NetBSD/sys/kern/kern_condvar.c

375 lines
8.7 KiB
C

/* $NetBSD: kern_condvar.c,v 1.12 2007/08/02 22:01:40 ad Exp $ */
/*-
* Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Kernel condition variable implementation, modeled after those found in
* Solaris, a description of which can be found in:
*
* Solaris Internals: Core Kernel Architecture, Jim Mauro and
* Richard McDougall.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.12 2007/08/02 22:01:40 ad Exp $");
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/systm.h>
#include <sys/condvar.h>
#include <sys/sleepq.h>
static void cv_unsleep(lwp_t *);
static void cv_changepri(lwp_t *, pri_t);
static syncobj_t cv_syncobj = {
SOBJ_SLEEPQ_SORTED,
cv_unsleep,
cv_changepri,
sleepq_lendpri,
syncobj_noowner,
};
static const char deadcv[] = "deadcv";
/*
* cv_init:
*
* Initialize a condition variable for use.
*/
void
cv_init(kcondvar_t *cv, const char *wmesg)
{
KASSERT(wmesg != NULL);
cv->cv_wmesg = wmesg;
cv->cv_waiters = 0;
}
/*
* cv_destroy:
*
* Tear down a condition variable.
*/
void
cv_destroy(kcondvar_t *cv)
{
#ifdef DIAGNOSTIC
KASSERT(cv->cv_wmesg != deadcv && cv->cv_wmesg != NULL);
KASSERT(cv->cv_waiters == 0);
cv->cv_wmesg = deadcv;
#endif
}
/*
* cv_enter:
*
* Look up and lock the sleep queue corresponding to the given
* condition variable, and increment the number of waiters.
*/
static inline sleepq_t *
cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
{
sleepq_t *sq;
KASSERT(cv->cv_wmesg != deadcv && cv->cv_wmesg != NULL);
KASSERT((l->l_flag & LW_INTR) == 0);
l->l_cv_signalled = 0;
sq = sleeptab_lookup(&sleeptab, cv);
cv->cv_waiters++;
sleepq_enter(sq, l);
sleepq_enqueue(sq, sched_kpri(l), cv, cv->cv_wmesg, &cv_syncobj);
mutex_exit(mtx);
return sq;
}
/*
* cv_exit:
*
* After resuming execution, check to see if we have been restarted
* as a result of cv_signal(). If we have, but cannot take the
* wakeup (because of eg a pending Unix signal or timeout) then try
* to ensure that another LWP sees it. This is necessary because
* there may be multiple waiters, and at least one should take the
* wakeup if possible.
*/
static inline int
cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
{
mutex_enter(mtx);
if (__predict_false(error != 0) && l->l_cv_signalled != 0)
cv_signal(cv);
KASSERT(cv->cv_wmesg != deadcv && cv->cv_wmesg != NULL);
return error;
}
/*
* cv_unsleep:
*
* Remove an LWP from the condition variable and sleep queue. This
* is called when the LWP has not been awoken normally but instead
* interrupted: for example, when a signal is received. Must be
* called with the LWP locked, and must return it unlocked.
*/
static void
cv_unsleep(lwp_t *l)
{
kcondvar_t *cv;
KASSERT(l->l_wchan != NULL);
KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
KASSERT(cv->cv_wmesg != deadcv && cv->cv_wmesg != NULL);
cv->cv_waiters--;
sleepq_unsleep(l);
}
/*
* cv_changepri:
*
* Adjust the real (user) priority of an LWP blocked on a CV.
*/
static void
cv_changepri(lwp_t *l, pri_t pri)
{
sleepq_t *sq = l->l_sleepq;
pri_t opri;
KASSERT(lwp_locked(l, sq->sq_mutex));
opri = lwp_eprio(l);
l->l_usrpri = pri;
l->l_priority = sched_kpri(l);
if (lwp_eprio(l) != opri) {
TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
sleepq_insert(sq, l, l->l_syncobj);
}
}
/*
* cv_wait:
*
* Wait non-interruptably on a condition variable until awoken.
