NetBSD/sys/dev/pci/if_iwi.c
2007-12-09 20:27:42 +00:00

2919 lines
75 KiB
C

/* $NetBSD: if_iwi.c,v 1.68 2007/12/09 20:28:09 jmcneill Exp $ */
/*-
* Copyright (c) 2004, 2005
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_iwi.c,v 1.68 2007/12/09 20:28:09 jmcneill Exp $");
/*-
* Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
* http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <sys/intr.h>
#include <dev/firmload.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <crypto/arc4/arc4.h>
#include <dev/pci/if_iwireg.h>
#include <dev/pci/if_iwivar.h>
#ifdef IWI_DEBUG
#define DPRINTF(x) if (iwi_debug > 0) printf x
#define DPRINTFN(n, x) if (iwi_debug >= (n)) printf x
int iwi_debug = 4;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
static int iwi_match(device_t, struct cfdata *, void *);
static void iwi_attach(device_t, device_t, void *);
static int iwi_detach(device_t, int);
static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
int);
static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
int, bus_addr_t, bus_size_t);
static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
static struct mbuf *
iwi_alloc_rx_buf(struct iwi_softc *sc);
static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
int);
static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
static struct ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *);
static void iwi_node_free(struct ieee80211_node *);
static int iwi_cvtrate(int);
static int iwi_media_change(struct ifnet *);
static void iwi_media_status(struct ifnet *, struct ifmediareq *);
static int iwi_wme_update(struct ieee80211com *);
static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t);
static int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void iwi_fix_channel(struct ieee80211com *, struct mbuf *);
static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
struct iwi_frame *);
static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
static void iwi_cmd_intr(struct iwi_softc *);
static void iwi_rx_intr(struct iwi_softc *);
static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
static int iwi_intr(void *);
static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t, int);
static void iwi_write_ibssnode(struct iwi_softc *, const struct iwi_node *);
static int iwi_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *,
int);
static void iwi_start(struct ifnet *);
static void iwi_watchdog(struct ifnet *);
static int iwi_alloc_unr(struct iwi_softc *);
static void iwi_free_unr(struct iwi_softc *, int);
static int iwi_get_table0(struct iwi_softc *, uint32_t *);
static int iwi_ioctl(struct ifnet *, u_long, void *);
static void iwi_stop_master(struct iwi_softc *);
static int iwi_reset(struct iwi_softc *);
static int iwi_load_ucode(struct iwi_softc *, void *, int);
static int iwi_load_firmware(struct iwi_softc *, void *, int);
static int iwi_cache_firmware(struct iwi_softc *);
static void iwi_free_firmware(struct iwi_softc *);
static int iwi_config(struct iwi_softc *);
static int iwi_set_chan(struct iwi_softc *, struct ieee80211_channel *);
static int iwi_scan(struct iwi_softc *);
static int iwi_auth_and_assoc(struct iwi_softc *);
static int iwi_init(struct ifnet *);
static void iwi_stop(struct ifnet *, int);
static int iwi_getrfkill(struct iwi_softc *);
static void iwi_led_set(struct iwi_softc *, uint32_t, int);
static void iwi_sysctlattach(struct iwi_softc *);
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset iwi_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset iwi_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset iwi_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static inline uint8_t
MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
}
static inline uint32_t
MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
}
CFATTACH_DECL_NEW(iwi, sizeof (struct iwi_softc), iwi_match, iwi_attach,
iwi_detach, NULL);
static int
iwi_match(device_t parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
return 0;
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2200BG ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2225BG ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_2)
return 1;
return 0;
}
static bool
iwi_pci_resume(device_t dv)
{
struct iwi_softc *sc = device_private(dv);
pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
return true;
}
/* Base Address Register */
#define IWI_PCI_BAR0 0x10
static void
iwi_attach(device_t parent, device_t self, void *aux)
{
struct iwi_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct pci_attach_args *pa = aux;
const char *intrstr;
char devinfo[256];
bus_space_tag_t memt;
bus_space_handle_t memh;
pci_intr_handle_t ih;
pcireg_t data;
uint16_t val;
int error, revision, i;
sc->sc_dev = self;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
revision = PCI_REVISION(pa->pa_class);
aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
/* clear unit numbers allocated to IBSS */
sc->sc_unr = 0;
/* power up chip */
if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
NULL)) && error != EOPNOTSUPP) {
aprint_error_dev(self, "cannot activate %d\n", error);
return;
}
/* enable bus-mastering */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
data |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
/* map the register window */
error = pci_mapreg_map(pa, IWI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
if (error != 0) {
aprint_error_dev(self, "could not map memory space\n");
return;
}
sc->sc_st = memt;
sc->sc_sh = memh;
sc->sc_dmat = pa->pa_dmat;
/* disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(self, "could not map interrupt\n");
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwi_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "could not establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
if (iwi_reset(sc) != 0) {
aprint_error_dev(self, "could not reset adapter\n");
return;
}
/*
* Allocate rings.
