NetBSD/sys/dev/pci/if_vte.c
2015-04-13 16:33:23 +00:00

1718 lines
48 KiB
C

/* $NetBSD: if_vte.c,v 1.12 2015/04/13 16:33:25 riastradh Exp $ */
/*
* Copyright (c) 2011 Manuel Bouyer. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
/* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.12 2015/04/13 16:33:25 riastradh Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <net/netisr.h>
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <sys/rndsource.h>
#include "opt_inet.h"
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/if_vtereg.h>
#include <dev/pci/if_vtevar.h>
static int vte_match(device_t, cfdata_t, void *);
static void vte_attach(device_t, device_t, void *);
static int vte_detach(device_t, int);
static int vte_dma_alloc(struct vte_softc *);
static void vte_dma_free(struct vte_softc *);
static struct vte_txdesc *
vte_encap(struct vte_softc *, struct mbuf **);
static void vte_get_macaddr(struct vte_softc *);
static int vte_init(struct ifnet *);
static int vte_init_rx_ring(struct vte_softc *);
static int vte_init_tx_ring(struct vte_softc *);
static int vte_intr(void *);
static int vte_ifioctl(struct ifnet *, u_long, void *);
static void vte_mac_config(struct vte_softc *);
static int vte_miibus_readreg(device_t, int, int);
static void vte_miibus_statchg(struct ifnet *);
static void vte_miibus_writereg(device_t, int, int, int);
static int vte_mediachange(struct ifnet *);
static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
static void vte_reset(struct vte_softc *);
static void vte_rxeof(struct vte_softc *);
static void vte_rxfilter(struct vte_softc *);
static bool vte_shutdown(device_t, int);
static bool vte_suspend(device_t, const pmf_qual_t *);
static bool vte_resume(device_t, const pmf_qual_t *);
static void vte_ifstart(struct ifnet *);
static void vte_start_mac(struct vte_softc *);
static void vte_stats_clear(struct vte_softc *);
static void vte_stats_update(struct vte_softc *);
static void vte_stop(struct ifnet *, int);
static void vte_stop_mac(struct vte_softc *);
static void vte_tick(void *);
static void vte_txeof(struct vte_softc *);
static void vte_ifwatchdog(struct ifnet *);
static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
static int vte_root_num;
#define DPRINTF(a)
CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
static int
vte_match(device_t parent, cfdata_t cf, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
return 1;
return 0;
}
static void
vte_attach(device_t parent, device_t self, void *aux)
{
struct vte_softc *sc = device_private(self);
struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
struct ifnet * const ifp = &sc->vte_if;
int h_valid;
pcireg_t reg, csr;
pci_intr_handle_t intrhandle;
const char *intrstr;
int error;
const struct sysctlnode *node;
int vte_nodenum;
char intrbuf[PCI_INTRSTR_LEN];
sc->vte_dev = self;
callout_init(&sc->vte_tick_ch, 0);
/* Map the device. */
h_valid = 0;
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
}
if (h_valid == 0) {
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
&sc->vte_bushandle, NULL, NULL) == 0);
}
}
if (h_valid == 0) {
aprint_error_dev(self, "unable to map device registers\n");
return;
}
sc->vte_dmatag = pa->pa_dmat;
/* Enable the device. */
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
pci_aprint_devinfo(pa, NULL);
/* Reset the ethernet controller. */
vte_reset(sc);
if ((error = vte_dma_alloc(sc)) != 0)
return;
/* Load station address. */
vte_get_macaddr(sc);
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->vte_eaddr));
/* Map and establish interrupts */
if (pci_intr_map(pa, &intrhandle)) {
aprint_error_dev(self, "couldn't map interrupt\n");
return;
}
intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf));
sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
vte_intr, sc);
if (sc->vte_ih == NULL) {
aprint_error_dev(self, "couldn't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
sc->vte_if.if_softc = sc;
sc->vte_mii.mii_ifp = ifp;
sc->vte_mii.mii_readreg = vte_miibus_readreg;
sc->vte_mii.mii_writereg = vte_miibus_writereg;
sc->vte_mii.mii_statchg = vte_miibus_statchg;
sc->vte_ec.ec_mii = &sc->vte_mii;
ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
ether_mediastatus);
mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
ifp->if_ioctl = vte_ifioctl;
ifp->if_start = vte_ifstart;
ifp->if_watchdog = vte_ifwatchdog;
ifp->if_init = vte_init;
ifp->if_stop = vte_stop;
ifp->if_timer = 0;
IFQ_SET_READY(&ifp->if_snd);
if_attach(ifp);
ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
rnd_attach_source(&sc->rnd_source, device_xname(self),
RND_TYPE_NET, RND_FLAG_DEFAULT);
if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
0, CTLTYPE_NODE, device_xname(sc->vte_dev),
SYSCTL_DESCR("vte per-controller controls"),
NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
CTL_EOL) != 0) {
aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
return;
}
vte_nodenum = node->sysctl_num;
if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
CTLFLAG_READWRITE,
CTLTYPE_INT, "int_rxct",
SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
vte_sysctl_intrxct, 0, (void *)sc,
0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
CTL_EOL) != 0) {
aprint_normal_dev(sc->vte_dev,
"couldn't create int_rxct sysctl node\n");
}
if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
CTLFLAG_READWRITE,
CTLTYPE_INT, "int_txct",
SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
vte_sysctl_inttxct, 0, (void *)sc,
0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
CTL_EOL) != 0) {
aprint_normal_dev(sc->vte_dev,
"couldn't create int_txct sysctl node\n");
}
}
static int
vte_detach(device_t dev, int flags __unused)
{
struct vte_softc *sc = device_private(dev);
struct ifnet *ifp = &sc->vte_if;
int s;
s = splnet();
/* Stop the interface. Callouts are stopped in it. */
vte_stop(ifp, 1);
splx(s);
pmf_device_deregister(dev);
mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
vte_dma_free(sc);
return (0);
}
static int
vte_miibus_readreg(device_t dev, int phy, int reg)
{
struct vte_softc *sc = device_private(dev);
int i;
CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
(phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
break;
}
if (i == 0) {
aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
return (0);
}
return (CSR_READ_2(sc, VTE_MMRD));
}
static void
vte_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct vte_softc *sc = device_private(dev);
int i;
CSR_WRITE_2(sc, VTE_MMWD, val);
CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
(phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
break;
}
if (i == 0)
aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
}
static void
vte_miibus_statchg(struct ifnet *ifp)
{
struct vte_softc *sc = ifp->if_softc;
uint16_t val;
DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
sc->vte_flags &= ~VTE_FLAG_LINK;
if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->vte_flags |= VTE_FLAG_LINK;
break;
default:
break;
}
}
/* Stop RX/TX MACs. */
vte_stop_mac(sc);
/* Program MACs with resolved duplex and flow control. */
if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
/*
* Timer waiting time : (63 + TIMER * 64) MII clock.
* MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
*/
if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
val = 18 << VTE_IM_TIMER_SHIFT;
else
val = 1 << VTE_IM_TIMER_SHIFT;
val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
/* 48.6us for 100Mbps, 50.8us for 10Mbps */
CSR_WRITE_2(sc, VTE_MRICR, val);
if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
val = 18 << VTE_IM_TIMER_SHIFT;
else
val = 1 << VTE_IM_TIMER_SHIFT;
val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
/* 48.6us for 100Mbps, 50.8us for 10Mbps */
CSR_WRITE_2(sc, VTE_MTICR, val);
vte_mac_config(sc);
vte_start_mac(sc);
DPRINTF(("vte_miibus_statchg: link\n"));
}
}
static void
vte_get_macaddr(struct vte_softc *sc)
{
uint16_t mid;
/*
* It seems there is no way to reload station address and
* it is supposed to be set by BIOS.
*/
mid = CSR_READ_2(sc, VTE_MID0L);
sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
mid = CSR_READ_2(sc, VTE_MID0M);
sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
mid = CSR_READ_2(sc, VTE_MID0H);
sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
}
static int
vte_dma_alloc(struct vte_softc *sc)
{
struct vte_txdesc *txd;
struct vte_rxdesc *rxd;
int error, i, rseg;
/* create DMA map for TX ring */
error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&sc->vte_cdata.vte_tx_ring_map);
if (error) {
aprint_error_dev(sc->vte_dev,
"could not create dma map for TX ring (%d)\n",
error);
goto fail;
}
/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
VTE_TX_RING_ALIGN, 0,
sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->vte_dev,
"could not allocate DMA'able memory for TX ring (%d).\n",
error);
goto fail;
}
KASSERT(rseg == 1);
error = bus_dmamem_map(sc->vte_dmatag,
sc->vte_cdata.vte_tx_ring_seg, 1,
VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error != 0) {
aprint_error_dev(sc->vte_dev,
"could not map DMA'able memory for TX ring (%d).\n",
error);
goto fail;
}
memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
error = bus_dmamap_load(sc->vte_dmatag,
sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
VTE_TX_RING_SZ, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
if (error != 0) {
aprint_error_dev(sc->vte_dev,
"could not load DMA'able memory for TX ring.\n");
goto fail;
}
/* create DMA map for RX ring */
error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&sc->vte_cdata.vte_rx_ring_map);