*/
void
cv_wait(kcondvar_t *cv, kmutex_t *mtx)
{
lwp_t *l = curlwp;
sleepq_t *sq;
KASSERT(mutex_owned(mtx));
if (sleepq_dontsleep(l)) {
(void)sleepq_abort(mtx, 0);
return;
}
sq = cv_enter(cv, mtx, l);
(void)sleepq_block(0, false);
(void)cv_exit(cv, mtx, l, 0);
}
/*
* cv_wait_sig:
*
* Wait on a condition variable until a awoken or a signal is received.
* Will also return early if the process is exiting. Returns zero if
* awoken normallly, ERESTART if a signal was received and the system
* call is restartable, or EINTR otherwise.
*/
int
cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
{
lwp_t *l = curlwp;
sleepq_t *sq;
int error;
KASSERT(mutex_owned(mtx));
if (sleepq_dontsleep(l))
return sleepq_abort(mtx, 0);
sq = cv_enter(cv, mtx, l);
error = sleepq_block(0, true);
return cv_exit(cv, mtx, l, error);
}
/*
* cv_timedwait:
*
* Wait on a condition variable until awoken or the specified timeout
* expires. Returns zero if awoken normally or EWOULDBLOCK if the
* timeout expired.
*/
int
cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
{
lwp_t *l = curlwp;
sleepq_t *sq;
int error;
KASSERT(mutex_owned(mtx));
if (sleepq_dontsleep(l))
return sleepq_abort(mtx, 0);
sq = cv_enter(cv, mtx, l);
error = sleepq_block(timo, false);
return cv_exit(cv, mtx, l, error);
}
/*
* cv_timedwait_sig:
*
* Wait on a condition variable until a timeout expires, awoken or a
* signal is received. Will also return early if the process is
* exiting. Returns zero if awoken normallly, EWOULDBLOCK if the
* timeout expires, ERESTART if a signal was received and the system
* call is restartable, or EINTR otherwise.
*/
int
cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
{
lwp_t *l = curlwp;
sleepq_t *sq;
int error;
KASSERT(mutex_owned(mtx));
if (sleepq_dontsleep(l))
return sleepq_abort(mtx, 0);
sq = cv_enter(cv, mtx, l);
error = sleepq_block(timo, true);
return cv_exit(cv, mtx, l, error);
}
/*
* cv_signal:
*
* Wake the highest priority LWP waiting on a condition variable.
* Must be called with the interlocking mutex held.
*/
void
cv_signal(kcondvar_t *cv)
{
lwp_t *l;
sleepq_t *sq;
if (cv->cv_waiters == 0)
return;
/*
* cv->cv_waiters may be stale and have dropped to zero, but
* while holding the interlock (the mutex passed to cv_wait()
* and similar) we will see non-zero values when it matters.
*/
sq = sleeptab_lookup(&sleeptab, cv);
if (cv->cv_waiters != 0) {
cv->cv_waiters--;
l = sleepq_wake(sq, cv, 1);
l->l_cv_signalled = 1;
} else
sleepq_unlock(sq);
}
/*
* cv_broadcast:
*
* Wake all LWPs waiting on a condition variable. Must be called
* with the interlocking mutex held.
*/
void
cv_broadcast(kcondvar_t *cv)
{
sleepq_t *sq;
u_int cnt;
if (cv->cv_waiters == 0)
return;
sq = sleeptab_lookup(&sleeptab, cv);
if ((cnt = cv->cv_waiters) != 0) {
cv->cv_waiters = 0;
sleepq_wake(sq, cv, cnt);
} else
sleepq_unlock(sq);
}
/*
* cv_wakeup:
*
* Wake all LWPs waiting on a condition variable. For cases
* where the address may be waited on by mtsleep()/tsleep().
* Not a documented call.
*/
void
cv_wakeup(kcondvar_t *cv)
{
sleepq_t *sq;
sq = sleeptab_lookup(&sleeptab, cv);
cv->cv_waiters = 0;
sleepq_wake(sq, cv, (u_int)-1);
}
/*
* cv_has_waiters:
*
* For diagnostic assertions: return non-zero if a condition
* variable has waiters.
*/
bool
cv_has_waiters(kcondvar_t *cv)
{
/* No need to interlock here */
return cv->cv_waiters != 0;
}