NetBSD/sys/dev/acpi/acpi_ec.c

871 lines
21 KiB
C

/* $NetBSD: acpi_ec.c,v 1.48 2007/12/21 21:22:54 jmcneill Exp $ */
/*-
* Copyright (c) 2007 Joerg Sonnenberger <joerg@NetBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The ACPI Embedded Controller (EC) driver serves two different purposes:
* - read and write access from ASL, e.g. to read battery state
* - notification of ASL of System Control Interrupts.
*
* Access to the EC is serialised by sc_access_mtx and optionally the
* ACPI global mutex. Both locks are held until the request is fulfilled.
* All access to the softc has to hold sc_mtx to serialise against the GPE
* handler and the callout. sc_mtx is also used for wakeup conditions.
*
* SCIs are processed in a kernel thread. Handling gets a bit complicated
* by the lock order (sc_mtx must be acquired after sc_access_mtx and the
* ACPI global mutex).
*
* Read and write requests spin around for a short time as many requests
* can be handled instantly by the EC. During normal processing interrupt
* mode is used exclusively. At boot and resume time interrupts are not
* working and the handlers just busy loop.
*
* A callout is scheduled to compensate for missing interrupts on some
* hardware. If the EC doesn't process a request for 5s, it is most likely
* in a wedged state. No method to reset the EC is currently known.
*
* Special care has to be taken to not poll the EC in a busy loop without
* delay. This can prevent processing of Power Button events. At least some
* Lenovo Thinkpads seem to be implement the Power Button Override in the EC
* and the only option to recover on those models is to cut off all power.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_ec.c,v 1.48 2007/12/21 21:22:54 jmcneill Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/condvar.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_ecvar.h>
/* Maximum time to wait for global ACPI lock in ms */
#define EC_LOCK_TIMEOUT 5
/* Maximum time to poll for completion of a command in ms */
#define EC_POLL_TIMEOUT 5
/* Maximum time to give a single EC command in s */
#define EC_CMD_TIMEOUT 10
/* From ACPI 3.0b, chapter 12.3 */
#define EC_COMMAND_READ 0x80
#define EC_COMMAND_WRITE 0x81
#define EC_COMMAND_BURST_EN 0x82
#define EC_COMMAND_BURST_DIS 0x83
#define EC_COMMAND_QUERY 0x84
/* From ACPI 3.0b, chapter 12.2.1 */
#define EC_STATUS_OBF 0x01
#define EC_STATUS_IBF 0x02
#define EC_STATUS_CMD 0x08
#define EC_STATUS_BURST 0x10
#define EC_STATUS_SCI 0x20
#define EC_STATUS_SMI 0x40
static const char *ec_hid[] = {
"PNP0C09",
NULL,
};
enum ec_state_t {
EC_STATE_QUERY,
EC_STATE_QUERY_VAL,
EC_STATE_READ,
EC_STATE_READ_ADDR,
EC_STATE_READ_VAL,
EC_STATE_WRITE,
EC_STATE_WRITE_ADDR,
EC_STATE_WRITE_VAL,
EC_STATE_FREE
};
struct acpiec_softc {
ACPI_HANDLE sc_ech;
ACPI_HANDLE sc_gpeh;
UINT8 sc_gpebit;
bus_space_tag_t sc_data_st;
bus_space_handle_t sc_data_sh;
bus_space_tag_t sc_csr_st;
bus_space_handle_t sc_csr_sh;
bool sc_need_global_lock;
UINT32 sc_global_lock;
kmutex_t sc_mtx, sc_access_mtx;
kcondvar_t sc_cv, sc_cv_sci;
enum ec_state_t sc_state;
bool sc_got_sci;
callout_t sc_pseudo_intr;
uint8_t sc_cur_addr, sc_cur_val;
};
static int acpiecdt_match(device_t, struct cfdata *, void *);
static void acpiecdt_attach(device_t, device_t, void *);