if (error) {
aprint_error_dev(sc->vte_dev,
"could not create dma map for RX ring (%d)\n",
error);
goto fail;
}
/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
VTE_RX_RING_ALIGN, 0,
sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->vte_dev,
"could not allocate DMA'able memory for RX ring (%d).\n",
error);
goto fail;
}
KASSERT(rseg == 1);
error = bus_dmamem_map(sc->vte_dmatag,
sc->vte_cdata.vte_rx_ring_seg, 1,
VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error != 0) {
aprint_error_dev(sc->vte_dev,
"could not map DMA'able memory for RX ring (%d).\n",
error);
goto fail;
}
memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
error = bus_dmamap_load(sc->vte_dmatag,
sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
VTE_RX_RING_SZ, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
if (error != 0) {
aprint_error_dev(sc->vte_dev,
"could not load DMA'able memory for RX ring (%d).\n",
error);
goto fail;
}
/* Create DMA maps for TX buffers. */
for (i = 0; i < VTE_TX_RING_CNT; i++) {
txd = &sc->vte_cdata.vte_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&txd->tx_dmamap);
if (error != 0) {
aprint_error_dev(sc->vte_dev,
"could not create TX DMA map %d (%d).\n", i, error);
goto fail;
}
}
/* Create DMA maps for RX buffers. */
if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&sc->vte_cdata.vte_rx_sparemap)) != 0) {
aprint_error_dev(sc->vte_dev,
"could not create spare RX dmamap (%d).\n", error);
goto fail;
}
for (i = 0; i < VTE_RX_RING_CNT; i++) {
rxd = &sc->vte_cdata.vte_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&rxd->rx_dmamap);
if (error != 0) {
aprint_error_dev(sc->vte_dev,
"could not create RX dmamap %d (%d).\n", i, error);
goto fail;
}
}
return 0;
fail:
vte_dma_free(sc);
return (error);
}
static void
vte_dma_free(struct vte_softc *sc)
{
struct vte_txdesc *txd;
struct vte_rxdesc *rxd;
int i;
/* TX buffers. */
for (i = 0; i < VTE_TX_RING_CNT; i++) {
txd = &sc->vte_cdata.vte_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
/* RX buffers */
for (i = 0; i < VTE_RX_RING_CNT; i++) {
rxd = &sc->vte_cdata.vte_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->vte_cdata.vte_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->vte_dmatag,
sc->vte_cdata.vte_rx_sparemap);
sc->vte_cdata.vte_rx_sparemap = NULL;
}
/* TX descriptor ring. */
if (sc->vte_cdata.vte_tx_ring_map != NULL) {
bus_dmamap_unload(sc->vte_dmatag,
sc->vte_cdata.vte_tx_ring_map);
bus_dmamap_destroy(sc->vte_dmatag,
sc->vte_cdata.vte_tx_ring_map);
}
if (sc->vte_cdata.vte_tx_ring != NULL) {
bus_dmamem_unmap(sc->vte_dmatag,
sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
bus_dmamem_free(sc->vte_dmatag,
sc->vte_cdata.vte_tx_ring_seg, 1);
}
sc->vte_cdata.vte_tx_ring = NULL;
sc->vte_cdata.vte_tx_ring_map = NULL;
/* RX ring. */
if (sc->vte_cdata.vte_rx_ring_map != NULL) {
bus_dmamap_unload(sc->vte_dmatag,
sc->vte_cdata.vte_rx_ring_map);
bus_dmamap_destroy(sc->vte_dmatag,
sc->vte_cdata.vte_rx_ring_map);
}
if (sc->vte_cdata.vte_rx_ring != NULL) {
bus_dmamem_unmap(sc->vte_dmatag,
sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
bus_dmamem_free(sc->vte_dmatag,
sc->vte_cdata.vte_rx_ring_seg, 1);
}
sc->vte_cdata.vte_rx_ring = NULL;
sc->vte_cdata.vte_rx_ring_map = NULL;
}
static bool
vte_shutdown(device_t dev, int howto)
{
return (vte_suspend(dev, NULL));
}
static bool
vte_suspend(device_t dev, const pmf_qual_t *qual)
{
struct vte_softc *sc = device_private(dev);
struct ifnet *ifp = &sc->vte_if;
DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
if ((ifp->if_flags & IFF_RUNNING) != 0)
vte_stop(ifp, 1);
return (0);
}
static bool
vte_resume(device_t dev, const pmf_qual_t *qual)
{
struct vte_softc *sc = device_private(dev);
struct ifnet *ifp;
ifp = &sc->vte_if;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_flags &= ~IFF_RUNNING;
vte_init(ifp);
}
return (0);
}
static struct vte_txdesc *
vte_encap(struct vte_softc *sc, struct mbuf **m_head)
{
struct vte_txdesc *txd;
struct mbuf *m, *n;
int copy, error, padlen;
txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
m = *m_head;
/*
* Controller doesn't auto-pad, so we have to make sure pad
* short frames out to the minimum frame length.
*/
if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
else
padlen = 0;
/*
* Controller does not support multi-fragmented TX buffers.
* Controller spends most of its TX processing time in
* de-fragmenting TX buffers. Either faster CPU or more
* advanced controller DMA engine is required to speed up
* TX path processing.
* To mitigate the de-fragmenting issue, perform deep copy
* from fragmented mbuf chains to a pre-allocated mbuf
* cluster with extra cost of kernel memory. For frames
* that is composed of single TX buffer, the deep copy is
* bypassed.
