\\n",
parts->l.d_ncylinders, parts->l.d_ntracks, parts->l.d_nsectors);
scripting_fprintf(f, "\t:sc#%d:su#%" PRIu32 ":\\\n",
parts->l.d_secpercyl, lp[RAW_PART].p_offset+lp[RAW_PART].p_size);
scripting_fprintf(f, "\t:se#%d:\\\n", parts->l.d_secsize);
for (i = 0; i < parts->l.d_npartitions; i++) {
scripting_fprintf(f, "\t:p%c#%" PRIu32 ":o%c#%" PRIu32
":t%c=%s:", 'a'+i, (uint32_t)lp[i].p_size,
'a'+i, (uint32_t)lp[i].p_offset, 'a'+i,
fstypenames[lp[i].p_fstype]);
if (lp[i].p_fstype == FS_BSDLFS ||
lp[i].p_fstype == FS_BSDFFS)
scripting_fprintf (f, "b%c#%" PRIu32 ":f%c#%" PRIu32
":", 'a'+i,
(uint32_t)(lp[i].p_fsize *
lp[i].p_frag),
'a'+i, (uint32_t)lp[i].p_fsize);
if (i < parts->l.d_npartitions - 1)
scripting_fprintf(f, "\\\n");
else
scripting_fprintf(f, "\n");
}
scripting_fprintf(NULL, "EOF\n");
fclose(f);
/*
* Label a disk using an MD-specific string DISKLABEL_CMD for
* to invoke disklabel.
* if MD code does not define DISKLABEL_CMD, this is a no-op.
*
* i386 port uses "/sbin/disklabel -w -r", just like i386
* miniroot scripts, though this may leave a bogus incore label.
*
* Sun ports should use DISKLABEL_CMD "/sbin/disklabel -w"
* to get incore to ondisk inode translation for the Sun proms.
*/
#ifdef DISKLABEL_CMD
/* disklabel the disk */
rv = run_program(0, "%s -f %s %s '%s' '%s'",
DISKLABEL_CMD, fname, disk, disktype, packname);
#endif
unlink(fname);
return rv == 0;
}
static bool
disklabel_delete_all(struct disk_partitions *arg)
{
struct disklabel_disk_partitions *parts =
(struct disklabel_disk_partitions*)arg;
daddr_t total_size = parts->l.d_partitions[RAW_PART].p_size;
memset(&parts->l.d_partitions, 0, sizeof(parts->l.d_partitions));
parts->dp.num_part = 0;
#if RAW_PART == 3
if (parts->dp.parent != NULL) {
parts->l.d_partitions[RAW_PART-1].p_fstype = FS_UNUSED;
parts->l.d_partitions[RAW_PART-1].p_offset =
parts->dp.disk_start;
parts->l.d_partitions[RAW_PART-1].p_size = parts->dp.disk_size;
parts->dp.num_part++;
}
#endif
parts->l.d_partitions[RAW_PART].p_fstype = FS_UNUSED;
parts->l.d_partitions[RAW_PART].p_offset = 0;
parts->l.d_partitions[RAW_PART].p_size = total_size;
parts->dp.num_part++;
parts->l.d_npartitions = RAW_PART+1;
return true;
}
static bool
disklabel_delete(struct disk_partitions *arg, part_id id,
const char **err_msg)
{
struct disklabel_disk_partitions *parts =
(struct disklabel_disk_partitions*)arg;
part_id ndx;
ndx = 0;
for (int part = 0; part < parts->l.d_npartitions; part++) {
if (parts->l.d_partitions[part].p_fstype == FS_UNUSED
&& parts->l.d_partitions[part].p_size == 0)
continue;
if (ndx == id) {
if (part == RAW_PART
#if RAW_PART == 3
|| (part == RAW_PART-1 &&
parts->dp.parent != NULL)
#endif
) {
if (err_msg)
*err_msg = msg_string(
MSG_part_not_deletable);
return false;
}
if (parts->install_target ==
parts->l.d_partitions[part].p_offset)
parts->install_target = -1;
parts->dp.free_space +=
parts->l.d_partitions[part].p_size;
parts->l.d_partitions[part].p_size = 0;
parts->l.d_partitions[part].p_offset = 0;
parts->l.d_partitions[part].p_fstype = FS_UNUSED;
parts->dp.num_part--;
return true;
}
ndx++;
}
if (err_msg)
*err_msg = INTERNAL_ERROR;
return false;
}
static bool
disklabel_delete_range(struct disk_partitions *arg, daddr_t r_start,
daddr_t r_size)
{
struct disklabel_disk_partitions *parts =
(struct disklabel_disk_partitions*)arg;