static int acpiec_match(device_t, struct cfdata *, void *);
static void acpiec_attach(device_t, device_t, void *);
static void acpiec_common_attach(device_t, device_t, ACPI_HANDLE,
bus_addr_t, bus_addr_t, ACPI_HANDLE, uint8_t);
static bool acpiec_resume(device_t);
static bool acpiec_suspend(device_t);
static bool acpiec_parse_gpe_package(device_t, ACPI_HANDLE,
ACPI_HANDLE *, uint8_t *);
static void acpiec_callout(void *);
static void acpiec_gpe_query(void *);
static UINT32 acpiec_gpe_handler(void *);
static ACPI_STATUS acpiec_space_setup(ACPI_HANDLE, UINT32, void *, void **);
static ACPI_STATUS acpiec_space_handler(UINT32, ACPI_PHYSICAL_ADDRESS,
UINT32, ACPI_INTEGER *, void *, void *);
static void acpiec_gpe_state_machine(device_t);
CFATTACH_DECL_NEW(acpiec, sizeof(struct acpiec_softc),
acpiec_match, acpiec_attach, NULL, NULL);
CFATTACH_DECL_NEW(acpiecdt, sizeof(struct acpiec_softc),
acpiecdt_match, acpiecdt_attach, NULL, NULL);
static device_t ec_singleton = NULL;
static bool acpiec_cold = false;
static bool
acpiecdt_find(device_t parent, ACPI_HANDLE *ec_handle,
bus_addr_t *cmd_reg, bus_addr_t *data_reg, uint8_t *gpebit)
{
ACPI_TABLE_ECDT *ecdt;
ACPI_STATUS rv;
rv = AcpiGetTable(ACPI_SIG_ECDT, 1, (ACPI_TABLE_HEADER **)&ecdt);
if (ACPI_FAILURE(rv))
return false;
if (ecdt->Control.BitWidth != 8 || ecdt->Data.BitWidth != 8) {
aprint_error_dev(parent,
"ECDT register width invalid (%d/%d)\n",
ecdt->Control.BitWidth, ecdt->Data.BitWidth);
return false;
}
rv = AcpiGetHandle(ACPI_ROOT_OBJECT, ecdt->Id, ec_handle);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(parent,
"failed to look up EC object %s: %s\n",
ecdt->Id, AcpiFormatException(rv));
return false;
}
*cmd_reg = ecdt->Control.Address;
*data_reg = ecdt->Data.Address;
*gpebit = ecdt->Gpe;
return true;
}
static int
acpiecdt_match(device_t parent, struct cfdata *match, void *aux)
{
ACPI_HANDLE ec_handle;
bus_addr_t cmd_reg, data_reg;
uint8_t gpebit;
if (acpiecdt_find(parent, &ec_handle, &cmd_reg, &data_reg, &gpebit))
return 1;
else
return 0;
}
static void
acpiecdt_attach(device_t parent, device_t self, void *aux)
{
ACPI_HANDLE ec_handle;
bus_addr_t cmd_reg, data_reg;
uint8_t gpebit;
if (!acpiecdt_find(parent, &ec_handle, &cmd_reg, &data_reg, &gpebit))
panic("ECDT disappeared");
aprint_naive(": ACPI Embedded Controller via ECDT\n");
aprint_normal(": ACPI Embedded Controller via ECDT\n");
acpiec_common_attach(parent, self, ec_handle, cmd_reg, data_reg,
NULL, gpebit);
}
static int
acpiec_match(device_t parent, struct cfdata *match, void *aux)
{
struct acpi_attach_args *aa = aux;
if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
return 0;
return acpi_match_hid(aa->aa_node->ad_devinfo, ec_hid);
}
static void
acpiec_attach(device_t parent, device_t self, void *aux)
{
struct acpi_attach_args *aa = aux;
struct acpi_resources ec_res;
struct acpi_io *io0, *io1;
ACPI_HANDLE gpe_handle;
uint8_t gpebit;
ACPI_STATUS rv;
if (ec_singleton != NULL) {
aprint_naive(": ACPI Embedded Controller (disabled)\n");
aprint_normal(": ACPI Embedded Controller (disabled)\n");
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
}
aprint_naive(": ACPI Embedded Controller\n");
aprint_normal(": ACPI Embedded Controller\n");
if (!acpiec_parse_gpe_package(self, aa->aa_node->ad_handle,