*/
if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
aprint_error_dev(self, "could not allocate command ring\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_TX_RING_COUNT,
IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX);
if (error != 0) {
aprint_error_dev(self, "could not allocate Tx ring 1\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_TX_RING_COUNT,
IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX);
if (error != 0) {
aprint_error_dev(self, "could not allocate Tx ring 2\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_TX_RING_COUNT,
IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX);
if (error != 0) {
aprint_error_dev(self, "could not allocate Tx ring 3\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_TX_RING_COUNT,
IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX);
if (error != 0) {
aprint_error_dev(self, "could not allocate Tx ring 4\n");
goto fail;
}
if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
aprint_error_dev(self, "could not allocate Rx ring\n");
goto fail;
}
ic->ic_ifp = ifp;
ic->ic_wme.wme_update = iwi_wme_update;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
sc->sc_fwname = "iwi-bss.fw";
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WPA | /* 802.11i */
IEEE80211_C_WME; /* 802.11e */
/* read MAC address from EEPROM */
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
ic->ic_myaddr[0] = val & 0xff;
ic->ic_myaddr[1] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
ic->ic_myaddr[2] = val & 0xff;
ic->ic_myaddr[3] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
ic->ic_myaddr[4] = val & 0xff;
ic->ic_myaddr[5] = val >> 8;
aprint_verbose_dev(self, "802.11 address %s\n",
ether_sprintf(ic->ic_myaddr));
/* read the NIC type from EEPROM */
val = iwi_read_prom_word(sc, IWI_EEPROM_NIC_TYPE);
sc->nictype = val & 0xff;
DPRINTF(("%s: NIC type %d\n", device_xname(self), sc->nictype));
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_2) {
/* set supported .11a rates (2915ABG only) */
ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 165; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = iwi_init;
ifp->if_stop = iwi_stop;
ifp->if_ioctl = iwi_ioctl;
ifp->if_start = iwi_start;
ifp->if_watchdog = iwi_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
/* override default methods */
ic->ic_node_alloc = iwi_node_alloc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = iwi_node_free;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwi_newstate;
ieee80211_media_init(ic, iwi_media_change, iwi_media_status);
#if NBPFILTER > 0
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
#endif
iwi_sysctlattach(sc);
if (!pmf_device_register(self, NULL, iwi_pci_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
else
pmf_class_network_register(self, ifp);
ieee80211_announce(ic);
return;
fail: iwi_detach(self, 0);
}
static int
iwi_detach(device_t self, int flags)
{
struct iwi_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_if;
pmf_device_deregister(self);
if (ifp != NULL)
iwi_stop(ifp, 1);
iwi_free_firmware(sc);
ieee80211_ifdetach(&sc->sc_ic);
if (ifp != NULL)
if_detach(ifp);
iwi_free_cmd_ring(sc, &sc->cmdq);
iwi_free_tx_ring(sc, &sc->txq[0]);
iwi_free_tx_ring(sc, &sc->txq[1]);
iwi_free_tx_ring(sc, &sc->txq[2]);
iwi_free_tx_ring(sc, &sc->txq[3]);
iwi_free_rx_ring(sc, &sc->rxq);
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
sc->sc_ih = NULL;
}
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
return 0;
}
static int
iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring,
int count)
{
int error, nsegs;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
/*
* Allocate and map command ring
*/
error = bus_dmamap_create(sc->sc_dmat,
IWI_CMD_DESC_SIZE * count, 1,
IWI_CMD_DESC_SIZE * count, 0,
BUS_DMA_NOWAIT, &ring->desc_map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create command ring DMA map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat,
IWI_CMD_DESC_SIZE * count, PAGE_SIZE, 0,
&sc->cmdq.desc_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate command ring DMA memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->cmdq.desc_seg, nsegs,
IWI_CMD_DESC_SIZE * count,
(void **)&sc->cmdq.desc, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not map command ring DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->cmdq.desc_map, sc->cmdq.desc,
IWI_CMD_DESC_SIZE * count, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load command ring DMA map\n");
goto fail;
}
memset(sc->cmdq.desc, 0,
IWI_CMD_DESC_SIZE * count);
return 0;
fail: iwi_free_cmd_ring(sc, ring);
return error;
}
static void
iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
int i;
for (i = ring->next; i != ring->cur;) {
bus_dmamap_sync(sc->sc_dmat, sc->cmdq.desc_map,
i * IWI_CMD_DESC_SIZE, IWI_CMD_DESC_SIZE,
BUS_DMASYNC_POSTWRITE);
wakeup(&ring->desc[i]);
i = (i + 1) % ring->count;
}
ring->queued = 0;
ring->cur = ring->next = 0;
}
static void
iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
if (ring->desc_map != NULL) {
if (ring->desc != NULL) {
bus_dmamap_unload(sc->sc_dmat, ring->desc_map);
bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
IWI_CMD_DESC_SIZE * ring->count);
bus_dmamem_free(sc->sc_dmat, &ring->desc_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, ring->desc_map);
}
}
static int
iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring,
int count, bus_size_t csr_ridx, bus_size_t csr_widx)
{
int i, error, nsegs;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
ring->csr_ridx = csr_ridx;
ring->csr_widx = csr_widx;
/*
* Allocate and map Tx ring
*/
error = bus_dmamap_create(sc->sc_dmat,
IWI_TX_DESC_SIZE * count, 1,
IWI_TX_DESC_SIZE * count, 0, BUS_DMA_NOWAIT,
&ring->desc_map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create tx ring DMA map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat,
IWI_TX_DESC_SIZE * count, PAGE_SIZE, 0,
&ring->desc_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate tx ring DMA memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->desc_seg, nsegs,
IWI_TX_DESC_SIZE * count,
(void **)&ring->desc, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not map tx ring DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->desc_map, ring->desc,
IWI_TX_DESC_SIZE * count, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load tx ring DMA map\n");
goto fail;
}
memset(ring->desc, 0, IWI_TX_DESC_SIZE * count);
ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
/*
* Allocate Tx buffers DMA maps
*/
for (i = 0; i < count; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IWI_MAX_NSEG,
MCLBYTES, 0, BUS_DMA_NOWAIT, &ring->data[i].map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create tx buf DMA map");
goto fail;
}
}
return 0;
fail: iwi_free_tx_ring(sc, ring);
return error;
}
static void
iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
struct iwi_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
ring->queued = 0;
ring->cur = ring->next = 0;
}
static void
iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
int i;
if (ring->desc_map != NULL) {
if (ring->desc != NULL) {
bus_dmamap_unload(sc->sc_dmat, ring->desc_map);
bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
IWI_TX_DESC_SIZE * ring->count);
bus_dmamem_free(sc->sc_dmat, &ring->desc_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, ring->desc_map);
}
for (i = 0; i < ring->count; i++) {
if (ring->data[i].m != NULL) {
bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
m_freem(ring->data[i].m);
}
bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
}
}
static int
iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
{
int i, error;
ring->count = count;
ring->cur = 0;
ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
/*
* Allocate and map Rx buffers
*/
for (i = 0; i < count; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ring->data[i].map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create rx buf DMA map");
goto fail;
}
if ((ring->data[i].m = iwi_alloc_rx_buf(sc)) == NULL) {
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, ring->data[i].map,
ring->data[i].m, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load rx buffer DMA map\n");
goto fail;
}
bus_dmamap_sync(sc->sc_dmat, ring->data[i].map, 0,
ring->data[i].map->dm_mapsize, BUS_DMASYNC_PREREAD);
}
return 0;
fail: iwi_free_rx_ring(sc, ring);
return error;
}
static void
iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
ring->cur = 0;
}
static void
iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
int i;
for (i = 0; i < ring->count; i++) {
if (ring->data[i].m != NULL) {
bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
m_freem(ring->data[i].m);
}
bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
}
}
static struct ieee80211_node *
iwi_node_alloc(struct ieee80211_node_table *nt)
{
struct iwi_node *in;
in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
if (in == NULL)
return NULL;
in->in_station = -1;
return &in->in_node;
}
static int
iwi_alloc_unr(struct iwi_softc *sc)
{
int i;
for (i = 0; i < IWI_MAX_IBSSNODE - 1; i++)
if ((sc->sc_unr & (1 << i)) == 0) {
sc->sc_unr |= 1 << i;
return i;
}
return -1;
}
static void
iwi_free_unr(struct iwi_softc *sc, int r)
{
sc->sc_unr &= 1 << r;
}
static void
iwi_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct iwi_softc *sc = ic->ic_ifp->if_softc;
struct iwi_node *in = (struct iwi_node *)ni;
if (in->in_station != -1)
iwi_free_unr(sc, in->in_station);
sc->sc_node_free(ni);
}
static int
iwi_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
iwi_init(ifp);
return 0;
}
/*
* Convert h/w rate code to IEEE rate code.
*/
static int
iwi_cvtrate(int iwirate)
{
switch (iwirate) {
case IWI_RATE_DS1: return 2;
case IWI_RATE_DS2: return 4;
case IWI_RATE_DS5: return 11;
case IWI_RATE_DS11: return 22;
case IWI_RATE_OFDM6: return 12;
case IWI_RATE_OFDM9: return 18;
case IWI_RATE_OFDM12: return 24;
case IWI_RATE_OFDM18: return 36;
case IWI_RATE_OFDM24: return 48;
case IWI_RATE_OFDM36: return 72;
case IWI_RATE_OFDM48: return 96;
case IWI_RATE_OFDM54: return 108;
}
return 0;
}
/*
* The firmware automatically adapts the transmit speed. We report its current
* value here.