for (int part = 0; part < parts->l.d_npartitions; part++) {
if (parts->l.d_partitions[part].p_fstype == FS_UNUSED
&& parts->l.d_partitions[part].p_size == 0)
continue;
if (part == RAW_PART)
continue;
daddr_t start = parts->l.d_partitions[part].p_offset;
daddr_t end = start + parts->l.d_partitions[part].p_size;
#if RAW_PART == 3
if (parts->dp.parent != NULL &&
part == RAW_PART - 1 && start == r_start &&
r_start + r_size == end)
continue;
#endif
if ((start >= r_start && start <= r_start+r_size) ||
(end >= r_start && end <= r_start+r_size)) {
if (start == parts->install_target)
parts->install_target = -1;
if (parts->dp.num_part > 1)
parts->dp.num_part--;
parts->dp.free_space +=
parts->l.d_partitions[part].p_size;
parts->l.d_partitions[part].p_fstype = FS_UNUSED;
parts->l.d_partitions[part].p_size = 0;
}
}
return true;
}
static void
dl_init_types(void)
{
for (size_t i = 0; i < __arraycount(dl_types); i++) {
if (fstypenames[i] == NULL)
break;
dl_types[i].short_desc =
dl_types[i].description = getfslabelname(i, 0);
enum part_type pt;
switch (i) {
case FS_UNUSED: pt = PT_undef; break;
case FS_BSDFFS:
case FS_RAID:
case FS_BSDLFS:
case FS_CGD:
pt = PT_root; break;
case FS_SWAP: pt = PT_swap; break;
case FS_MSDOS: pt = PT_FAT; break;
case FS_EX2FS: pt = PT_EXT2; break;
case FS_SYSVBFS:
pt = PT_SYSVBFS; break;
default: pt = PT_unknown; break;
}
dl_types[i].generic_ptype = pt;
}
}
static uint8_t
dl_part_type_from_generic(const struct part_type_desc *gent)
{
if (dl_types[0].description == NULL)
dl_init_types();
for (size_t i = 0; i < __arraycount(dl_types); i++)
if (gent == &dl_types[i])
return (uint8_t)i;
for (size_t i = 0; i < dl_custom_ptype_count; i++)
if (gent == &dl_custom_ptypes[i].desc)
return dl_custom_ptypes[i].type;
return 0;
}
static size_t
disklabel_type_count(void)
{
return __arraycount(dl_types) + dl_custom_ptype_count;
}
static const struct part_type_desc *
disklabel_get_type(size_t ndx)
{
if (dl_types[0].description == NULL)
dl_init_types();
if (ndx < __arraycount(dl_types))
return &dl_types[ndx];
ndx -= __arraycount(dl_types);
if (ndx >= dl_custom_ptype_count)
return NULL;
return &dl_custom_ptypes[ndx].desc;
}
static const struct part_type_desc *
disklabel_find_type(uint type, bool create_if_unknown)
{
if (dl_types[0].description == NULL)
dl_init_types();
if (type < __arraycount(dl_types))
return &dl_types[type];
for (size_t i = 0; i < dl_custom_ptype_count; i++)
if (dl_custom_ptypes[i].type == type)
return &dl_custom_ptypes[i].desc;
if (create_if_unknown) {
struct dl_custom_ptype *nt;
nt = realloc(dl_custom_ptypes, dl_custom_ptype_count+1);
if (nt == NULL)
return NULL;
dl_custom_ptypes = nt;
nt = dl_custom_ptypes + dl_custom_ptype_count;
dl_custom_ptype_count++;
memset(nt, 0, sizeof(*nt));
nt->type = type;
snprintf(nt->short_desc, sizeof(nt->short_desc), "%u", type);
nt->short_desc[sizeof(nt->short_desc)-1] = 0;
snprintf(nt->description, sizeof(nt->description),
"%s (%u)", msg_string(MSG_custom_type), type);
nt->description[sizeof(nt->description)-1] = 0;
nt->desc.generic_ptype = PT_unknown;
nt->desc.short_desc = nt->short_desc;
nt->desc.description = nt->description;
return &nt->desc;
}
return NULL;
}
static const struct part_type_desc *
disklabel_create_custom_part_type(const char *custom, const char **err_msg)
{
char *endp;
unsigned long fstype;
fstype = strtoul(custom, &endp, 10);