&gpe_handle, &gpebit))
return;
rv = acpi_resource_parse(self, aa->aa_node->ad_handle, "_CRS",
&ec_res, &acpi_resource_parse_ops_default);
if (rv != AE_OK) {
aprint_error_dev(self, "resource parsing failed: %s\n",
AcpiFormatException(rv));
return;
}
if ((io0 = acpi_res_io(&ec_res, 0)) == NULL) {
aprint_error_dev(self, "no data register resource\n");
goto free_res;
}
if ((io1 = acpi_res_io(&ec_res, 1)) == NULL) {
aprint_error_dev(self, "no CSR register resource\n");
goto free_res;
}
acpiec_common_attach(parent, self, aa->aa_node->ad_handle,
io1->ar_base, io0->ar_base, gpe_handle, gpebit);
free_res:
acpi_resource_cleanup(&ec_res);
}
static void
acpiec_common_attach(device_t parent, device_t self,
ACPI_HANDLE ec_handle, bus_addr_t cmd_reg, bus_addr_t data_reg,
ACPI_HANDLE gpe_handle, uint8_t gpebit)
{
struct acpiec_softc *sc = device_private(self);
ACPI_STATUS rv;
ACPI_INTEGER val;
sc->sc_ech = ec_handle;
sc->sc_gpeh = gpe_handle;
sc->sc_gpebit = gpebit;
sc->sc_state = EC_STATE_FREE;
mutex_init(&sc->sc_mtx, MUTEX_DRIVER, IPL_TTY);
mutex_init(&sc->sc_access_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&sc->sc_cv, "eccv");
cv_init(&sc->sc_cv_sci, "ecsci");
if (bus_space_map(sc->sc_data_st, data_reg, 1, 0,
&sc->sc_data_sh) != 0) {
aprint_error_dev(self, "unable to map data register\n");
return;
}
if (bus_space_map(sc->sc_csr_st, cmd_reg, 1, 0, &sc->sc_csr_sh) != 0) {
aprint_error_dev(self, "unable to map CSR register\n");
goto post_data_map;
}
rv = acpi_eval_integer(sc->sc_ech, "_GLK", &val);
if (rv == AE_OK) {
sc->sc_need_global_lock = val != 0;
} else if (rv != AE_NOT_FOUND) {
aprint_error_dev(self, "unable to evaluate _GLK: %s\n",
AcpiFormatException(rv));
goto post_csr_map;
} else {
sc->sc_need_global_lock = false;
}
if (sc->sc_need_global_lock)
aprint_normal_dev(self, "using global ACPI lock\n");
callout_init(&sc->sc_pseudo_intr, CALLOUT_MPSAFE);
callout_setfunc(&sc->sc_pseudo_intr, acpiec_callout, self);
rv = AcpiInstallAddressSpaceHandler(sc->sc_ech, ACPI_ADR_SPACE_EC,
acpiec_space_handler, acpiec_space_setup, self);
if (rv != AE_OK) {
aprint_error_dev(self,
"unable to install address space handler: %s\n",
AcpiFormatException(rv));
goto post_csr_map;
}
rv = AcpiInstallGpeHandler(sc->sc_gpeh, sc->sc_gpebit,
ACPI_GPE_EDGE_TRIGGERED, acpiec_gpe_handler, self);
if (rv != AE_OK) {
aprint_error_dev(self, "unable to install GPE handler: %s\n",
AcpiFormatException(rv));
goto post_csr_map;
}
rv = AcpiSetGpeType(sc->sc_gpeh, sc->sc_gpebit, ACPI_GPE_TYPE_RUNTIME);
if (rv != AE_OK) {
aprint_error_dev(self, "unable to set GPE type: %s\n",
AcpiFormatException(rv));
goto post_csr_map;
}
rv = AcpiEnableGpe(sc->sc_gpeh, sc->sc_gpebit, ACPI_ISR);
if (rv != AE_OK) {
aprint_error_dev(self, "unable to enable GPE: %s\n",
AcpiFormatException(rv));
goto post_csr_map;
}
if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, acpiec_gpe_query,
self, NULL, "acpiec sci thread")) {
aprint_error_dev(self, "unable to create query kthread\n");
goto post_csr_map;
}
ec_singleton = self;
if (!pmf_device_register(self, acpiec_suspend, acpiec_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
post_csr_map:
(void)AcpiRemoveGpeHandler(sc->sc_gpeh, sc->sc_gpebit,
acpiec_gpe_handler);