*/
copy = 0;
if (m->m_next != NULL)
copy++;
if (padlen > 0 && (M_READONLY(m) ||
padlen > M_TRAILINGSPACE(m)))
copy++;
if (copy != 0) {
n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
n->m_pkthdr.len = m->m_pkthdr.len;
n->m_len = m->m_pkthdr.len;
m = n;
txd->tx_flags |= VTE_TXMBUF;
}
if (padlen > 0) {
/* Zero out the bytes in the pad area. */
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
m->m_pkthdr.len += padlen;
m->m_len = m->m_pkthdr.len;
}
error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
if (error != 0) {
txd->tx_flags &= ~VTE_TXMBUF;
return (NULL);
}
KASSERT(txd->tx_dmamap->dm_nsegs == 1);
bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
txd->tx_desc->dtlen =
htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
sc->vte_cdata.vte_tx_cnt++;
/* Update producer index. */
VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
/* Finally hand over ownership to controller. */
txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
txd->tx_m = m;
return (txd);
}
static void
vte_ifstart(struct ifnet *ifp)
{
struct vte_softc *sc = ifp->if_softc;
struct vte_txdesc *txd;
struct mbuf *m_head, *m;
int enq;
ifp = &sc->vte_if;
DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
/* Reserve one free TX descriptor. */
if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
DPRINTF(("vte_encap:"));
if ((txd = vte_encap(sc, &m_head)) == NULL) {
DPRINTF((" failed\n"));
break;
}
DPRINTF((" ok\n"));
IFQ_DEQUEUE(&ifp->if_snd, m);
KASSERT(m == m_head);
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m_head);
/* Free consumed TX frame. */
if ((txd->tx_flags & VTE_TXMBUF) != 0)
m_freem(m_head);
}
if (enq > 0) {
bus_dmamap_sync(sc->vte_dmatag,
sc->vte_cdata.vte_tx_ring_map, 0,
sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
}
}
static void
vte_ifwatchdog(struct ifnet *ifp)
{
struct vte_softc *sc = ifp->if_softc;
if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
return;
aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
ifp->if_oerrors++;
vte_init(ifp);
if (!IFQ_IS_EMPTY(&ifp->if_snd))
vte_ifstart(ifp);
}
static int
vte_mediachange(struct ifnet *ifp)
{
int error;
struct vte_softc *sc = ifp->if_softc;
if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
error = 0;
else if (error != 0) {
aprint_error_dev(sc->vte_dev, "could not set media\n");
return error;
}
return 0;
}
static int
vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct vte_softc *sc = ifp->if_softc;
int error, s;
s = splnet();
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
if (ifp->if_flags & IFF_RUNNING)
vte_rxfilter(sc);
error = 0;
}
splx(s);
return error;
}
static void
vte_mac_config(struct vte_softc *sc)
{
uint16_t mcr;
mcr = CSR_READ_2(sc, VTE_MCR0);
mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
mcr |= MCR0_FULL_DUPLEX;
#ifdef notyet
if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
mcr |= MCR0_FC_ENB;
/*
* The data sheet is not clear whether the controller
* honors received pause frames or not. The is no
* separate control bit for RX pause frame so just
* enable MCR0_FC_ENB bit.
*/
if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
mcr |= MCR0_FC_ENB;
#endif
}
CSR_WRITE_2(sc, VTE_MCR0, mcr);
}
static void
vte_stats_clear(struct vte_softc *sc)
{
/* Reading counter registers clears its contents. */
CSR_READ_2(sc, VTE_CNT_RX_DONE);
CSR_READ_2(sc, VTE_CNT_MECNT0);
CSR_READ_2(sc, VTE_CNT_MECNT1);
CSR_READ_2(sc, VTE_CNT_MECNT2);
CSR_READ_2(sc, VTE_CNT_MECNT3);
CSR_READ_2(sc, VTE_CNT_TX_DONE);
CSR_READ_2(sc, VTE_CNT_MECNT4);
CSR_READ_2(sc, VTE_CNT_PAUSE);
}
static void
vte_stats_update(struct vte_softc *sc)
{
struct vte_hw_stats *stat;
struct ifnet *ifp = &sc->vte_if;
uint16_t value;
stat = &sc->vte_stats;
CSR_READ_2(sc, VTE_MECISR);
/* RX stats. */
stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
value = CSR_READ_2(sc, VTE_CNT_MECNT0);
stat->rx_bcast_frames += (value >> 8);
stat->rx_mcast_frames += (value & 0xFF);
value = CSR_READ_2(sc, VTE_CNT_MECNT1);
stat->rx_runts += (value >> 8);
stat->rx_crcerrs += (value & 0xFF);
value = CSR_READ_2(sc, VTE_CNT_MECNT2);
stat->rx_long_frames += (value & 0xFF);
value = CSR_READ_2(sc, VTE_CNT_MECNT3);
stat->rx_fifo_full += (value >> 8);
stat->rx_desc_unavail += (value & 0xFF);
/* TX stats. */
stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
value = CSR_READ_2(sc, VTE_CNT_MECNT4);
stat->tx_underruns += (value >> 8);
stat->tx_late_colls += (value & 0xFF);
value = CSR_READ_2(sc, VTE_CNT_PAUSE);