*/
static void
iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int rate;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/* read current transmission rate from adapter */
rate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
/* should not get there */
break;
}
}
static int
iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct iwi_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
ieee80211_state_name[ic->ic_state],
ieee80211_state_name[nstate], sc->flags));
switch (nstate) {
case IEEE80211_S_SCAN:
if (sc->flags & IWI_FLAG_SCANNING)
break;
ieee80211_node_table_reset(&ic->ic_scan);
ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
sc->flags |= IWI_FLAG_SCANNING;
/* blink the led while scanning */
iwi_led_set(sc, IWI_LED_ASSOCIATED, 1);
iwi_scan(sc);
break;
case IEEE80211_S_AUTH:
iwi_auth_and_assoc(sc);
break;
case IEEE80211_S_RUN:
if (ic->ic_opmode == IEEE80211_M_IBSS)
ieee80211_new_state(ic, IEEE80211_S_AUTH, -1);
else if (ic->ic_opmode == IEEE80211_M_MONITOR)
iwi_set_chan(sc, ic->ic_ibss_chan);
return (*sc->sc_newstate)(ic, nstate,
IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
case IEEE80211_S_ASSOC:
iwi_led_set(sc, IWI_LED_ASSOCIATED, 0);
break;
case IEEE80211_S_INIT:
sc->flags &= ~IWI_FLAG_SCANNING;
return (*sc->sc_newstate)(ic, nstate, arg);
}
ic->ic_state = nstate;
return 0;
}
/*
* WME parameters coming from IEEE 802.11e specification. These values are
* already declared in ieee80211_proto.c, but they are static so they can't
* be reused here.
*/
static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
{ 0, 3, 5, 7, 0, 0, }, /* WME_AC_BE */
{ 0, 3, 5, 10, 0, 0, }, /* WME_AC_BK */
{ 0, 2, 4, 5, 188, 0, }, /* WME_AC_VI */
{ 0, 2, 3, 4, 102, 0, }, /* WME_AC_VO */
};
static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
{ 0, 3, 4, 6, 0, 0, }, /* WME_AC_BE */
{ 0, 3, 4, 10, 0, 0, }, /* WME_AC_BK */
{ 0, 2, 3, 4, 94, 0, }, /* WME_AC_VI */
{ 0, 2, 2, 3, 47, 0, }, /* WME_AC_VO */
};
static int
iwi_wme_update(struct ieee80211com *ic)
{
#define IWI_EXP2(v) htole16((1 << (v)) - 1)
#define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
struct iwi_softc *sc = ic->ic_ifp->if_softc;
struct iwi_wme_params wme[3];
const struct wmeParams *wmep;
int ac;
/*
* We shall not override firmware default WME values if WME is not
* actually enabled.
*/
if (!(ic->ic_flags & IEEE80211_F_WME))
return 0;
for (ac = 0; ac < WME_NUM_AC; ac++) {
/* set WME values for current operating mode */
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
wme[0].aifsn[ac] = wmep->wmep_aifsn;
wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
wme[0].acm[ac] = wmep->wmep_acm;
/* set WME values for CCK modulation */
wmep = &iwi_wme_cck_params[ac];
wme[1].aifsn[ac] = wmep->wmep_aifsn;
wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
wme[1].acm[ac] = wmep->wmep_acm;
/* set WME values for OFDM modulation */
wmep = &iwi_wme_ofdm_params[ac];
wme[2].aifsn[ac] = wmep->wmep_aifsn;
wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
wme[2].acm[ac] = wmep->wmep_acm;
}
DPRINTF(("Setting WME parameters\n"));
return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, wme, sizeof wme, 1);
#undef IWI_USEC
#undef IWI_EXP2
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM.
*/
static uint16_t
iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* Clock C once before the first command */
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* Write start bit (1) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
/* Write READ opcode (10) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
/* Write address A7-A0 */
for (n = 7; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
}
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* Read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
}
IWI_EEPROM_CTL(sc, 0);
/* Clear Chip Select and clock C */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
return val;
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
*/
static void
iwi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
{
struct ieee80211_frame *wh;
uint8_t subtype;
uint8_t *frm, *efrm;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
frm = (uint8_t *)(wh + 1);
efrm = mtod(m, uint8_t *) + m->m_len;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
ic->ic_curchan = &ic->ic_channels[frm[2]];
frm += frm[1] + 2;
}
}
static struct mbuf *
iwi_alloc_rx_buf(struct iwi_softc *sc)
{
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
return NULL;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
aprint_error_dev(sc->sc_dev,
"could not allocate rx mbuf cluster\n");
m_freem(m);
return NULL;
}
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
return m;
}
static void
iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
struct iwi_frame *frame)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct mbuf *m, *m_new;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
int error;
DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u\n",
le16toh(frame->len), frame->chan, frame->rssi_dbm));
if (le16toh(frame->len) < sizeof (struct ieee80211_frame) ||
le16toh(frame->len) > MCLBYTES) {
DPRINTF(("%s: bad frame length\n", device_xname(sc->sc_dev)));
ifp->if_ierrors++;
return;
}
/*
* Try to allocate a new mbuf for this ring element and
* load it before processing the current mbuf. If the ring
* element cannot be reloaded, drop the received packet
* and reuse the old mbuf. In the unlikely case that
* the old mbuf can't be reloaded either, explicitly panic.
*
* XXX Reorganize buffer by moving elements from the logical
* end of the ring to the front instead of dropping.
*/
if ((m_new = iwi_alloc_rx_buf(sc)) == NULL) {
ifp->if_ierrors++;
return;
}
bus_dmamap_unload(sc->sc_dmat, data->map);
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m_new,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load rx buf DMA map\n");
m_freem(m_new);
ifp->if_ierrors++;
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map,
data->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error)
panic("%s: unable to remap rx buf",
device_xname(sc->sc_dev));
return;
}
/*
* New mbuf successfully loaded, update RX ring and continue
* processing.