(void)AcpiRemoveAddressSpaceHandler(sc->sc_ech,
ACPI_ADR_SPACE_EC, acpiec_space_handler);
bus_space_unmap(sc->sc_csr_st, sc->sc_csr_sh, 1);
post_data_map:
bus_space_unmap(sc->sc_data_st, sc->sc_data_sh, 1);
}
static bool
acpiec_suspend(device_t dv)
{
acpiec_cold = true;
return true;
}
static bool
acpiec_resume(device_t dv)
{
acpiec_cold = false;
return true;
}
static bool
acpiec_parse_gpe_package(device_t self, ACPI_HANDLE ec_handle,
ACPI_HANDLE *gpe_handle, uint8_t *gpebit)
{
ACPI_BUFFER buf;
ACPI_OBJECT *p, *c;
ACPI_STATUS rv;
rv = acpi_eval_struct(ec_handle, "_GPE", &buf);
if (rv != AE_OK) {
aprint_error_dev(self, "unable to evaluate _GPE: %s\n",
AcpiFormatException(rv));
return false;
}
p = buf.Pointer;
if (p->Type == ACPI_TYPE_INTEGER) {
*gpe_handle = NULL;
*gpebit = p->Integer.Value;
AcpiOsFree(p);
return true;
}
if (p->Type != ACPI_TYPE_PACKAGE) {
aprint_error_dev(self, "_GPE is neither integer nor package\n");
AcpiOsFree(p);
return false;
}
if (p->Package.Count != 2) {
aprint_error_dev(self, "_GPE package does not contain 2 elements\n");
AcpiOsFree(p);
return false;
}
c = &p->Package.Elements[0];
switch (c->Type) {
case ACPI_TYPE_LOCAL_REFERENCE:
case ACPI_TYPE_ANY:
*gpe_handle = c->Reference.Handle;
break;
case ACPI_TYPE_STRING:
/* XXX should be using real scope here */
rv = AcpiGetHandle(NULL, p->String.Pointer, gpe_handle);
if (rv != AE_OK) {
aprint_error_dev(self,
"_GPE device reference unresolvable\n");
AcpiOsFree(p);
return false;
}
break;
default:
aprint_error_dev(self, "_GPE device reference incorrect\n");
AcpiOsFree(p);
return false;
}
c = &p->Package.Elements[1];
if (c->Type != ACPI_TYPE_INTEGER) {
aprint_error_dev(self,
"_GPE package needs integer as 2nd field\n");
AcpiOsFree(p);
return false;
}
*gpebit = c->Integer.Value;
AcpiOsFree(p);
return true;
}
static uint8_t
acpiec_read_data(struct acpiec_softc *sc)
{
return bus_space_read_1(sc->sc_data_st, sc->sc_data_sh, 0);
}
static void
acpiec_write_data(struct acpiec_softc *sc, uint8_t val)
{
bus_space_write_1(sc->sc_data_st, sc->sc_data_sh, 0, val);
}
static uint8_t
acpiec_read_status(struct acpiec_softc *sc)
{
return bus_space_read_1(sc->sc_csr_st, sc->sc_csr_sh, 0);
}
static void
acpiec_write_command(struct acpiec_softc *sc, uint8_t cmd)
{
bus_space_write_1(sc->sc_csr_st, sc->sc_csr_sh, 0, cmd);
}
static ACPI_STATUS
acpiec_space_setup(ACPI_HANDLE region, UINT32 func, void *arg,
void **region_arg)
{
if (func == ACPI_REGION_DEACTIVATE)
*region_arg = NULL;
else
*region_arg = arg;
return AE_OK;
}
static void
acpiec_lock(device_t dv)
{
struct acpiec_softc *sc = device_private(dv);
ACPI_STATUS rv;
mutex_enter(&sc->sc_access_mtx);
if (sc->sc_need_global_lock) {
rv = AcpiAcquireGlobalLock(EC_LOCK_TIMEOUT, &sc->sc_global_lock);
if (rv != AE_OK) {
aprint_error_dev(dv, "failed to acquire global lock: %s\n",
AcpiFormatException(rv));
return;
}
}
}
static void
acpiec_unlock(device_t dv)
{
struct acpiec_softc *sc = device_private(dv);
ACPI_STATUS rv;
if (sc->sc_need_global_lock) {
rv = AcpiReleaseGlobalLock(sc->sc_global_lock);
if (rv != AE_OK) {
aprint_error_dev(dv, "failed to release global lock: %s\n",
AcpiFormatException(rv));
}
}
mutex_exit(&sc->sc_access_mtx);
}
static ACPI_STATUS
acpiec_read(device_t dv, uint8_t addr, uint8_t *val)
{
struct acpiec_softc *sc = device_private(dv);