if (*endp != 0) {
if (err_msg)
*err_msg = msg_string(MSG_dl_type_invalid);
return NULL;
}
return disklabel_find_type(fstype, true);
}
static const struct part_type_desc *
disklabel_get_fs_part_type(enum part_type pt, unsigned fstype, unsigned subtype)
{
return disklabel_find_type(fstype, false);
}
static const struct part_type_desc *
disklabel_create_unknown_part_type(void)
{
return disklabel_find_type(FS_OTHER, false);
}
static const struct part_type_desc *
disklabel_get_generic_type(enum part_type pt)
{
size_t nt;
if (dl_types[0].description == NULL)
dl_init_types();
switch (pt) {
case PT_root: nt = FS_BSDFFS; break;
case PT_swap: nt = FS_SWAP; break;
case PT_FAT:
case PT_EFI_SYSTEM:
nt = FS_MSDOS; break;
case PT_EXT2: nt = FS_EX2FS; break;
case PT_SYSVBFS:
nt = FS_SYSVBFS; break;
default: nt = FS_UNUSED; break;
}
return disklabel_get_type(nt);
}
static bool
disklabel_get_default_fstype(const struct part_type_desc *nat_type,
unsigned *fstype, unsigned *fs_sub_type)
{
*fstype = dl_part_type_from_generic(nat_type);
#ifdef DEFAULT_UFS2
if (*fstype == FS_BSDFFS)
*fs_sub_type = 2;
else
#endif
*fs_sub_type = 0;
return true;
}
static bool
disklabel_get_part_info(const struct disk_partitions *arg, part_id id,
struct disk_part_info *info)
{
const struct disklabel_disk_partitions *parts =
(const struct disklabel_disk_partitions*)arg;
part_id ndx;
if (dl_types[0].description == NULL)
dl_init_types();
ndx = 0;
for (int part = 0; part < parts->l.d_npartitions; part++) {
if (parts->l.d_partitions[part].p_fstype == FS_UNUSED
&& parts->l.d_partitions[part].p_size == 0)
continue;
if (ndx == id) {
memset(info, 0, sizeof(*info));
info->start = parts->l.d_partitions[part].p_offset;
info->size = parts->l.d_partitions[part].p_size;
info->nat_type = disklabel_find_type(
parts->l.d_partitions[part].p_fstype, true);
if (parts->last_mounted[part][0] != 0)
info->last_mounted = parts->last_mounted[part];
info->fs_type = parts->l.d_partitions[part].p_fstype;
info->fs_sub_type = parts->fs_sub_type[part];
info->fs_opt2 = parts->l.d_partitions[part].p_fsize;
info->fs_opt1 = info->fs_opt2 *
parts->l.d_partitions[part].p_frag;
info->fs_opt3 = parts->fs_opt3[part];
if (part == RAW_PART &&
parts->l.d_partitions[part].p_fstype == FS_UNUSED)
info->flags |=
PTI_PSCHEME_INTERNAL|PTI_RAW_PART;
if (info->start == parts->install_target &&
parts->l.d_partitions[part].p_fstype != FS_UNUSED)
info->flags |= PTI_INSTALL_TARGET;
#if RAW_PART == 3
if (part == (RAW_PART-1) && parts->dp.parent != NULL &&
parts->l.d_partitions[part].p_fstype == FS_UNUSED)
info->flags |=
PTI_PSCHEME_INTERNAL|PTI_WHOLE_DISK;
#endif
return true;
}
ndx++;
if (ndx > parts->dp.num_part || ndx > id)
break;
}
return false;
}
static bool
disklabel_set_part_info(struct disk_partitions *arg, part_id id,
const struct disk_part_info *info, const char **err_msg)
{
struct disklabel_disk_partitions *parts =
(struct disklabel_disk_partitions*)arg;
part_id ndx;
bool was_inst_target;
if (dl_types[0].description == NULL)
dl_init_types();
ndx = 0;
for (int part = 0; part < parts->l.d_npartitions; part++) {
if (parts->l.d_partitions[part].p_fstype == FS_UNUSED
&& parts->l.d_partitions[part].p_size == 0)
continue;
if (ndx == id) {
was_inst_target = parts->l.d_partitions[part].p_offset
== parts->install_target;
parts->l.d_partitions[part].p_offset = info->start;