*/
m = data->m;
data->m = m_new;
CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4, data->map->dm_segs[0].ds_addr);
/* Finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
sizeof (struct iwi_frame) + le16toh(frame->len);
m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
if (ic->ic_state == IEEE80211_S_SCAN)
iwi_fix_channel(ic, m);
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_rate = iwi_cvtrate(frame->rate);
tap->wr_chan_freq =
htole16(ic->ic_channels[frame->chan].ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_channels[frame->chan].ic_flags);
tap->wr_antsignal = frame->signal;
tap->wr_antenna = frame->antenna;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
#endif
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* Send the frame to the upper layer */
ieee80211_input(ic, m, ni, frame->rssi_dbm, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
}
static void
iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_notif_scan_channel *chan;
struct iwi_notif_scan_complete *scan;
struct iwi_notif_authentication *auth;
struct iwi_notif_association *assoc;
struct iwi_notif_beacon_state *beacon;
switch (notif->type) {
case IWI_NOTIF_TYPE_SCAN_CHANNEL:
chan = (struct iwi_notif_scan_channel *)(notif + 1);
DPRINTFN(2, ("Scan of channel %u complete (%u)\n",
ic->ic_channels[chan->nchan].ic_freq, chan->nchan));
break;
case IWI_NOTIF_TYPE_SCAN_COMPLETE:
scan = (struct iwi_notif_scan_complete *)(notif + 1);
DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
scan->status));
/* monitor mode uses scan to set the channel ... */
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
sc->flags &= ~IWI_FLAG_SCANNING;
ieee80211_end_scan(ic);
} else
iwi_set_chan(sc, ic->ic_ibss_chan);
break;
case IWI_NOTIF_TYPE_AUTHENTICATION:
auth = (struct iwi_notif_authentication *)(notif + 1);
DPRINTFN(2, ("Authentication (%u)\n", auth->state));
switch (auth->state) {
case IWI_AUTH_SUCCESS:
ieee80211_node_authorize(ic->ic_bss);
ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
break;
case IWI_AUTH_FAIL:
break;
default:
aprint_error_dev(sc->sc_dev,
"unknown authentication state %u\n", auth->state);
}
break;
case IWI_NOTIF_TYPE_ASSOCIATION:
assoc = (struct iwi_notif_association *)(notif + 1);
DPRINTFN(2, ("Association (%u, %u)\n", assoc->state,
assoc->status));
switch (assoc->state) {
case IWI_AUTH_SUCCESS:
/* re-association, do nothing */
break;
case IWI_ASSOC_SUCCESS:
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case IWI_ASSOC_FAIL:
ieee80211_begin_scan(ic, 1);
break;
default:
aprint_error_dev(sc->sc_dev,
"unknown association state %u\n", assoc->state);
}
break;
case IWI_NOTIF_TYPE_BEACON:
beacon = (struct iwi_notif_beacon_state *)(notif + 1);
if (beacon->state == IWI_BEACON_MISS) {
DPRINTFN(5, ("%s: %u beacon(s) missed\n",
device_xname(sc->sc_dev), le32toh(beacon->number)));
}
break;
case IWI_NOTIF_TYPE_FRAG_LENGTH:
case IWI_NOTIF_TYPE_LINK_QUALITY:
case IWI_NOTIF_TYPE_TGI_TX_KEY:
case IWI_NOTIF_TYPE_CALIBRATION:
case IWI_NOTIF_TYPE_NOISE:
DPRINTFN(5, ("Notification (%u)\n", notif->type));
break;
default:
DPRINTF(("%s: unknown notification type %u flags 0x%x len %d\n",
device_xname(sc->sc_dev), notif->type, notif->flags,
le16toh(notif->len)));
}
}
static void
iwi_cmd_intr(struct iwi_softc *sc)
{
uint32_t hw;
hw = CSR_READ_4(sc, IWI_CSR_CMD_RIDX);
bus_dmamap_sync(sc->sc_dmat, sc->cmdq.desc_map,
sc->cmdq.next * IWI_CMD_DESC_SIZE, IWI_CMD_DESC_SIZE,
BUS_DMASYNC_POSTWRITE);
wakeup(&sc->cmdq.desc[sc->cmdq.next]);
sc->cmdq.next = (sc->cmdq.next + 1) % sc->cmdq.count;
if (--sc->cmdq.queued > 0) {
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, (sc->cmdq.next + 1) % sc->cmdq.count);
}
}
static void
iwi_rx_intr(struct iwi_softc *sc)
{
struct iwi_rx_data *data;
struct iwi_hdr *hdr;
uint32_t hw;
hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
for (; sc->rxq.cur != hw;) {
data = &sc->rxq.data[sc->rxq.cur];
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
hdr = mtod(data->m, struct iwi_hdr *);
switch (hdr->type) {
