1318 lines
31 KiB
C
1318 lines
31 KiB
C
/*-
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Ralph Campbell and Rick Macklem.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)if_le.c 8.2 (Berkeley) 11/16/93
|
|
* $Id: if_le.c,v 1.7 1994/08/17 01:33:15 deraadt Exp $
|
|
*/
|
|
|
|
#include <le.h>
|
|
#if NLE > 0
|
|
|
|
#include <bpfilter.h>
|
|
|
|
/*
|
|
* AMD 7990 LANCE
|
|
*
|
|
* This driver will generate and accept trailer encapsulated packets even
|
|
* though it buys us nothing. The motivation was to avoid incompatibilities
|
|
* with VAXen, SUNs, and others that handle and benefit from them.
|
|
* This reasoning is dubious.
|
|
*/
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/netisr.h>
|
|
#include <net/route.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
#endif
|
|
|
|
#if defined (CCITT) && defined (LLC)
|
|
#include <sys/socketvar.h>
|
|
#include <netccitt/x25.h>
|
|
extern llc_ctlinput(), cons_rtrequest();
|
|
#endif
|
|
|
|
#include <machine/machConst.h>
|
|
|
|
#include <pmax/pmax/pmaxtype.h>
|
|
#include <pmax/pmax/kn01.h>
|
|
#include <pmax/pmax/kmin.h>
|
|
#include <pmax/pmax/asic.h>
|
|
|
|
#include <pmax/dev/device.h>
|
|
#include <pmax/dev/if_lereg.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
#endif
|
|
|
|
int leprobe();
|
|
void leintr();
|
|
struct driver ledriver = {
|
|
"le", leprobe, 0, 0, leintr,
|
|
};
|
|
|
|
int ledebug = 1; /* console error messages */
|
|
|
|
/*
|
|
* Ethernet software status per interface.
|
|
*
|
|
* Each interface is referenced by a network interface structure,
|
|
* le_if, which the routing code uses to locate the interface.
|
|
* This structure contains the output queue for the interface, its address, ...
|
|
*/
|
|
struct le_softc {
|
|
struct arpcom sc_ac; /* common Ethernet structures */
|
|
#define sc_if sc_ac.ac_if /* network-visible interface */
|
|
#define sc_addr sc_ac.ac_enaddr /* hardware Ethernet address */
|
|
volatile struct lereg1 *sc_r1; /* LANCE registers */
|
|
volatile void *sc_r2; /* dual-port RAM */
|
|
int sc_ler2pad; /* Do ring descriptors require short pads? */
|
|
void (*sc_copytobuf)(); /* Copy to buffer */
|
|
void (*sc_copyfrombuf)(); /* Copy from buffer */
|
|
void (*sc_zerobuf)(); /* and Zero bytes in buffer */
|
|
int sc_rmd; /* predicted next rmd to process */
|
|
int sc_tmd; /* last tmd processed */
|
|
int sc_tmdnext; /* next tmd to transmit with */
|
|
/* stats */
|
|
int sc_runt;
|
|
int sc_merr;
|
|
int sc_babl;
|
|
int sc_cerr;
|
|
int sc_miss;
|
|
int sc_rown;
|
|
int sc_xint;
|
|
int sc_uflo;
|
|
int sc_rxlen;
|
|
int sc_rxoff;
|
|
int sc_txoff;
|
|
int sc_busy;
|
|
short sc_iflags;
|
|
} le_softc[NLE];
|
|
|
|
/* access LANCE registers */
|
|
static void lewritereg();
|
|
#define LERDWR(cntl, src, dst) { (dst) = (src); DELAY(10); }
|
|
#define LEWREG(src, dst) lewritereg(&(dst), (src))
|
|
|
|
#define CPU_TO_CHIP_ADDR(cpu) \
|
|
((unsigned)(&(((struct lereg2 *)0)->cpu)))
|
|
|
|
#define LE_OFFSET_RAM 0x0
|
|
#define LE_OFFSET_LANCE 0x100000
|
|
#define LE_OFFSET_ROM 0x1c0000
|
|
|
|
void copytobuf_contig(), copyfrombuf_contig(), bzerobuf_contig();
|
|
void copytobuf_gap2(), copyfrombuf_gap2(), bzerobuf_gap2();
|
|
void copytobuf_gap16(), copyfrombuf_gap16(), bzerobuf_gap16();
|
|
|
|
extern int pmax_boardtype;
|
|
extern u_long le_iomem;
|
|
extern u_long asic_base;
|
|
|
|
/*
|
|
* Test to see if device is present.
|
|
* Return true if found and initialized ok.
|
|
* If interface exists, make available by filling in network interface
|
|
* record. System will initialize the interface when it is ready
|
|
* to accept packets.
|
|
*/
|
|
leprobe(dp)
|
|
struct pmax_ctlr *dp;
|
|
{
|
|
volatile struct lereg1 *ler1;
|
|
struct le_softc *le = &le_softc[dp->pmax_unit];
|
|
struct ifnet *ifp = &le->sc_if;
|
|
u_char *cp;
|
|
int i;
|
|
extern int leinit(), lereset(), leioctl(), lestart(), ether_output();
|
|
|
|
switch (pmax_boardtype) {
|
|
case DS_PMAX:
|
|
le->sc_r1 = ler1 = (volatile struct lereg1 *)dp->pmax_addr;
|
|
le->sc_r2 = (volatile void *)MACH_PHYS_TO_UNCACHED(0x19000000);
|
|
cp = (u_char *)(MACH_PHYS_TO_UNCACHED(KN01_SYS_CLOCK) + 1);
|
|
le->sc_ler2pad = 1;
|
|
le->sc_copytobuf = copytobuf_gap2;
|
|
le->sc_copyfrombuf = copyfrombuf_gap2;
|
|
le->sc_zerobuf = bzerobuf_gap2;
|
|
break;
|
|
case DS_3MIN:
|
|
case DS_MAXINE:
|
|
case DS_3MAXPLUS:
|
|
if (dp->pmax_unit == 0) {
|
|
volatile u_int *ssr, *ldp;
|
|
|
|
le->sc_r1 = ler1 = (volatile struct lereg1 *)
|
|
ASIC_SYS_LANCE(asic_base);
|
|
cp = (u_char *)ASIC_SYS_ETHER_ADDRESS(asic_base);
|
|
le->sc_r2 = (volatile void *)
|
|
MACH_PHYS_TO_UNCACHED(le_iomem);
|
|
le->sc_ler2pad = 1;
|
|
le->sc_copytobuf = copytobuf_gap16;
|
|
le->sc_copyfrombuf = copyfrombuf_gap16;
|
|
le->sc_zerobuf = bzerobuf_gap16;
|
|
|
|
/*
|
|
* And enable Lance dma through the asic.