stat->tx_pause_frames += (value >> 8);
stat->rx_pause_frames += (value & 0xFF);
/* Update ifp counters. */
ifp->if_opackets = stat->tx_frames;
ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
ifp->if_ipackets = stat->rx_frames;
ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
stat->rx_long_frames + stat->rx_fifo_full;
}
static int
vte_intr(void *arg)
{
struct vte_softc *sc = (struct vte_softc *)arg;
struct ifnet *ifp = &sc->vte_if;
uint16_t status;
int n;
/* Reading VTE_MISR acknowledges interrupts. */
status = CSR_READ_2(sc, VTE_MISR);
DPRINTF(("vte_intr status 0x%x\n", status));
if ((status & VTE_INTRS) == 0) {
/* Not ours. */
return 0;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, VTE_MIER, 0);
for (n = 8; (status & VTE_INTRS) != 0;) {
if ((ifp->if_flags & IFF_RUNNING) == 0)
break;
if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
MISR_RX_FIFO_FULL)) != 0)
vte_rxeof(sc);
if ((status & MISR_TX_DONE) != 0)
vte_txeof(sc);
if ((status & MISR_EVENT_CNT_OFLOW) != 0)
vte_stats_update(sc);
if (!IFQ_IS_EMPTY(&ifp->if_snd))
vte_ifstart(ifp);
if (--n > 0)
status = CSR_READ_2(sc, VTE_MISR);
else
break;
}
if ((ifp->if_flags & IFF_RUNNING) != 0) {
/* Re-enable interrupts. */
CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
}
return 1;
}
static void
vte_txeof(struct vte_softc *sc)
{
struct ifnet *ifp;
struct vte_txdesc *txd;
uint16_t status;
int cons, prog;
ifp = &sc->vte_if;
if (sc->vte_cdata.vte_tx_cnt == 0)
return;
bus_dmamap_sync(sc->vte_dmatag,
sc->vte_cdata.vte_tx_ring_map, 0,
sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cons = sc->vte_cdata.vte_tx_cons;
/*
* Go through our TX list and free mbufs for those
* frames which have been transmitted.
*/
for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
txd = &sc->vte_cdata.vte_txdesc[cons];
status = le16toh(txd->tx_desc->dtst);
if ((status & VTE_DTST_TX_OWN) != 0)
break;
if ((status & VTE_DTST_TX_OK) != 0)
ifp->if_collisions += (status & 0xf);
sc->vte_cdata.vte_tx_cnt--;
/* Reclaim transmitted mbufs. */
bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
if ((txd->tx_flags & VTE_TXMBUF) == 0)
m_freem(txd->tx_m);
txd->tx_flags &= ~VTE_TXMBUF;
txd->tx_m = NULL;
prog++;
VTE_DESC_INC(cons, VTE_TX_RING_CNT);
}
if (prog > 0) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->vte_cdata.vte_tx_cons = cons;
/*
* Unarm watchdog timer only when there is no pending
* frames in TX queue.
*/
if (sc->vte_cdata.vte_tx_cnt == 0)
sc->vte_watchdog_timer = 0;
}
}
static int
vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
{
struct mbuf *m;
bus_dmamap_t map;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, sizeof(uint32_t));
if (bus_dmamap_load_mbuf(sc->vte_dmatag,
sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
0, rxd->rx_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
sc->vte_cdata.vte_rx_sparemap = map;
bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
0, rxd->rx_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rxd->rx_desc->drbp =
htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
rxd->rx_desc->drlen = htole16(
VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m, (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr, rxd->rx_dmamap->dm_segs[0].ds_len));
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
return (0);
}
static void
vte_rxeof(struct vte_softc *sc)
{
struct ifnet *ifp;
struct vte_rxdesc *rxd;
struct mbuf *m;
uint16_t status, total_len;
int cons, prog;
bus_dmamap_sync(sc->vte_dmatag,
sc->vte_cdata.vte_rx_ring_map, 0,
sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cons = sc->vte_cdata.vte_rx_cons;
ifp = &sc->vte_if;
DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
rxd = &sc->vte_cdata.vte_rxdesc[cons];
status = le16toh(rxd->rx_desc->drst);
DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n", cons, rxd, rxd->rx_m, status, VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
if ((status & VTE_DRST_RX_OWN) != 0)
break;
total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
m = rxd->rx_m;
if ((status & VTE_DRST_RX_OK) == 0) {
/* Discard errored frame. */
rxd->rx_desc->drlen =
htole16(MCLBYTES - sizeof(uint32_t));
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
continue;
}
if (vte_newbuf(sc, rxd) != 0) {
DPRINTF(("vte_rxeof newbuf failed\n"));
ifp->if_ierrors++;
rxd->rx_desc->drlen =
htole16(MCLBYTES - sizeof(uint32_t));
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
continue;
}
/*
* It seems there is no way to strip FCS bytes.