case IWI_HDR_TYPE_FRAME:
iwi_frame_intr(sc, data, sc->rxq.cur,
(struct iwi_frame *)(hdr + 1));
break;
case IWI_HDR_TYPE_NOTIF:
iwi_notification_intr(sc,
(struct iwi_notif *)(hdr + 1));
break;
default:
aprint_error_dev(sc->sc_dev, "unknown hdr type %u\n",
hdr->type);
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_PREREAD);
DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
sc->rxq.cur = (sc->rxq.cur + 1) % sc->rxq.count;
}
/* Tell the firmware what we have processed */
hw = (hw == 0) ? sc->rxq.count - 1 : hw - 1;
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
}
static void
iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
{
struct ifnet *ifp = &sc->sc_if;
struct iwi_tx_data *data;
uint32_t hw;
hw = CSR_READ_4(sc, txq->csr_ridx);
for (; txq->next != hw;) {
data = &txq->data[txq->next];
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
DPRINTFN(15, ("tx done idx=%u\n", txq->next));
ifp->if_opackets++;
txq->queued--;
txq->next = (txq->next + 1) % txq->count;
}
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
/* Call start() since some buffer descriptors have been released */
(*ifp->if_start)(ifp);
}
static int
iwi_intr(void *arg)
{
struct iwi_softc *sc = arg;
uint32_t r;
if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff)
return 0;
/* Acknowledge interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR, r);
if (r & IWI_INTR_FATAL_ERROR) {
aprint_error_dev(sc->sc_dev, "fatal error\n");
sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
iwi_stop(&sc->sc_if, 1);
return (1);
}
if (r & IWI_INTR_FW_INITED) {
if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
wakeup(sc);
}
if (r & IWI_INTR_RADIO_OFF) {
DPRINTF(("radio transmitter off\n"));
sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
iwi_stop(&sc->sc_if, 1);
return (1);
}
if (r & IWI_INTR_CMD_DONE)
iwi_cmd_intr(sc);
if (r & IWI_INTR_TX1_DONE)
iwi_tx_intr(sc, &sc->txq[0]);
if (r & IWI_INTR_TX2_DONE)
iwi_tx_intr(sc, &sc->txq[1]);
if (r & IWI_INTR_TX3_DONE)
iwi_tx_intr(sc, &sc->txq[2]);
if (r & IWI_INTR_TX4_DONE)
iwi_tx_intr(sc, &sc->txq[3]);
if (r & IWI_INTR_RX_DONE)
iwi_rx_intr(sc);
if (r & IWI_INTR_PARITY_ERROR)
aprint_error_dev(sc->sc_dev, "parity error\n");
return 1;
}
static int
iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len,
int async)
{
struct iwi_cmd_desc *desc;
desc = &sc->cmdq.desc[sc->cmdq.cur];
desc->hdr.type = IWI_HDR_TYPE_COMMAND;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->type = type;
desc->len = len;
memcpy(desc->data, data, len);
bus_dmamap_sync(sc->sc_dmat, sc->cmdq.desc_map,
sc->cmdq.cur * IWI_CMD_DESC_SIZE,
IWI_CMD_DESC_SIZE, BUS_DMASYNC_PREWRITE);
DPRINTFN(2, ("sending command idx=%u type=%u len=%u async=%d\n",
sc->cmdq.cur, type, len, async));
sc->cmdq.cur = (sc->cmdq.cur + 1) % sc->cmdq.count;
if (++sc->cmdq.queued == 1)
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
return async ? 0 : tsleep(desc, 0, "iwicmd", hz);
}
static void
iwi_write_ibssnode(struct iwi_softc *sc, const struct iwi_node *in)
{
struct iwi_ibssnode node;
/* write node information into NIC memory */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.bssid, in->in_node.ni_macaddr);
CSR_WRITE_REGION_1(sc,
IWI_CSR_NODE_BASE + in->in_station * sizeof node,
(uint8_t *)&node, sizeof node);
}
static int
iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
int ac)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_node *in = (struct iwi_node *)ni;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
const struct chanAccParams *cap;
struct iwi_tx_ring *txq = &sc->txq[ac];
struct iwi_tx_data *data;
struct iwi_tx_desc *desc;
struct mbuf *mnew;
int error, hdrlen, i, noack = 0;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
hdrlen = sizeof (struct ieee80211_qosframe);
cap = &ic->ic_wme.wme_chanParams;
noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
} else
hdrlen = sizeof (struct ieee80211_frame);
/*
* This is only used in IBSS mode where the firmware expect an index
* in a h/w table instead of a destination address.