if (part != RAW_PART
#if RAW_PART == 3
&& (part != RAW_PART-1 ||
parts->dp.parent == NULL)
#endif
) {
parts->dp.free_space +=
parts->l.d_partitions[part].p_size -
info->size;
}
parts->l.d_partitions[part].p_size = info->size;
parts->l.d_partitions[part].p_fstype =
dl_part_type_from_generic(info->nat_type);
parts->l.d_partitions[part].p_fsize = info->fs_opt2;
if (info->fs_opt2 != 0)
parts->l.d_partitions[part].p_frag =
info->fs_opt1 / info->fs_opt2;
else
parts->l.d_partitions[part].p_frag = 0;
parts->fs_opt3[part] = info->fs_opt3;
if (info->last_mounted != NULL &&
info->last_mounted != parts->last_mounted[part])
strlcpy(parts->last_mounted[part],
info->last_mounted,
sizeof(parts->last_mounted[part]));
if (info->flags & PTI_INSTALL_TARGET)
parts->install_target = info->start;
else if (was_inst_target)
parts->install_target = -1;
assert(info->fs_type == 0 || info->fs_type ==
parts->l.d_partitions[part].p_fstype);
if (info->fs_sub_type != 0)
parts->fs_sub_type[part] = info->fs_sub_type;
return true;
}
ndx++;
if (ndx > parts->dp.num_part || ndx > id)
break;
}
return false;
}
static size_t
disklabel_get_free_spaces_internal(const struct
disklabel_disk_partitions *parts,
struct disk_part_free_space *result, size_t max_num_result,
daddr_t min_space_size, daddr_t align, daddr_t start, daddr_t ignore)
{
size_t cnt = 0, i;
daddr_t s, e, from, size, end_of_disk;
if (start < parts->dp.disk_start)
start = parts->dp.disk_start;
if (min_space_size < 1)
min_space_size = 1;
if (align > 1 && (start % align) != 0)
start = max(roundup(start, align), align);
end_of_disk = parts->dp.disk_start + parts->dp.disk_size;
from = start;
while (from < end_of_disk && cnt < max_num_result) {
again:
size = parts->dp.disk_start + parts->dp.disk_size - from;
start = from;
for (i = 0; i < parts->l.d_npartitions; i++) {
if (i == RAW_PART)
continue;
if (parts->l.d_partitions[i].p_fstype == FS_UNUSED)
continue;
if (parts->l.d_partitions[i].p_size == 0)
continue;
s = parts->l.d_partitions[i].p_offset;
e = parts->l.d_partitions[i].p_size + s;
if (s == ignore)
continue;
if (e < from)
continue;
if (s <= from && e > from) {
if (e - 1 >= end_of_disk)
return cnt;
from = e + 1;
if (align > 1) {
from = max(roundup(from, align), align);
if (from >= end_of_disk) {
size = 0;
break;
}
}
goto again;
}
if (s > from && s - from < size) {
size = s - from;
}
}
if (size >= min_space_size) {
result->start = start;
result->size = size;
result++;
cnt++;
}
from += size + 1;
if (align > 1)
from = max(roundup(from, align), align);
}
return cnt;
}
static bool
disklabel_can_add_partition(const struct disk_partitions *arg)
{
const struct disklabel_disk_partitions *parts =
(const struct disklabel_disk_partitions*)arg;
struct disk_part_free_space space;
int i;
if (dl_maxpart == 0)
dl_maxpart = getmaxpartitions();
if (parts->dp.free_space < parts->ptn_alignment)
return false;
if (parts->dp.num_part >= dl_maxpart)
return false;
if (disklabel_get_free_spaces_internal(parts, &space, 1,
parts->ptn_alignment, parts->ptn_alignment, 0, -1) < 1)
return false;
if (parts->l.d_npartitions < dl_maxpart)
return true;
for (i = 0; i < parts->l.d_npartitions; i++) {
if (i == RAW_PART)
continue;
#if RAW_PART == 3
if (i == RAW_PART-1 && parts->dp.parent != NULL)
continue;
#endif
if (parts->l.d_partitions[i].p_fstype == FS_UNUSED)
return true;
}
return false;
}