*/
m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
m->m_pkthdr.rcvif = ifp;
ifp->if_ipackets++;
bpf_mtap(ifp, m);
(*ifp->if_input)(ifp, m);
}
if (prog > 0) {
/* Update the consumer index. */
sc->vte_cdata.vte_rx_cons = cons;
/*
* Sync updated RX descriptors such that controller see
* modified RX buffer addresses.
*/
bus_dmamap_sync(sc->vte_dmatag,
sc->vte_cdata.vte_rx_ring_map, 0,
sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#ifdef notyet
/*
* Update residue counter. Controller does not
* keep track of number of available RX descriptors
* such that driver should have to update VTE_MRDCR
* to make controller know how many free RX
* descriptors were added to controller. This is
* a similar mechanism used in VIA velocity
* controllers and it indicates controller just
* polls OWN bit of current RX descriptor pointer.
* A couple of severe issues were seen on sample
* board where the controller continuously emits TX
* pause frames once RX pause threshold crossed.
* Once triggered it never recovered form that
* state, I couldn't find a way to make it back to
* work at least. This issue effectively
* disconnected the system from network. Also, the
* controller used 00:00:00:00:00:00 as source
* station address of TX pause frame. Probably this
* is one of reason why vendor recommends not to
* enable flow control on R6040 controller.
*/
CSR_WRITE_2(sc, VTE_MRDCR, prog |
(((VTE_RX_RING_CNT * 2) / 10) <<
VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
#endif
rnd_add_uint32(&sc->rnd_source, prog);
}
}
static void
vte_tick(void *arg)
{
struct vte_softc *sc;
int s = splnet();
sc = (struct vte_softc *)arg;
mii_tick(&sc->vte_mii);
vte_stats_update(sc);
vte_txeof(sc);
vte_ifwatchdog(&sc->vte_if);
callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
splx(s);
}
static void
vte_reset(struct vte_softc *sc)
{
uint16_t mcr;
int i;
mcr = CSR_READ_2(sc, VTE_MCR1);
CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
DELAY(10);
if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
break;
}
if (i == 0)
aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
/*
* Follow the guide of vendor recommended way to reset MAC.
* Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
* not reliable so manually reset internal state machine.
*/
CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
CSR_WRITE_2(sc, VTE_MACSM, 0);
DELAY(5000);
}
static int
vte_init(struct ifnet *ifp)
{
struct vte_softc *sc = ifp->if_softc;
bus_addr_t paddr;
uint8_t eaddr[ETHER_ADDR_LEN];
int s, error;
s = splnet();
/*
* Cancel any pending I/O.
*/
vte_stop(ifp, 1);
/*
* Reset the chip to a known state.
*/
vte_reset(sc);
if ((sc->vte_if.if_flags & IFF_UP) == 0) {
splx(s);
return 0;
}
/* Initialize RX descriptors. */
if (vte_init_rx_ring(sc) != 0) {
aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
vte_stop(ifp, 1);
splx(s);
return ENOMEM;
}
if (vte_init_tx_ring(sc) != 0) {
aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
vte_stop(ifp, 1);
splx(s);
return ENOMEM;
}
/*
* Reprogram the station address. Controller supports up
* to 4 different station addresses so driver programs the
* first station address as its own ethernet address and
* configure the remaining three addresses as perfect
* multicast addresses.
*/
memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
/* Set TX descriptor base addresses. */
paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
/* Set RX descriptor base addresses. */
paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
/*
* Initialize RX descriptor residue counter and set RX
* pause threshold to 20% of available RX descriptors.
* See comments on vte_rxeof() for details on flow control
* issues.
*/
CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
(((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
/*
* Always use maximum frame size that controller can
* support. Otherwise received frames that has longer
* frame length than vte(4) MTU would be silently dropped
* in controller. This would break path-MTU discovery as
* sender wouldn't get any responses from receiver. The
* RX buffer size should be multiple of 4.
* Note, jumbo frames are silently ignored by controller
* and even MAC counters do not detect them.
*/
CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
/* Configure FIFO. */
CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
/*
* Configure TX/RX MACs. Actual resolved duplex and flow
* control configuration is done after detecting a valid
* link. Note, we don't generate early interrupt here
* as well since FreeBSD does not have interrupt latency
* problems like Windows.
*/
CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
/*
* We manually keep track of PHY status changes to
* configure resolved duplex and flow control since only
* duplex configuration can be automatically reflected to
* MCR0.