int i;
acpiec_lock(dv);
mutex_enter(&sc->sc_mtx);
sc->sc_cur_addr = addr;
sc->sc_state = EC_STATE_READ;
for (i = 0; i < EC_POLL_TIMEOUT; ++i) {
acpiec_gpe_state_machine(dv);
if (sc->sc_state == EC_STATE_FREE)
goto done;
delay(1);
}
if (cold || acpiec_cold) {
while (sc->sc_state != EC_STATE_FREE) {
delay(1);
acpiec_gpe_state_machine(dv);
}
} else while (cv_timedwait(&sc->sc_cv, &sc->sc_mtx, EC_CMD_TIMEOUT * hz)) {
mutex_exit(&sc->sc_mtx);
AcpiClearGpe(sc->sc_gpeh, sc->sc_gpebit, ACPI_NOT_ISR);
acpiec_unlock(dv);
aprint_error_dev(dv, "command takes over %d sec...\n", EC_CMD_TIMEOUT);
return AE_ERROR;
}
done:
*val = sc->sc_cur_val;
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
return AE_OK;
}
static ACPI_STATUS
acpiec_write(device_t dv, uint8_t addr, uint8_t val)
{
struct acpiec_softc *sc = device_private(dv);
int i;
acpiec_lock(dv);
mutex_enter(&sc->sc_mtx);
sc->sc_cur_addr = addr;
sc->sc_cur_val = val;
sc->sc_state = EC_STATE_WRITE;
for (i = 0; i < EC_POLL_TIMEOUT; ++i) {
acpiec_gpe_state_machine(dv);
if (sc->sc_state == EC_STATE_FREE)
goto done;
delay(1);
}
if (cold || acpiec_cold) {
while (sc->sc_state != EC_STATE_FREE) {
delay(1);
acpiec_gpe_state_machine(dv);
}
} else while (cv_timedwait(&sc->sc_cv, &sc->sc_mtx, EC_CMD_TIMEOUT * hz)) {
mutex_exit(&sc->sc_mtx);
AcpiClearGpe(sc->sc_gpeh, sc->sc_gpebit, ACPI_NOT_ISR);
acpiec_unlock(dv);
aprint_error_dev(dv, "command takes over %d sec...\n", EC_CMD_TIMEOUT);
return AE_ERROR;
}
done:
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
return AE_OK;
}
static ACPI_STATUS
acpiec_space_handler(UINT32 func, ACPI_PHYSICAL_ADDRESS paddr,
UINT32 width, ACPI_INTEGER *value, void *arg, void *region_arg)
{
device_t dv;
struct acpiec_softc *sc;
ACPI_STATUS rv;
uint8_t addr, reg;
unsigned int i;
if (paddr > 0xff || width % 8 != 0 || value == NULL || arg == NULL ||
paddr + width / 8 > 0xff)
return AE_BAD_PARAMETER;
addr = paddr;
dv = arg;
sc = device_private(dv);
rv = AE_OK;
switch (func) {
case ACPI_READ:
*value = 0;
for (i = 0; i < width; i += 8, ++addr) {
rv = acpiec_read(dv, addr, &reg);
if (rv != AE_OK)
break;
*value |= (ACPI_INTEGER)reg << i;
}
break;
case ACPI_WRITE:
for (i = 0; i < width; i += 8, ++addr) {
reg = (*value >>i) & 0xff;
rv = acpiec_write(dv, addr, reg);
if (rv != AE_OK)
break;
}
break;
default:
aprint_error("%s: invalid Address Space function called: %x\n",
device_xname(dv), (unsigned int)func);
return AE_BAD_PARAMETER;
}
return rv;
}
static void
acpiec_gpe_query(void *arg)
{
device_t dv = arg;
struct acpiec_softc *sc = device_private(dv);
uint8_t reg;
char qxx[5];
ACPI_STATUS rv;
int i;
loop:
mutex_enter(&sc->sc_mtx);
if (sc->sc_got_sci == false)
cv_wait(&sc->sc_cv_sci, &sc->sc_mtx);
mutex_exit(&sc->sc_mtx);
acpiec_lock(dv);
mutex_enter(&sc->sc_mtx);
/* The Query command can always be issued, so be defensive here. */
sc->sc_got_sci = false;
sc->sc_state = EC_STATE_QUERY;
for (i = 0; i < EC_POLL_TIMEOUT; ++i) {
acpiec_gpe_state_machine(dv);
if (sc->sc_state == EC_STATE_FREE)
goto done;
delay(1);
}
cv_wait(&sc->sc_cv, &sc->sc_mtx);
done:
reg = sc->sc_cur_val;
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
if (reg == 0)
goto loop; /* Spurious query result */
/*
* Evaluate _Qxx to respond to the controller.