static bool
disklabel_get_disk_pack_name(const struct disk_partitions *arg,
char *buf, size_t len)
{
const struct disklabel_disk_partitions *parts =
(const struct disklabel_disk_partitions*)arg;
strlcpy(buf, parts->l.d_packname, min(len,
sizeof(parts->l.d_packname)+1));
return true;
}
static bool
disklabel_set_disk_pack_name(struct disk_partitions *arg, const char *pack)
{
struct disklabel_disk_partitions *parts =
(struct disklabel_disk_partitions*)arg;
strncpy(parts->l.d_packname, pack, sizeof(parts->l.d_packname));
return true;
}
static bool
disklabel_get_part_device(const struct disk_partitions *arg,
part_id ptn, char *devname, size_t max_devname_len, int *part,
enum dev_name_usage which_name, bool with_path, bool life)
{
const struct disklabel_disk_partitions *parts =
(const struct disklabel_disk_partitions*)arg;
part_id id;
int part_index;
char pname;
if (ptn >= parts->l.d_npartitions)
return false;
for (id = part_index = 0; part_index < parts->l.d_npartitions;
part_index++) {
if (parts->l.d_partitions[part_index].p_fstype == FS_UNUSED &&
parts->l.d_partitions[part_index].p_size == 0)
continue;
if (id == ptn)
break;
id++;
if (id > ptn)
return false;
}
if (part != 0)
*part = part_index;
pname = 'a'+ part_index;
switch (which_name) {
case parent_device_only:
strlcpy(devname, arg->disk, max_devname_len);
return true;
case logical_name:
case plain_name:
if (with_path)
snprintf(devname, max_devname_len, _PATH_DEV "%s%c",
arg->disk, pname);
else
snprintf(devname, max_devname_len, "%s%c",
arg->disk, pname);
return true;
case raw_dev_name:
if (with_path)
snprintf(devname, max_devname_len, _PATH_DEV "r%s%c",
arg->disk, pname);
else
snprintf(devname, max_devname_len, "r%s%c",
arg->disk, pname);
return true;
}
return false;
}
/*
* If the requested partition file system type internally skips
* the disk label sector, we can allow it to start at the beginning
* of the disk. In most cases though we have to move the partition
* to start past the label sector.
*/
static bool
need_to_skip_past_label(const struct disk_part_info *info)
{
switch (info->fs_type) {
case FS_BSDFFS:
case FS_RAID:
return false;
}
return true;
}
static part_id
disklabel_add_partition(struct disk_partitions *arg,
const struct disk_part_info *info, const char **err_msg)
{
struct disklabel_disk_partitions *parts =
(struct disklabel_disk_partitions*)arg;
int i, part = -1;
part_id new_id;
struct disk_part_free_space space;
struct disk_part_info data = *info;
if (disklabel_get_free_spaces_internal(parts, &space, 1, 1, 1,
data.start, -1) < 1) {
if (err_msg)
*err_msg = msg_string(MSG_No_free_space);
return NO_PART;
}
if (space.start <= (parts->dp.disk_start + LABELSECTOR) &&
need_to_skip_past_label(&data)) {
daddr_t new_start = roundup(parts->dp.disk_start + LABELSECTOR,
parts->ptn_alignment);
daddr_t off = new_start - space.start;
space.start += off;
space.size -= off;
}
if (data.size > space.size)
data.size = space.size;
daddr_t dend = data.start+data.size;
if (space.start > data.start)
data.start = space.start;
if (space.start + space.size < dend)
data.size = space.start+space.size-data.start;
if (dl_maxpart == 0)
dl_maxpart = getmaxpartitions();
for (new_id = 0, i = 0; i < parts->l.d_npartitions; i++) {
if (parts->l.d_partitions[i].p_size > 0)
new_id++;
if (data.nat_type->generic_ptype != PT_root &&