*/
CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
MCR1_EXCESS_COL_RETRY_16);
/* Initialize RX filter. */
vte_rxfilter(sc);
/* Disable TX/RX interrupt moderation control. */
CSR_WRITE_2(sc, VTE_MRICR, 0);
CSR_WRITE_2(sc, VTE_MTICR, 0);
/* Enable MAC event counter interrupts. */
CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
/* Clear MAC statistics. */
vte_stats_clear(sc);
/* Acknowledge all pending interrupts and clear it. */
CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
CSR_WRITE_2(sc, VTE_MISR, 0);
DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
sc->vte_flags &= ~VTE_FLAG_LINK;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* calling mii_mediachg will call back vte_start_mac() */
if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
error = 0;
else if (error != 0) {
aprint_error_dev(sc->vte_dev, "could not set media\n");
splx(s);
return error;
}
callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
splx(s);
return 0;
}
static void
vte_stop(struct ifnet *ifp, int disable)
{
struct vte_softc *sc = ifp->if_softc;
struct vte_txdesc *txd;
struct vte_rxdesc *rxd;
int i;
DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
sc->vte_flags &= ~VTE_FLAG_LINK;
callout_stop(&sc->vte_tick_ch);
sc->vte_watchdog_timer = 0;
vte_stats_update(sc);
/* Disable interrupts. */
CSR_WRITE_2(sc, VTE_MIER, 0);
CSR_WRITE_2(sc, VTE_MECIER, 0);
/* Stop RX/TX MACs. */
vte_stop_mac(sc);
/* Clear interrupts. */
CSR_READ_2(sc, VTE_MISR);
/*
* Free TX/RX mbufs still in the queues.
*/
for (i = 0; i < VTE_RX_RING_CNT; i++) {
rxd = &sc->vte_cdata.vte_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->vte_dmatag,
rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->vte_dmatag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < VTE_TX_RING_CNT; i++) {
txd = &sc->vte_cdata.vte_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->vte_dmatag,
txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vte_dmatag,
txd->tx_dmamap);
if ((txd->tx_flags & VTE_TXMBUF) == 0)
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_flags &= ~VTE_TXMBUF;
}
}
/* Free TX mbuf pools used for deep copy. */
for (i = 0; i < VTE_TX_RING_CNT; i++) {
if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
m_freem(sc->vte_cdata.vte_txmbufs[i]);
sc->vte_cdata.vte_txmbufs[i] = NULL;
}
}
}
static void
vte_start_mac(struct vte_softc *sc)
{
struct ifnet *ifp = &sc->vte_if;
uint16_t mcr;
int i;
/* Enable RX/TX MACs. */
mcr = CSR_READ_2(sc, VTE_MCR0);
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
(MCR0_RX_ENB | MCR0_TX_ENB) &&
(ifp->if_flags & IFF_RUNNING) != 0) {
mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
CSR_WRITE_2(sc, VTE_MCR0, mcr);
for (i = VTE_TIMEOUT; i > 0; i--) {
mcr = CSR_READ_2(sc, VTE_MCR0);
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
(MCR0_RX_ENB | MCR0_TX_ENB))
break;
DELAY(10);
}
if (i == 0)
aprint_error_dev(sc->vte_dev,
"could not enable RX/TX MAC(0x%04x)!\n", mcr);
}
vte_rxfilter(sc);
}
static void
vte_stop_mac(struct vte_softc *sc)
{
uint16_t mcr;
int i;
/* Disable RX/TX MACs. */
mcr = CSR_READ_2(sc, VTE_MCR0);
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
CSR_WRITE_2(sc, VTE_MCR0, mcr);
for (i = VTE_TIMEOUT; i > 0; i--) {
mcr = CSR_READ_2(sc, VTE_MCR0);
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
break;
DELAY(10);
}
if (i == 0)
aprint_error_dev(sc->vte_dev,
"could not disable RX/TX MAC(0x%04x)!\n", mcr);
}
}
static int
vte_init_tx_ring(struct vte_softc *sc)
{
struct vte_tx_desc *desc;
struct vte_txdesc *txd;
bus_addr_t addr;
int i;
sc->vte_cdata.vte_tx_prod = 0;
sc->vte_cdata.vte_tx_cons = 0;
sc->vte_cdata.vte_tx_cnt = 0;
/* Pre-allocate TX mbufs for deep copy. */
for (i = 0; i < VTE_TX_RING_CNT; i++) {
sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
MT_DATA, M_PKTHDR);
if (sc->vte_cdata.vte_txmbufs[i] == NULL)
return (ENOBUFS);
sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
}
desc = sc->vte_cdata.vte_tx_ring;
bzero(desc, VTE_TX_RING_SZ);
for (i = 0; i < VTE_TX_RING_CNT; i++) {
txd = &sc->vte_cdata.vte_txdesc[i];
txd->tx_m = NULL;
if (i != VTE_TX_RING_CNT - 1)
addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
sizeof(struct vte_tx_desc) * (i + 1);
else
addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
sizeof(struct vte_tx_desc) * 0;
desc = &sc->vte_cdata.vte_tx_ring[i];