*/
if (ic->ic_opmode == IEEE80211_M_IBSS && in->in_station == -1) {
in->in_station = iwi_alloc_unr(sc);
if (in->in_station == -1) { /* h/w table is full */
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
return 0;
}
iwi_write_ibssnode(sc, in);
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
#endif
data = &txq->data[txq->cur];
desc = &txq->desc[txq->cur];
/* save and trim IEEE802.11 header */
m_copydata(m0, 0, hdrlen, (void *)&desc->wh);
m_adj(m0, hdrlen);
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
/* too many fragments, linearize */
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
m_freem(m0);
return ENOMEM;
}
M_COPY_PKTHDR(mnew, m0);
/* If the data won't fit in the header, get a cluster */
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(m0);
m_freem(mnew);
return ENOMEM;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
m_freem(m0);
mnew->m_len = mnew->m_pkthdr.len;
m0 = mnew;
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
desc->hdr.type = IWI_HDR_TYPE_DATA;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->station =
(ic->ic_opmode == IEEE80211_M_IBSS) ? in->in_station : 0;
desc->cmd = IWI_DATA_CMD_TX;
desc->len = htole16(m0->m_pkthdr.len);
desc->flags = 0;
desc->xflags = 0;
if (!noack && !IEEE80211_IS_MULTICAST(desc->wh.i_addr1))
desc->flags |= IWI_DATA_FLAG_NEED_ACK;
#if 0
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
desc->wh.i_fc[1] |= IEEE80211_FC1_WEP;
desc->wep_txkey = ic->ic_crypto.cs_def_txkey;
} else
#endif
desc->flags |= IWI_DATA_FLAG_NO_WEP;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
desc->flags |= IWI_DATA_FLAG_SHPREAMBLE;
if (desc->wh.i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS)
desc->xflags |= IWI_DATA_XFLAG_QOS;
if (ic->ic_curmode == IEEE80211_MODE_11B)
desc->xflags |= IWI_DATA_XFLAG_CCK;
desc->nseg = htole32(data->map->dm_nsegs);
for (i = 0; i < data->map->dm_nsegs; i++) {
desc->seg_addr[i] = htole32(data->map->dm_segs[i].ds_addr);
desc->seg_len[i] = htole16(data->map->dm_segs[i].ds_len);
}
bus_dmamap_sync(sc->sc_dmat, txq->desc_map,
txq->cur * IWI_TX_DESC_SIZE,
IWI_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
ac, txq->cur, le16toh(desc->len), le32toh(desc->nseg)));
/* Inform firmware about this new packet */
txq->queued++;
txq->cur = (txq->cur + 1) % txq->count;
CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
return 0;
}
static void
iwi_start(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni;
int ac;
if (ic->ic_state != IEEE80211_S_RUN)
return;
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (m0->m_len < sizeof (struct ether_header) &&
(m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m0, ni) != 0) {
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* no QoS encapsulation for EAPOL frames */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m0) : WME_AC_BE;
if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
/* there is no place left in this ring */
IF_PREPEND(&ifp->if_snd, m0);
ifp->if_flags |= IFF_OACTIVE;
break;
}
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
#endif
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
#endif
if (iwi_tx_start(ifp, m0, ni, ac) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
/* start watchdog timer */
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
iwi_watchdog(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error_dev(sc->sc_dev, "device timeout\n");
ifp->if_oerrors++;
ifp->if_flags &= ~IFF_UP;
iwi_stop(ifp, 1);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
iwi_get_table0(struct iwi_softc *sc, uint32_t *tbl)
{
uint32_t size, buf[128];
if (!(sc->flags & IWI_FLAG_FW_INITED)) {
memset(buf, 0, sizeof buf);
return copyout(buf, tbl, sizeof buf);
}
size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
return copyout(buf, tbl, sizeof buf);
}
static int
iwi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
#define IS_RUNNING(ifp) \
((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
int val;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
iwi_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
iwi_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* XXX no h/w multicast filter? --dyoung */
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
case SIOCGTABLE0:
error = iwi_get_table0(sc, (uint32_t *)ifr->ifr_data);
break;
case SIOCGRADIO:
val = !iwi_getrfkill(sc);
error = copyout(&val, (int *)ifr->ifr_data, sizeof val);
break;
case SIOCSIFMEDIA:
if (ifr->ifr_media & IFM_IEEE80211_ADHOC) {
sc->sc_fwname = "iwi-ibss.fw";
} else if (ifr->ifr_media & IFM_IEEE80211_MONITOR) {
sc->sc_fwname = "iwi-sniffer.fw";
} else {
sc->sc_fwname = "iwi-bss.fw";
}
error = iwi_cache_firmware(sc);
if (error)
break;
/* FALLTRHOUGH */
default:
error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
if (error == ENETRESET) {
if (IS_RUNNING(ifp) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
iwi_init(ifp);
error = 0;
}
}
splx(s);
return error;
#undef IS_RUNNING
}
static void
iwi_stop_master(struct iwi_softc *sc)
{
int ntries;
/* Disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5)
aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
IWI_RST_PRINCETON_RESET);
sc->flags &= ~IWI_FLAG_FW_INITED;
}
static int
iwi_reset(struct iwi_softc *sc)
{
int i, ntries;
iwi_stop_master(sc);
/* Move adapter to D0 state */
CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) |
IWI_CTL_INIT);
/* Initialize Phase-Locked Level (PLL) */
CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
/* Wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for clock stabilization\n");
return ETIMEDOUT;
}