|
|
*/
|
|
ssr = (volatile u_int *)ASIC_REG_CSR(asic_base);
|
|
ldp = (volatile u_int *)
|
|
ASIC_REG_LANCE_DMAPTR(asic_base);
|
|
*ldp = (le_iomem << 3); /* phys addr << 3 */
|
|
*ssr |= ASIC_CSR_DMAEN_LANCE;
|
|
break;
|
|
}
|
|
/*
|
|
* Units other than 0 are turbochannel option boards and fall
|
|
* through to DS_3MAX.
|
|
*/
|
|
case DS_3MAX:
|
|
le->sc_r1 = ler1 = (volatile struct lereg1 *)
|
|
(dp->pmax_addr + LE_OFFSET_LANCE);
|
|
le->sc_r2 = (volatile void *)(dp->pmax_addr + LE_OFFSET_RAM);
|
|
cp = (u_char *)(dp->pmax_addr + LE_OFFSET_ROM + 2);
|
|
le->sc_ler2pad = 0;
|
|
le->sc_copytobuf = copytobuf_contig;
|
|
le->sc_copyfrombuf = copyfrombuf_contig;
|
|
le->sc_zerobuf = bzerobuf_contig;
|
|
break;
|
|
default:
|
|
printf("Unknown CPU board type %d\n", pmax_boardtype);
|
|
return (0);
|
|
};
|
|
|
|
/*
|
|
* Get the ethernet address out of rom
|
|
*/
|
|
for (i = 0; i < sizeof(le->sc_addr); i++) {
|
|
le->sc_addr[i] = *cp;
|
|
cp += 4;
|
|
}
|
|
|
|
/* make sure the chip is stopped */
|
|
LEWREG(LE_CSR0, ler1->ler1_rap);
|
|
LEWREG(LE_STOP, ler1->ler1_rdp);
|
|
|
|
ifp->if_unit = dp->pmax_unit;
|
|
ifp->if_name = "le";
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_reset = lereset;
|
|
ifp->if_ioctl = leioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = lestart;
|
|
#ifdef MULTICAST
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
#else
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX;
|
|
#endif
|
|
#if NBPFILTER > 0
|
|
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
printf("le%d at nexus0 csr 0x%x priority %d ethernet address %s\n",
|
|
dp->pmax_unit, dp->pmax_addr, dp->pmax_pri,
|
|
ether_sprintf(le->sc_addr));
|
|
return (1);
|
|
}
|
|
|
|
#ifdef MULTICAST
|
|
/*
|
|
* Setup the logical address filter
|
|
*/
|
|
void
|
|
lesetladrf(le)
|
|
register struct le_softc *le;
|
|
{
|
|
register volatile struct lereg2 *ler2 = le->sc_r2;
|
|
register struct ifnet *ifp = &le->sc_if;
|
|
register struct ether_multi *enm;
|
|
register u_char *cp;
|
|
register u_long crc;
|
|
register u_long c;
|
|
register int i, len;
|
|
struct ether_multistep step;
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast
|
|
* addresses through a crc generator, and then using the high
|
|
* order 6 bits as a index into the 64 bit logical address
|
|
* filter. The high order two bits select the word, while the
|
|
* rest of the bits select the bit within the word.
|
|
*/
|
|
|
|
LER2_ladrf0(ler2, 0);
|
|
LER2_ladrf1(ler2, 0);
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
ETHER_FIRST_MULTI(step, &le->sc_ac, enm);
|
|
while (enm != NULL) {
|
|
if (bcmp((caddr_t)&enm->enm_addrlo,
|
|
(caddr_t)&enm->enm_addrhi, sizeof(enm->enm_addrlo)) == 0) {
|
|
/*
|
|
* We must listen to a range of multicast
|
|
* addresses. For now, just accept all
|
|
* multicasts, rather than trying to set only
|
|
* those filter bits needed to match the range.
|
|
* (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for
|
|
* which the range is big enough to require all
|
|
* bits set.)