data.nat_type->generic_ptype != PT_swap && i < RAW_PART)
continue;
if (i == 0 && data.nat_type->generic_ptype != PT_root)
continue;
if (i == 1 && data.nat_type->generic_ptype != PT_swap)
continue;
if (i == RAW_PART)
continue;
#if RAW_PART == 3
if (i == RAW_PART-1 && parts->dp.parent != NULL)
continue;
#endif
if (parts->l.d_partitions[i].p_size > 0)
continue;
#ifdef MD_DISKLABEL_PART_INDEX_CHECK
if (!MD_DISKLABEL_PART_INDEX_CHECK(&parts->l, i, info))
continue;
#endif
part = i;
break;
}
if (part < 0) {
if (parts->l.d_npartitions >= dl_maxpart) {
if (err_msg)
*err_msg =
msg_string(MSG_err_too_many_partitions);
return NO_PART;
}
part = parts->l.d_npartitions++;
}
parts->l.d_partitions[part].p_offset = data.start;
parts->l.d_partitions[part].p_size = data.size;
parts->l.d_partitions[part].p_fstype =
dl_part_type_from_generic(data.nat_type);
parts->l.d_partitions[part].p_fsize = info->fs_opt2;
if (info->fs_opt2 != 0)
parts->l.d_partitions[part].p_frag =
info->fs_opt1 / info->fs_opt2;
else
parts->l.d_partitions[part].p_frag = 0;
if (data.last_mounted && data.last_mounted[0])
strlcpy(parts->last_mounted[part], data.last_mounted,
sizeof(parts->last_mounted[part]));
else
parts->last_mounted[part][0] = 0;
parts->fs_sub_type[part] = data.fs_sub_type;
parts->dp.num_part++;
if (data.size <= parts->dp.free_space)
parts->dp.free_space -= data.size;
else
parts->dp.free_space = 0;
return new_id;
}
static part_id
disklabel_add_outer_partition(struct disk_partitions *arg,
const struct disk_part_info *info, const char **err_msg)
{
struct disklabel_disk_partitions *parts =
(struct disklabel_disk_partitions*)arg;
int i, part = -1;
part_id new_id;
if (dl_maxpart == 0)
dl_maxpart = getmaxpartitions();
for (new_id = 0, i = 0; i < parts->l.d_npartitions; i++) {
if (parts->l.d_partitions[i].p_size > 0)
new_id++;
if (info->nat_type->generic_ptype != PT_root &&
info->nat_type->generic_ptype != PT_swap && i < RAW_PART)
continue;
if (i == 0 && info->nat_type->generic_ptype != PT_root)
continue;
if (i == 1 && info->nat_type->generic_ptype != PT_swap)
continue;
if (i == RAW_PART)
continue;
#if RAW_PART == 3
if (i == RAW_PART-1 && parts->dp.parent != NULL)
continue;
#endif
if (parts->l.d_partitions[i].p_size > 0)
continue;
part = i;
break;
}
if (part < 0) {
if (parts->l.d_npartitions >= dl_maxpart) {
if (err_msg)
*err_msg =
msg_string(MSG_err_too_many_partitions);
return NO_PART;
}
part = parts->l.d_npartitions++;
}
parts->l.d_partitions[part].p_offset = info->start;
parts->l.d_partitions[part].p_size = info->size;
parts->l.d_partitions[part].p_fstype =
dl_part_type_from_generic(info->nat_type);
parts->l.d_partitions[part].p_fsize = info->fs_opt2;
if (info->fs_opt2 != 0)
parts->l.d_partitions[part].p_frag =
info->fs_opt1 / info->fs_opt2;
else
parts->l.d_partitions[part].p_frag = 0;
if (info->last_mounted && info->last_mounted[0])
strlcpy(parts->last_mounted[part], info->last_mounted,
sizeof(parts->last_mounted[part]));
else
parts->last_mounted[part][0] = 0;
parts->fs_sub_type[part] = info->fs_sub_type;
parts->dp.num_part++;
return new_id;
}
static size_t
disklabel_get_free_spaces(const struct disk_partitions *arg,
struct disk_part_free_space *result, size_t max_num_result,
daddr_t min_space_size, daddr_t align, daddr_t start, daddr_t ignore)
{
const struct disklabel_disk_partitions *parts =
(const struct disklabel_disk_partitions*)arg;