*/
snprintf(qxx, sizeof(qxx), "_Q%02X", (unsigned int)reg);
rv = AcpiEvaluateObject(sc->sc_ech, qxx, NULL, NULL);
if (rv != AE_OK && rv != AE_NOT_FOUND) {
aprint_error("%s: GPE query method %s failed: %s",
device_xname(dv), qxx, AcpiFormatException(rv));
}
goto loop;
}
static void
acpiec_gpe_state_machine(device_t dv)
{
struct acpiec_softc *sc = device_private(dv);
uint8_t reg;
reg = acpiec_read_status(sc);
if (reg & EC_STATUS_SCI)
sc->sc_got_sci = true;
switch (sc->sc_state) {
case EC_STATE_QUERY:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_command(sc, EC_COMMAND_QUERY);
sc->sc_state = EC_STATE_QUERY_VAL;
break;
case EC_STATE_QUERY_VAL:
if ((reg & EC_STATUS_OBF) == 0)
break; /* Nothing of interest here. */
sc->sc_cur_val = acpiec_read_data(sc);
sc->sc_state = EC_STATE_FREE;
cv_signal(&sc->sc_cv);
break;
case EC_STATE_READ:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_command(sc, EC_COMMAND_READ);
sc->sc_state = EC_STATE_READ_ADDR;
break;
case EC_STATE_READ_ADDR:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_data(sc, sc->sc_cur_addr);
sc->sc_state = EC_STATE_READ_VAL;
break;
case EC_STATE_READ_VAL:
if ((reg & EC_STATUS_OBF) == 0)
break; /* Nothing of interest here. */
sc->sc_cur_val = acpiec_read_data(sc);
sc->sc_state = EC_STATE_FREE;
cv_signal(&sc->sc_cv);
break;
case EC_STATE_WRITE:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_command(sc, EC_COMMAND_WRITE);
sc->sc_state = EC_STATE_WRITE_ADDR;
break;
case EC_STATE_WRITE_ADDR:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_data(sc, sc->sc_cur_addr);
sc->sc_state = EC_STATE_WRITE_VAL;
break;
case EC_STATE_WRITE_VAL:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
sc->sc_state = EC_STATE_FREE;
cv_signal(&sc->sc_cv);
acpiec_write_data(sc, sc->sc_cur_val);
break;
case EC_STATE_FREE:
if (sc->sc_got_sci)
cv_signal(&sc->sc_cv_sci);
break;
default:
panic("invalid state");
}
if (sc->sc_state != EC_STATE_FREE)
callout_schedule(&sc->sc_pseudo_intr, 1);
}
static void
acpiec_callout(void *arg)
{
device_t dv = arg;
struct acpiec_softc *sc = device_private(dv);
AcpiClearGpe(sc->sc_gpeh, sc->sc_gpebit, ACPI_NOT_ISR);
mutex_enter(&sc->sc_mtx);
acpiec_gpe_state_machine(dv);
mutex_exit(&sc->sc_mtx);
}
static UINT32
acpiec_gpe_handler(void *arg)
{
device_t dv = arg;
struct acpiec_softc *sc = device_private(dv);
AcpiClearGpe(sc->sc_gpeh, sc->sc_gpebit, ACPI_ISR);
mutex_enter(&sc->sc_mtx);
acpiec_gpe_state_machine(dv);
mutex_exit(&sc->sc_mtx);
return 0;
}
ACPI_STATUS
acpiec_bus_read(device_t dv, u_int addr, ACPI_INTEGER *val, int width)
{
return acpiec_space_handler(ACPI_READ, addr, width * 8, val, dv, NULL);
}
ACPI_STATUS
acpiec_bus_write(device_t dv, u_int addr, ACPI_INTEGER val, int width)
{
return acpiec_space_handler(ACPI_WRITE, addr, width * 8, &val, dv, NULL);
}
ACPI_HANDLE
acpiec_get_handle(device_t dv)
{
struct acpiec_softc *sc = device_private(dv);
return sc->sc_ech;
}