|
|
*/
|
|
LER2_ladrf0(ler2, 0xff);
|
|
LER2_ladrf1(ler2, 0xff);
|
|
LER2_ladrf2(ler2, 0xff);
|
|
LER2_ladrf3(ler2, 0xff);
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
|
|
cp = (unsigned char *)&enm->enm_addrlo;
|
|
c = *cp;
|
|
crc = 0xffffffff;
|
|
len = 6;
|
|
while (len-- > 0) {
|
|
c = *cp;
|
|
for (i = 0; i < 8; i++) {
|
|
if ((c & 0x01) ^ (crc & 0x01)) {
|
|
crc >>= 1;
|
|
crc = crc ^ 0xedb88320;
|
|
}
|
|
else
|
|
crc >>= 1;
|
|
c >>= 1;
|
|
}
|
|
cp++;
|
|
}
|
|
/* Just want the 6 most significant bits. */
|
|
crc = crc >> 26;
|
|
|
|
/* Turn on the corresponding bit in the filter. */
|
|
switch (crc >> 5) {
|
|
case 0:
|
|
LER2_ladrf0(ler2, 1 << (crc & 0x1f));
|
|
break;
|
|
case 1:
|
|
LER2_ladrf1(ler2, 1 << (crc & 0x1f));
|
|
break;
|
|
case 2:
|
|
LER2_ladrf2(ler2, 1 << (crc & 0x1f));
|
|
break;
|
|
case 3:
|
|
LER2_ladrf3(ler2, 1 << (crc & 0x1f));
|
|
}
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ledrinit(le)
|
|
struct le_softc *le;
|
|
{
|
|
register volatile void *rp;
|
|
register int i;
|
|
|
|
for (i = 0; i < LERBUF; i++) {
|
|
rp = LER2_RMDADDR(le->sc_r2, i);
|
|
LER2_rmd0(rp, CPU_TO_CHIP_ADDR(ler2_rbuf[i][0]));
|
|
LER2_rmd1(rp, LE_OWN);
|
|
LER2_rmd2(rp, -LEMTU);
|
|
LER2_rmd3(rp, 0);
|
|
}
|
|
for (i = 0; i < LETBUF; i++) {
|
|
rp = LER2_TMDADDR(le->sc_r2, i);
|
|
LER2_tmd0(rp, CPU_TO_CHIP_ADDR(ler2_tbuf[i][0]));
|
|
LER2_tmd1(rp, 0);
|
|
LER2_tmd2(rp, 0);
|
|
LER2_tmd3(rp, 0);
|
|
}
|
|
}
|
|
|
|
lereset(unit)
|
|
register int unit;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register volatile struct lereg1 *ler1 = le->sc_r1;
|
|
register volatile void *ler2 = le->sc_r2;
|
|
register int timo = 100000;
|
|
register int stat;
|
|
|
|
#ifdef lint
|
|
stat = unit;
|
|
#endif
|
|
LEWREG(LE_CSR0, ler1->ler1_rap);
|
|
LEWREG(LE_STOP, ler1->ler1_rdp);
|
|
|
|
/*
|
|
* Setup for transmit/receive
|
|
*/
|
|
#if NBPFILTER > 0
|
|
if (le->sc_if.if_flags & IFF_PROMISC)
|
|
/* set the promiscuous bit */
|
|
LER2_mode(ler2, LE_MODE | 0x8000);
|
|
else
|
|
#endif
|
|
LER2_mode(ler2, LE_MODE);
|
|
LER2_padr0(ler2, (le->sc_addr[1] << 8) | le->sc_addr[0]);
|
|
LER2_padr1(ler2, (le->sc_addr[3] << 8) | le->sc_addr[2]);
|
|
LER2_padr2(ler2, (le->sc_addr[5] << 8) | le->sc_addr[4]);
|
|
/* Setup the logical address filter */
|
|
#ifdef MULTICAST
|
|
lesetladrf(le);
|
|
#else
|
|
LER2_ladrf0(ler2, 0);
|
|
LER2_ladrf1(ler2, 0);
|
|
LER2_ladrf2(ler2, 0);
|
|
LER2_ladrf3(ler2, 0);
|
|
#endif
|
|
LER2_rlen(ler2, LE_RLEN);
|
|
LER2_rdra(ler2, CPU_TO_CHIP_ADDR(ler2_rmd[0]));
|
|
LER2_tlen(ler2, LE_TLEN);
|
|
LER2_tdra(ler2, CPU_TO_CHIP_ADDR(ler2_tmd[0]));
|
|
ledrinit(le);
|
|
le->sc_rmd = 0;
|
|
le->sc_tmd = LETBUF - 1;
|
|
le->sc_tmdnext = 0;
|
|
|
|
LEWREG(LE_CSR1, ler1->ler1_rap);
|
|
LEWREG(CPU_TO_CHIP_ADDR(ler2_mode), ler1->ler1_rdp);
|
|
LEWREG(LE_CSR2, ler1->ler1_rap);
|
|
LEWREG(0, ler1->ler1_rdp);
|
|
LEWREG(LE_CSR3, ler1->ler1_rap);
|
|
LEWREG(0, ler1->ler1_rdp);
|
|
LEWREG(LE_CSR0, ler1->ler1_rap);
|
|
LERDWR(ler0, LE_INIT, ler1->ler1_rdp);
|
|
do {
|
|
if (--timo == 0) {
|
|
printf("le%d: init timeout, stat = 0x%x\n",
|
|
unit, stat);
|
|
break;
|
|
}
|
|
stat = ler1->ler1_rdp;
|
|
} while ((stat & LE_IDON) == 0);
|
|
LERDWR(ler0, LE_IDON, ler1->ler1_rdp);
|
|
LERDWR(ler0, LE_STRT | LE_INEA, ler1->ler1_rdp);
|
|
le->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Initialization of interface
|
|
*/
|
|
leinit(unit)
|
|
int unit;
|
|
{
|
|
register struct ifnet *ifp = &le_softc[unit].sc_if;
|
|
register struct ifaddr *ifa;
|
|
int s;
|
|
|
|
/* not yet, if address still unknown */
|
|
if (ifp->if_addrlist == NULL)
|
|
return;
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0) {
|
|
s = splnet();
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
lereset(unit);
|
|
(void) lestart(ifp);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
#define LENEXTTMP \
|
|
if (++bix == LETBUF) \
|
|
bix = 0; \
|
|
tmd = LER2_TMDADDR(le->sc_r2, bix)
|
|
|
|
/*
|
|
* Start output on interface. Get another datagram to send
|
|
* off of the interface queue, and copy it to the interface
|
|
* before starting the output.