return disklabel_get_free_spaces_internal(parts, result,
max_num_result, min_space_size, align, start, ignore);
}
static daddr_t
disklabel_max_free_space_at(const struct disk_partitions *arg, daddr_t start)
{
const struct disklabel_disk_partitions *parts =
(const struct disklabel_disk_partitions*)arg;
struct disk_part_free_space space;
if (disklabel_get_free_spaces_internal(parts, &space, 1, 1, 0,
start, start) == 1)
return space.size;
return 0;
}
static daddr_t
disklabel_get_alignment(const struct disk_partitions *arg)
{
const struct disklabel_disk_partitions *parts =
(const struct disklabel_disk_partitions*)arg;
return parts->ptn_alignment;
}
static part_id
disklabel_find_by_name(struct disk_partitions *arg, const char *name)
{
const struct disklabel_disk_partitions *parts =
(const struct disklabel_disk_partitions*)arg;
char *sl, part;
ptrdiff_t n;
part_id pno, id, i;
sl = strrchr(name, '/');
if (sl == NULL)
return NO_PART;
n = sl - name;
if (strncmp(name, parts->l.d_packname, n) != 0)
return NO_PART;
part = name[n+1];
if (part < 'a')
return NO_PART;
pno = part - 'a';
if (pno >= parts->l.d_npartitions)
return NO_PART;
if (parts->l.d_partitions[pno].p_fstype == FS_UNUSED)
return NO_PART;
for (id = 0, i = 0; i < pno; i++)
if (parts->l.d_partitions[i].p_fstype != FS_UNUSED ||
parts->l.d_partitions[i].p_size != 0)
id++;
return id;
}
static void
disklabel_free(struct disk_partitions *arg)
{
assert(arg != NULL);
free(__UNCONST(arg->disk));
free(arg);
}
static void
disklabel_destroy_part_scheme(struct disk_partitions *arg)
{
run_program(RUN_SILENT, "disklabel -D %s", arg->disk);
free(arg);
}
const struct disk_partitioning_scheme
disklabel_parts = {
.name = MSG_parttype_disklabel,
.short_name = MSG_parttype_disklabel_short,
.new_type_prompt = MSG_dl_get_custom_fstype,
.size_limit = (daddr_t)UINT32_MAX,
.write_to_disk = disklabel_write_to_disk,
.read_from_disk = disklabel_parts_read,
.create_new_for_disk = disklabel_parts_new,
#ifdef NO_DISKLABEL_BOOT
.have_boot_support = disklabel_non_bootable,
#endif
.change_disk_geom = disklabel_change_geom,
.get_cylinder_size = disklabel_cylinder_size,
.find_by_name = disklabel_find_by_name,
.get_disk_pack_name = disklabel_get_disk_pack_name,
.set_disk_pack_name = disklabel_set_disk_pack_name,
.delete_all_partitions = disklabel_delete_all,
.delete_partitions_in_range = disklabel_delete_range,
.delete_partition = disklabel_delete,
.get_part_types_count = disklabel_type_count,
.get_part_type = disklabel_get_type,
.get_generic_part_type = disklabel_get_generic_type,
.get_fs_part_type = disklabel_get_fs_part_type,
.get_default_fstype = disklabel_get_default_fstype,
.create_custom_part_type = disklabel_create_custom_part_type,
.create_unknown_part_type = disklabel_create_unknown_part_type,
.get_part_alignment = disklabel_get_alignment,
.adapt_foreign_part_info = generic_adapt_foreign_part_info,
.get_part_info = disklabel_get_part_info,
.can_add_partition = disklabel_can_add_partition,
.set_part_info = disklabel_set_part_info,
.add_partition = disklabel_add_partition,
.add_outer_partition = disklabel_add_outer_partition,
.max_free_space_at = disklabel_max_free_space_at,
.get_free_spaces = disklabel_get_free_spaces,
.get_part_device = disklabel_get_part_device,
.free = disklabel_free,
.destroy_part_scheme = disklabel_destroy_part_scheme,
};