desc->dtnp = htole32(addr);
DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
txd->tx_desc = desc;
}
bus_dmamap_sync(sc->vte_dmatag,
sc->vte_cdata.vte_tx_ring_map, 0,
sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
vte_init_rx_ring(struct vte_softc *sc)
{
struct vte_rx_desc *desc;
struct vte_rxdesc *rxd;
bus_addr_t addr;
int i;
sc->vte_cdata.vte_rx_cons = 0;
desc = sc->vte_cdata.vte_rx_ring;
bzero(desc, VTE_RX_RING_SZ);
for (i = 0; i < VTE_RX_RING_CNT; i++) {
rxd = &sc->vte_cdata.vte_rxdesc[i];
rxd->rx_m = NULL;
if (i != VTE_RX_RING_CNT - 1)
addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
+ sizeof(struct vte_rx_desc) * (i + 1);
else
addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
+ sizeof(struct vte_rx_desc) * 0;
desc = &sc->vte_cdata.vte_rx_ring[i];
desc->drnp = htole32(addr);
DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
rxd->rx_desc = desc;
if (vte_newbuf(sc, rxd) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->vte_dmatag,
sc->vte_cdata.vte_rx_ring_map, 0,
sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
vte_rxfilter(struct vte_softc *sc)
{
struct ether_multistep step;
struct ether_multi *enm;
struct ifnet *ifp;
uint8_t *eaddr;
uint32_t crc;
uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
uint16_t mchash[4], mcr;
int i, nperf;
ifp = &sc->vte_if;
DPRINTF(("vte_rxfilter\n"));
memset(mchash, 0, sizeof(mchash));
for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
rxfilt_perf[i][0] = 0xFFFF;
rxfilt_perf[i][1] = 0xFFFF;
rxfilt_perf[i][2] = 0xFFFF;
}
mcr = CSR_READ_2(sc, VTE_MCR0);
DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
if ((ifp->if_flags & IFF_BROADCAST) == 0)
mcr |= MCR0_BROADCAST_DIS;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
mcr |= MCR0_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
mcr |= MCR0_MULTICAST;
mchash[0] = 0xFFFF;
mchash[1] = 0xFFFF;
mchash[2] = 0xFFFF;
mchash[3] = 0xFFFF;
goto chipit;
}
ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
nperf = 0;
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
sc->vte_if.if_flags |= IFF_ALLMULTI;
mcr |= MCR0_MULTICAST;
mchash[0] = 0xFFFF;
mchash[1] = 0xFFFF;
mchash[2] = 0xFFFF;
mchash[3] = 0xFFFF;
goto chipit;
}
/*
* Program the first 3 multicast groups into
* the perfect filter. For all others, use the
* hash table.
*/
if (nperf < VTE_RXFILT_PERFECT_CNT) {
eaddr = enm->enm_addrlo;
rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
nperf++;
} else {
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
}
ETHER_NEXT_MULTI(step, enm);
}
if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
mchash[3] != 0)
mcr |= MCR0_MULTICAST;
chipit:
/* Program multicast hash table. */
DPRINTF(("chipit write multicast\n"));
CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
/* Program perfect filter table. */
DPRINTF(("chipit write perfect filter\n"));
for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
rxfilt_perf[i][0]);
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
rxfilt_perf[i][1]);
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
rxfilt_perf[i][2]);
}
DPRINTF(("chipit mcr0 0x%x\n", mcr));
CSR_WRITE_2(sc, VTE_MCR0, mcr);
DPRINTF(("chipit read mcro\n"));
CSR_READ_2(sc, VTE_MCR0);
DPRINTF(("chipit done\n"));
}
/*
* Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
* set up in vte_pci_attach()
*/
SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
{
int rc;
const struct sysctlnode *node;
if ((rc = sysctl_createv(clog, 0, NULL, &node,
0, CTLTYPE_NODE, "vte",
SYSCTL_DESCR("vte interface controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
goto err;
}
vte_root_num = node->sysctl_num;
return;
err:
aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
}
static int
vte_sysctl_intrxct(SYSCTLFN_ARGS)
{
int error, t;
struct sysctlnode node;
struct vte_softc *sc;
node = *rnode;
sc = node.sysctl_data;
t = sc->vte_int_rx_mod;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
return EINVAL;
sc->vte_int_rx_mod = t;
vte_miibus_statchg(&sc->vte_if);
return 0;
}
static int
vte_sysctl_inttxct(SYSCTLFN_ARGS)
{
int error, t;
struct sysctlnode node;
struct vte_softc *sc;
node = *rnode;
sc = node.sysctl_data;
t = sc->vte_int_tx_mod;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
return EINVAL;
sc->vte_int_tx_mod = t;
vte_miibus_statchg(&sc->vte_if);
return 0;
}