|
|
*/
|
|
lestart(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
register struct le_softc *le = &le_softc[ifp->if_unit];
|
|
register int bix = le->sc_tmdnext;
|
|
register volatile void *tmd = LER2_TMDADDR(le->sc_r2, bix);
|
|
register struct mbuf *m;
|
|
int len = 0;
|
|
|
|
if ((le->sc_if.if_flags & IFF_RUNNING) == 0)
|
|
return (0);
|
|
while (bix != le->sc_tmd) {
|
|
if (LER2V_tmd1(tmd) & LE_OWN)
|
|
panic("lestart");
|
|
IF_DEQUEUE(&le->sc_if.if_snd, m);
|
|
if (m == 0)
|
|
break;
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If bpf is listening on this interface, let it
|
|
* see the packet before we commit it to the wire.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif
|
|
len = leput(le, LER2_TBUFADDR(le->sc_r2, bix), m);
|
|
LER2_tmd3(tmd, 0);
|
|
LER2_tmd2(tmd, -len);
|
|
LER2_tmd1(tmd, LE_OWN | LE_STP | LE_ENP);
|
|
LENEXTTMP;
|
|
}
|
|
if (len != 0) {
|
|
le->sc_if.if_flags |= IFF_OACTIVE;
|
|
LERDWR(ler0, LE_TDMD | LE_INEA, le->sc_r1->ler1_rdp);
|
|
}
|
|
le->sc_tmdnext = bix;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Process interrupts from the 7990 chip.
|
|
*/
|
|
void
|
|
leintr(unit)
|
|
int unit;
|
|
{
|
|
register struct le_softc *le;
|
|
register volatile struct lereg1 *ler1;
|
|
register int stat;
|
|
|
|
le = &le_softc[unit];
|
|
ler1 = le->sc_r1;
|
|
stat = ler1->ler1_rdp;
|
|
if (!(stat & LE_INTR)) {
|
|
printf("le%d: spurrious interrupt\n", unit);
|
|
return;
|
|
}
|
|
if (stat & LE_SERR) {
|
|
leerror(unit, stat);
|
|
if (stat & LE_MERR) {
|
|
le->sc_merr++;
|
|
lereset(unit);
|
|
return;
|
|
}
|
|
if (stat & LE_BABL)
|
|
le->sc_babl++;
|
|
if (stat & LE_CERR)
|
|
le->sc_cerr++;
|
|
if (stat & LE_MISS)
|
|
le->sc_miss++;
|
|
LERDWR(ler0, LE_BABL|LE_CERR|LE_MISS|LE_INEA, ler1->ler1_rdp);
|
|
}
|
|
if ((stat & LE_RXON) == 0) {
|
|
le->sc_rxoff++;
|
|
lereset(unit);
|
|
return;
|
|
}
|
|
if ((stat & LE_TXON) == 0) {
|
|
le->sc_txoff++;
|
|
lereset(unit);
|
|
return;
|
|
}
|
|
if (stat & LE_RINT) {
|
|
/* interrupt is cleared in lerint */
|
|
lerint(unit);
|
|
}
|
|
if (stat & LE_TINT) {
|
|
LERDWR(ler0, LE_TINT|LE_INEA, ler1->ler1_rdp);
|
|
lexint(unit);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface transmitter interrupt.
|
|
* Start another output if more data to send.
|
|
*/
|
|
lexint(unit)
|
|
register int unit;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register int bix = le->sc_tmd;
|
|
register volatile void *tmd;
|
|
|
|
if ((le->sc_if.if_flags & IFF_OACTIVE) == 0) {
|
|
le->sc_xint++;
|
|
return;
|
|
}
|
|
LENEXTTMP;
|
|
while (bix != le->sc_tmdnext && (LER2V_tmd1(tmd) & LE_OWN) == 0) {
|
|
le->sc_tmd = bix;
|
|
if ((LER2V_tmd1(tmd) & LE_ERR) || (LER2V_tmd3(tmd) & LE_TBUFF)) {
|
|
lexerror(unit);
|
|
le->sc_if.if_oerrors++;
|
|
if (LER2V_tmd3(tmd) & (LE_TBUFF|LE_UFLO)) {
|
|
le->sc_uflo++;
|
|
lereset(unit);
|
|
break;
|
|
}
|
|
else if (LER2V_tmd3(tmd) & LE_LCOL)
|
|
le->sc_if.if_collisions++;
|
|
else if (LER2V_tmd3(tmd) & LE_RTRY)
|
|
le->sc_if.if_collisions += 16;
|
|
}
|
|
else if (LER2V_tmd1(tmd) & LE_ONE)
|
|
le->sc_if.if_collisions++;
|
|
else if (LER2V_tmd1(tmd) & LE_MORE)
|
|
/* what is the real number? */
|
|
le->sc_if.if_collisions += 2;
|
|
else
|
|
le->sc_if.if_opackets++;
|
|
LENEXTTMP;
|
|
}
|
|
if (bix == le->sc_tmdnext)
|
|
le->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
(void) lestart(&le->sc_if);
|
|
}
|
|
|
|
#define LENEXTRMP \
|
|
if (++bix == LERBUF) \
|
|
bix = 0; \
|
|
rmd = LER2_RMDADDR(le->sc_r2, bix)
|
|
|
|
/*
|
|
* Ethernet interface receiver interrupt.
|
|
* If input error just drop packet.
|
|
* Decapsulate packet based on type and pass to type specific
|
|
* higher-level input routine.
|
|
*/
|
|
lerint(unit)
|
|
int unit;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register int bix = le->sc_rmd;
|
|
register volatile void *rmd = LER2_RMDADDR(le->sc_r2, bix);
|
|
|
|
/*
|
|
* Out of sync with hardware, should never happen?
|
|
*/
|
|
if (LER2V_rmd1(rmd) & LE_OWN) {
|
|
le->sc_rown++;
|
|
LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Process all buffers with valid data
|
|
*/
|
|
while ((LER2V_rmd1(rmd) & LE_OWN) == 0) {
|
|
int len = LER2V_rmd3(rmd);
|
|
|
|
/* Clear interrupt to avoid race condition */
|
|
LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp);
|
|
|
|
if (LER2V_rmd1(rmd) & LE_ERR) {
|
|
le->sc_rmd = bix;
|
|
lererror(unit, "bad packet");
|
|
le->sc_if.if_ierrors++;
|
|
} else if ((LER2V_rmd1(rmd) & (LE_STP|LE_ENP)) != (LE_STP|LE_ENP)) {
|
|
/*
|
|
* Find the end of the packet so we can see how long
|
|
* it was. We still throw it away.
|
|
*/
|
|
do {
|
|
LERDWR(le->sc_r0, LE_RINT|LE_INEA,
|
|
le->sc_r1->ler1_rdp);
|
|
LER2_rmd3(rmd, 0);
|
|
LER2_rmd1(rmd, LE_OWN);
|
|
LENEXTRMP;
|
|
} while (!(LER2V_rmd1(rmd) & (LE_OWN|LE_ERR|LE_STP|LE_ENP)));
|
|
le->sc_rmd = bix;
|
|
lererror(unit, "chained buffer");
|
|
le->sc_rxlen++;
|
|
/*
|
|
* If search terminated without successful completion
|
|
* we reset the hardware (conservative).
|
|
*/
|
|
if ((LER2V_rmd1(rmd) & (LE_OWN|LE_ERR|LE_STP|LE_ENP)) !=
|
|
LE_ENP) {
|
|
lereset(unit);
|
|
return;
|
|
}
|
|
} else
|
|
leread(unit, LER2_RBUFADDR(le->sc_r2, bix), len);
|
|
LER2_rmd3(rmd, 0);
|
|
LER2_rmd1(rmd, LE_OWN);
|
|
LENEXTRMP;
|
|
}
|
|
MachEmptyWriteBuffer(); /* Paranoia */
|
|
le->sc_rmd = bix;
|
|
}
|
|
|
|
/*
|
|
* Look at the packet in network buffer memory so we can be smart about how
|
|
* we copy the data into mbufs.
|
|
* This needs work since we can't just read network buffer memory like
|
|
* regular memory.
|
|
*/
|
|
leread(unit, buf, len)
|
|
int unit;
|
|
volatile void *buf;
|
|
int len;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
struct ether_header et;
|
|
struct mbuf *m;
|
|
int off, resid, flags;
|
|
u_short sbuf[2], eth_type;
|
|
extern struct mbuf *leget();
|
|
|
|
le->sc_if.if_ipackets++;
|
|
(*le->sc_copyfrombuf)(buf, 0, (char *)&et, sizeof (et));
|
|
eth_type = ntohs(et.ether_type);
|
|
/* adjust input length to account for header and CRC */
|
|
len = len - sizeof(struct ether_header) - 4;
|
|
|
|
if (eth_type >= ETHERTYPE_TRAIL &&
|
|
eth_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
|
|
off = (eth_type - ETHERTYPE_TRAIL) * 512;
|
|
if (off >= ETHERMTU)
|
|
return; /* sanity */
|
|
(*le->sc_copyfrombuf)(buf, sizeof (et) + off, (char *)sbuf,
|
|
sizeof (sbuf));
|
|
eth_type = ntohs(sbuf[0]);
|
|
resid = ntohs(sbuf[1]);
|
|
if (off + resid > len)
|
|
return; /* sanity */
|
|
len = off + resid;
|
|
} else
|
|
off = 0;
|
|
|
|
if (len <= 0) {
|
|
if (ledebug)
|
|
log(LOG_WARNING,
|
|
"le%d: ierror(runt packet): from %s: len=%d\n",
|
|
unit, ether_sprintf(et.ether_shost), len);
|
|
le->sc_runt++;
|
|
le->sc_if.if_ierrors++;
|
|
return;
|
|
}
|
|
flags = 0;
|
|
if (bcmp((caddr_t)etherbroadcastaddr,
|
|
(caddr_t)et.ether_dhost, sizeof(etherbroadcastaddr)) == 0)
|
|
flags |= M_BCAST;
|
|
if (et.ether_dhost[0] & 1)
|
|
flags |= M_MCAST;
|
|
|
|
/*
|
|
* Pull packet off interface. Off is nonzero if packet
|
|
* has trailing header; leget will then force this header
|
|
* information to be at the front, but we still have to drop
|
|
* the type and length which are at the front of any trailer data.
|
|
*/
|
|
m = leget(le, buf, len, off, &le->sc_if);
|
|
if (m == 0)
|
|
return;
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Check if there's a bpf filter listening on this interface.
|
|
* If so, hand off the raw packet to enet.
|
|
*/
|
|
if (le->sc_if.if_bpf) {
|
|
bpf_mtap(le->sc_if.if_bpf, m);
|
|
|
|
/*
|
|
* Keep the packet if it's a broadcast or has our
|
|
* physical ethernet address (or if we support
|
|
* multicast and it's one).
|
|
*/
|
|
if (
|
|
#ifdef MULTICAST
|
|
(flags & (M_BCAST | M_MCAST)) == 0 &&
|
|
#else
|
|
(flags & M_BCAST) == 0 &&
|
|
#endif
|
|
bcmp(et.ether_dhost, le->sc_addr,
|
|
sizeof(et.ether_dhost)) != 0) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
m->m_flags |= flags;
|
|
ether_input(&le->sc_if, &et, m);
|
|
}
|
|
|
|
/*
|
|
* Routine to copy from mbuf chain to transmit buffer in
|
|
* network buffer memory.
|
|
*/
|
|
leput(le, lebuf, m)
|
|
struct le_softc *le;
|
|
register volatile void *lebuf;
|
|
register struct mbuf *m;
|
|
{
|
|
register struct mbuf *mp;
|
|
register int len, tlen = 0;
|
|
register int boff = 0;
|
|
|
|
for (mp = m; mp; mp = mp->m_next) {
|
|
len = mp->m_len;
|
|
if (len == 0)
|
|
continue;
|
|
(*le->sc_copytobuf)(mtod(mp, char *), lebuf, boff, len);
|
|
tlen += len;
|
|
boff += len;
|
|
}
|
|
m_freem(m);
|
|
if (tlen < LEMINSIZE) {
|
|
(*le->sc_zerobuf)(lebuf, boff, LEMINSIZE - tlen);
|
|
tlen = LEMINSIZE;
|
|
}
|
|
return(tlen);
|
|
}
|
|
|
|
/*
|
|
* Routine to copy from network buffer memory into mbufs.
|
|
*/
|
|
struct mbuf *
|
|
leget(le, lebuf, totlen, off, ifp)
|
|
struct le_softc *le;
|
|
volatile void *lebuf;
|
|
int totlen, off;
|
|
struct ifnet *ifp;
|
|
{
|
|
register struct mbuf *m;
|
|
struct mbuf *top = 0, **mp = ⊤
|
|
register int len, resid, boff;
|
|
|
|
/* NOTE: sizeof(struct ether_header) should be even */
|
|
boff = sizeof(struct ether_header);
|
|
if (off) {
|
|
/* NOTE: off should be even */
|
|
boff += off + 2 * sizeof(u_short);
|
|
totlen -= 2 * sizeof(u_short);
|
|
resid = totlen - off;
|
|
} else
|
|
resid = totlen;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0)
|
|
return (0);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = totlen;
|
|
m->m_len = MHLEN;
|
|
|
|
while (totlen > 0) {
|
|
if (top) {
|
|
MGET(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0) {
|
|
m_freem(top);
|
|
return (0);
|
|
}
|
|
m->m_len = MLEN;
|
|
}
|
|
|
|
if (resid >= MINCLSIZE)
|
|
MCLGET(m, M_DONTWAIT);
|
|
if (m->m_flags & M_EXT)
|
|
m->m_len = min(resid, MCLBYTES);
|
|
else if (resid < m->m_len) {
|
|
/*
|
|
* Place initial small packet/header at end of mbuf.
|
|
*/
|
|
if (top == 0 && resid + max_linkhdr <= m->m_len)
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = resid;
|
|
}
|
|
len = m->m_len;
|
|
(*le->sc_copyfrombuf)(lebuf, boff, mtod(m, char *), len);
|
|
boff += len;
|
|
*mp = m;
|
|
mp = &m->m_next;
|
|
totlen -= len;
|
|
resid -= len;
|
|
if (resid == 0) {
|
|
boff = sizeof (struct ether_header);
|
|
resid = totlen;
|
|
}
|
|
}
|
|
return (top);
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request.
|
|
*/
|
|
leioctl(ifp, cmd, data)
|
|
register struct ifnet *ifp;
|
|
int cmd;
|
|
caddr_t data;
|
|
{
|
|
register struct ifaddr *ifa = (struct ifaddr *)data;
|
|
struct le_softc *le = &le_softc[ifp->if_unit];
|
|
volatile struct lereg1 *ler1 = le->sc_r1;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
switch (cmd) {
|
|
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
leinit(ifp->if_unit); /* before arpwhohas */
|
|
((struct arpcom *)ifp)->ac_ipaddr =
|
|
IA_SIN(ifa)->sin_addr;
|
|
arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
|
|
break;
|
|
#endif
|
|
#ifdef NS
|
|
case AF_NS:
|
|
{
|
|
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
|
|
|
|
if (ns_nullhost(*ina))
|
|
ina->x_host = *(union ns_host *)(le->sc_addr);
|
|
else {
|
|
/*
|
|
* The manual says we can't change the address
|
|
* while the receiver is armed,
|
|
* so reset everything
|
|
*/
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
LEWREG(LE_STOP, ler1->ler1_rdp);
|
|
bcopy((caddr_t)ina->x_host.c_host,
|
|
(caddr_t)le->sc_addr, sizeof(le->sc_addr));
|
|
}
|
|
leinit(ifp->if_unit); /* does le_setaddr() */
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
leinit(ifp->if_unit);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
#if defined (CCITT) && defined (LLC)
|
|
case SIOCSIFCONF_X25:
|
|
ifp->if_flags |= IFF_UP;
|
|
ifa->ifa_rtrequest = cons_rtrequest;
|
|
error = x25_llcglue(PRC_IFUP, ifa->ifa_addr);
|
|
if (error == 0)
|
|
leinit(ifp->if_unit);
|
|
break;
|
|
#endif /* CCITT && LLC */
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
ifp->if_flags & IFF_RUNNING) {
|
|
LEWREG(LE_STOP, ler1->ler1_rdp);
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
} else if (ifp->if_flags & IFF_UP &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0)
|
|
leinit(ifp->if_unit);
|
|
/*
|
|
* If the state of the promiscuous bit changes, the interface
|
|
* must be reset to effect the change.
|
|
*/
|
|
if (((ifp->if_flags ^ le->sc_iflags) & IFF_PROMISC) &&
|
|
(ifp->if_flags & IFF_RUNNING)) {
|
|
le->sc_iflags = ifp->if_flags;
|
|
lereset(ifp->if_unit);
|
|
lestart(ifp);
|
|
}
|
|
break;
|
|
|
|
#ifdef MULTICAST
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/* Update our multicast list */
|
|
error = (cmd == SIOCADDMULTI) ?
|
|
ether_addmulti((struct ifreq *)data, &le->sc_ac) :
|
|
ether_delmulti((struct ifreq *)data, &le->sc_ac);
|
|
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware
|
|
* filter accordingly.
|
|
*/
|
|
lereset(ifp->if_unit);
|
|
error = 0;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
leerror(unit, stat)
|
|
int unit;
|
|
int stat;
|
|
{
|
|
if (!ledebug)
|
|
return;
|
|
|
|
/*
|
|
* Not all transceivers implement heartbeat
|
|
* so we only log CERR once.
|
|
*/
|
|
if ((stat & LE_CERR) && le_softc[unit].sc_cerr)
|
|
return;
|
|
log(LOG_WARNING,
|
|
"le%d: error: stat=%b\n", unit,
|
|
stat,
|
|
"\20\20ERR\17BABL\16CERR\15MISS\14MERR\13RINT\12TINT\11IDON\10INTR\07INEA\06RXON\05TXON\04TDMD\03STOP\02STRT\01INIT");
|
|
}
|
|
|
|
lererror(unit, msg)
|
|
int unit;
|
|
char *msg;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register volatile void *rmd;
|
|
u_char eaddr[6];
|
|
int len;
|
|
|
|
if (!ledebug)
|
|
return;
|
|
|
|
rmd = LER2_RMDADDR(le->sc_r2, le->sc_rmd);
|
|
len = LER2V_rmd3(rmd);
|
|
if (len > 11)
|
|
(*le->sc_copyfrombuf)(LER2_RBUFADDR(le->sc_r2, le->sc_rmd),
|
|
6, eaddr, 6);
|
|
log(LOG_WARNING,
|
|
"le%d: ierror(%s): from %s: buf=%d, len=%d, rmd1=%b\n",
|
|
unit, msg,
|
|
len > 11 ? ether_sprintf(eaddr) : "unknown",
|
|
le->sc_rmd, len,
|
|
LER2V_rmd1(rmd),
|
|
"\20\20OWN\17ERR\16FRAM\15OFLO\14CRC\13RBUF\12STP\11ENP");
|
|
}
|
|
|
|
lexerror(unit)
|
|
int unit;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register volatile void *tmd;
|
|
u_char eaddr[6];
|
|
int len;
|
|
|
|
if (!ledebug)
|
|
return;
|
|
|
|
tmd = LER2_TMDADDR(le->sc_r2, 0);
|
|
len = -LER2V_tmd2(tmd);
|
|
if (len > 5)
|
|
(*le->sc_copyfrombuf)(LER2_TBUFADDR(le->sc_r2, 0), 0, eaddr, 6);
|
|
log(LOG_WARNING,
|
|
"le%d: oerror: to %s: buf=%d, len=%d, tmd1=%b, tmd3=%b\n",
|
|
unit,
|
|
len > 5 ? ether_sprintf(eaddr) : "unknown",
|
|
0, len,
|
|
LER2V_tmd1(tmd),
|
|
"\20\20OWN\17ERR\16RES\15MORE\14ONE\13DEF\12STP\11ENP",
|
|
LER2V_tmd3(tmd),
|
|
"\20\20BUFF\17UFLO\16RES\15LCOL\14LCAR\13RTRY");
|
|
}
|
|
|
|
/*
|
|
* Write a lance register port, reading it back to ensure success. This seems
|
|
* to be necessary during initialization, since the chip appears to be a bit
|
|
* pokey sometimes.
|
|
*/
|
|
static void
|
|
lewritereg(regptr, val)
|
|
register volatile u_short *regptr;
|
|
register u_short val;
|
|
{
|
|
register int i = 0;
|
|
|
|
while (*regptr != val) {
|
|
*regptr = val;
|
|
MachEmptyWriteBuffer();
|
|
if (++i > 10000) {
|
|
printf("le: Reg did not settle (to x%x): x%x\n",
|
|
val, *regptr);
|
|
return;
|
|
}
|
|
DELAY(100);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Routines for accessing the transmit and receive buffers. Unfortunately,
|
|
* CPU addressing of these buffers is done in one of 3 ways:
|
|
* - contiguous (for the 3max and turbochannel option card)
|
|
* - gap2, which means shorts (2 bytes) interspersed with short (2 byte)
|
|
* spaces (for the pmax)
|
|
* - gap16, which means 16bytes interspersed with 16byte spaces
|
|
* for buffers which must begin on a 32byte boundary (for 3min and maxine)
|
|
* The buffer offset is the logical byte offset, assuming contiguous storage.
|
|
*/
|
|
void
|
|
copytobuf_contig(from, lebuf, boff, len)
|
|
char *from;
|
|
volatile void *lebuf;
|
|
int boff;
|
|
int len;
|
|
{
|
|
|
|
/*
|
|
* Just call bcopy() to do the work.
|
|
*/
|
|
bcopy(from, ((char *)lebuf) + boff, len);
|
|
}
|
|
|
|
void
|
|
copyfrombuf_contig(lebuf, boff, to, len)
|
|
volatile void *lebuf;
|
|
int boff;
|
|
char *to;
|
|
int len;
|
|
{
|
|
|
|
/*
|
|
* Just call bcopy() to do the work.
|
|
*/
|
|
bcopy(((char *)lebuf) + boff, to, len);
|
|
}
|
|
|
|
void
|
|
bzerobuf_contig(lebuf, boff, len)
|
|
volatile void *lebuf;
|
|
int boff;
|
|
int len;
|
|
{
|
|
|
|
/*
|
|
* Just let bzero() do the work
|
|
*/
|
|
bzero(((char *)lebuf) + boff, len);
|
|
}
|
|
|
|
/*
|
|
* For the pmax the buffer consists of shorts (2 bytes) interspersed with
|
|
* short (2 byte) spaces and must be accessed with halfword load/stores.
|
|
* (don't worry about doing an extra byte)
|
|
*/
|
|
void
|
|
copytobuf_gap2(from, lebuf, boff, len)
|
|
register char *from;
|
|
volatile void *lebuf;
|
|
int boff;
|
|
register int len;
|
|
{
|
|
register volatile u_short *bptr;
|
|
register int xfer;
|
|
|
|
if (boff & 0x1) {
|
|
/* handle unaligned first byte */
|
|
bptr = ((volatile u_short *)lebuf) + (boff - 1);
|
|
*bptr = (*from++ << 8) | (*bptr & 0xff);
|
|
bptr += 2;
|
|
len--;
|
|
} else
|
|
bptr = ((volatile u_short *)lebuf) + boff;
|
|
if ((unsigned)from & 0x1) {
|
|
while (len > 1) {
|
|
*bptr = (from[1] << 8) | (from[0] & 0xff);
|
|
bptr += 2;
|
|
from += 2;
|
|
len -= 2;
|
|
}
|
|
} else {
|
|
/* optimize for aligned transfers */
|
|
xfer = (int)((unsigned)len & ~0x1);
|
|
CopyToBuffer((u_short *)from, bptr, xfer);
|
|
bptr += xfer;
|
|
from += xfer;
|
|
len -= xfer;
|
|
}
|
|
if (len == 1)
|
|
*bptr = (u_short)*from;
|
|
}
|
|
|
|
void
|
|
copyfrombuf_gap2(lebuf, boff, to, len)
|
|
volatile void *lebuf;
|
|
int boff;
|
|
register char *to;
|
|
register int len;
|
|
{
|
|
register volatile u_short *bptr;
|
|
register u_short tmp;
|
|
register int xfer;
|
|
|
|
if (boff & 0x1) {
|
|
/* handle unaligned first byte */
|
|
bptr = ((volatile u_short *)lebuf) + (boff - 1);
|
|
*to++ = (*bptr >> 8) & 0xff;
|
|
bptr += 2;
|
|
len--;
|
|
} else
|
|
bptr = ((volatile u_short *)lebuf) + boff;
|
|
if ((unsigned)to & 0x1) {
|
|
while (len > 1) {
|
|
tmp = *bptr;
|
|
*to++ = tmp & 0xff;
|
|
*to++ = (tmp >> 8) & 0xff;
|
|
bptr += 2;
|
|
len -= 2;
|
|
}
|
|
} else {
|
|
/* optimize for aligned transfers */
|
|
xfer = (int)((unsigned)len & ~0x1);
|
|
CopyFromBuffer(bptr, to, xfer);
|
|
bptr += xfer;
|
|
to += xfer;
|
|
len -= xfer;
|
|
}
|
|
if (len == 1)
|
|
*to = *bptr & 0xff;
|
|
}
|
|
|
|
void
|
|
bzerobuf_gap2(lebuf, boff, len)
|
|
volatile void *lebuf;
|
|
int boff;
|
|
int len;
|
|
{
|
|
register volatile u_short *bptr;
|
|
|
|
if ((unsigned)boff & 0x1) {
|
|
bptr = ((volatile u_short *)lebuf) + (boff - 1);
|
|
*bptr &= 0xff;
|
|
bptr += 2;
|
|
len--;
|
|
} else
|
|
bptr = ((volatile u_short *)lebuf) + boff;
|
|
while (len > 0) {
|
|
*bptr = 0;
|
|
bptr += 2;
|
|
len -= 2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For the 3min and maxine, the buffers are in main memory filled in with
|
|
* 16byte blocks interspersed with 16byte spaces.
|
|
*/
|
|
void
|
|
copytobuf_gap16(from, lebuf, boff, len)
|
|
register char *from;
|
|
volatile void *lebuf;
|
|
int boff;
|
|
register int len;
|
|
{
|
|
register char *bptr;
|
|
register int xfer;
|
|
|
|
bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f);
|
|
boff &= 0xf;
|
|
xfer = min(len, 16 - boff);
|
|
while (len > 0) {
|
|
bcopy(from, ((char *)bptr) + boff, xfer);
|
|
from += xfer;
|
|
bptr += 32;
|
|
boff = 0;
|
|
len -= xfer;
|
|
xfer = min(len, 16);
|
|
}
|
|
}
|
|
|
|
void
|
|
copyfrombuf_gap16(lebuf, boff, to, len)
|
|
volatile void *lebuf;
|
|
int boff;
|
|
register char *to;
|
|
register int len;
|
|
{
|
|
register char *bptr;
|
|
register int xfer;
|
|
|
|
bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f);
|
|
boff &= 0xf;
|
|
xfer = min(len, 16 - boff);
|
|
while (len > 0) {
|
|
bcopy(((char *)bptr) + boff, to, xfer);
|
|
to += xfer;
|
|
bptr += 32;
|
|
boff = 0;
|
|
len -= xfer;
|
|
xfer = min(len, 16);
|
|
}
|
|
}
|
|
|
|
void
|
|
bzerobuf_gap16(lebuf, boff, len)
|
|
volatile void *lebuf;
|
|
int boff;
|
|
register int len;
|
|
{
|
|
register char *bptr;
|
|
register int xfer;
|
|
|
|
bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f);
|
|
boff &= 0xf;
|
|
xfer = min(len, 16 - boff);
|
|
while (len > 0) {
|
|
bzero(((char *)bptr) + boff, xfer);
|
|
bptr += 32;
|
|
boff = 0;
|
|
len -= xfer;
|
|
xfer = min(len, 16);
|
|
}
|
|
}
|
|
#endif /* NLE */
|