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
IWI_RST_SW_RESET);
DELAY(10);
CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) |
IWI_CTL_INIT);
/* Clear NIC memory */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
for (i = 0; i < 0xc000; i++)
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
return 0;
}
static int
iwi_load_ucode(struct iwi_softc *sc, void *uc, int size)
{
uint16_t *w;
int ntries, i;
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5) {
aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
return ETIMEDOUT;
}
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
DELAY(5000);
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) &
~IWI_RST_PRINCETON_RESET);
DELAY(5000);
MEM_WRITE_4(sc, 0x3000e0, 0);
DELAY(1000);
MEM_WRITE_4(sc, 0x300004, 1);
DELAY(1000);
MEM_WRITE_4(sc, 0x300004, 0);
DELAY(1000);
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x40);
DELAY(1000);
/* Adapter is buggy, we must set the address for each word */
for (w = uc; size > 0; w++, size -= 2)
MEM_WRITE_2(sc, 0x200010, htole16(*w));
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x80);
/* Wait until we get a response in the uc queue */
for (ntries = 0; ntries < 100; ntries++) {
if (MEM_READ_1(sc, 0x200000) & 1)
break;
DELAY(100);
}
if (ntries == 100) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for ucode to initialize\n");
return ETIMEDOUT;
}
/* Empty the uc queue or the firmware will not initialize properly */
for (i = 0; i < 7; i++)
MEM_READ_4(sc, 0x200004);
MEM_WRITE_1(sc, 0x200000, 0x00);
return 0;
}
/* macro to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
static int
iwi_load_firmware(struct iwi_softc *sc, void *fw, int size)
{
bus_dmamap_t map;
u_char *p, *end;
uint32_t sentinel, ctl, sum;
uint32_t cs, sl, cd, cl;
int ntries, nsegs, error;
int sn;
nsegs = (size + PAGE_SIZE - 1) / PAGE_SIZE;
/* Create a DMA map for the firmware image */
error = bus_dmamap_create(sc->sc_dmat, size, nsegs, size, 0,
BUS_DMA_NOWAIT, &map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create firmware DMA map\n");
goto fail1;
}
error = bus_dmamap_load(sc->sc_dmat, map, fw, size, NULL,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not load fw dma map(%d)\n",
error);
goto fail2;
}
/* Make sure the adapter will get up-to-date values */
bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE);
/* Tell the adapter where the command blocks are stored */
MEM_WRITE_4(sc, 0x3000a0, 0x27000);
/*
* Store command blocks into adapter's internal memory using register
* indirections. The adapter will read the firmware image through DMA
* using information stored in command blocks.
*/
p = fw;
end = p + size;
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
sn = 0;
sl = cl = 0;
cs = cd = 0;
while (p < end) {
if (sl == 0) {
cs = map->dm_segs[sn].ds_addr;
sl = map->dm_segs[sn].ds_len;
sn++;
}
if (cl == 0) {
cd = GETLE32(p); p += 4; cs += 4; sl -= 4;
cl = GETLE32(p); p += 4; cs += 4; sl -= 4;
}
while (sl > 0 && cl > 0) {
int len = min(cl, sl);
sl -= len;
cl -= len;
p += len;
while (len > 0) {
int mlen = min(len, IWI_CB_MAXDATALEN);
ctl = IWI_CB_DEFAULT_CTL | mlen;
sum = ctl ^ cs ^ cd;
/* Write a command block */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, cs);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, cd);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
cs += mlen;
cd += mlen;
len -= mlen;
}
}
}
/* Write a fictive final command block (sentinel) */
sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) &
~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER));
/* Tell the adapter to start processing command blocks */
MEM_WRITE_4(sc, 0x3000a4, 0x540100);
/* Wait until the adapter has processed all command blocks */
for (ntries = 0; ntries < 400; ntries++) {
if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
break;
DELAY(100);
}
if (ntries == 400) {
aprint_error_dev(sc->sc_dev, "timeout processing cb\n");
error = ETIMEDOUT;
goto fail3;
}
/* We're done with command blocks processing */
MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
/* Allow interrupts so we know when the firmware is inited */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
/* Tell the adapter to initialize the firmware */
CSR_WRITE_4(sc, IWI_CSR_RST, 0);
CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) |
IWI_CTL_ALLOW_STANDBY);
/* Wait at most one second for firmware initialization to complete */
if ((error = tsleep(sc, 0, "iwiinit", hz)) != 0) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for firmware initialization to complete\n");
goto fail3;
}
fail3:
bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
fail2:
bus_dmamap_destroy(sc->sc_dmat, map);
fail1:
return error;
}
/*
* Store firmware into kernel memory so we can download it when we need to,
* e.g when the adapter wakes up from suspend mode.
*/
static int
iwi_cache_firmware(struct iwi_softc *sc)
{
struct iwi_firmware *kfw = &sc->fw;
firmware_handle_t fwh;
const struct iwi_firmware_hdr *hdr;
off_t size;
char *fw;
int error;
iwi_free_firmware(sc);
error = firmware_open("if_iwi", sc->sc_fwname, &fwh);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "firmware_open failed\n");
goto fail1;
}
size = firmware_get_size(fwh);
if (size < sizeof(struct iwi_firmware_hdr)) {
aprint_error_dev(sc->sc_dev, "image '%s' has no header\n",
sc->sc_fwname);
error = EIO;
goto fail1;
}
sc->sc_blob = firmware_malloc(size);
if (sc->sc_blob == NULL) {
error = ENOMEM;
firmware_close(fwh);
goto fail1;
}
error = firmware_read(fwh, 0, sc->sc_blob, size);
firmware_close(fwh);
if (error != 0)
goto fail2;
hdr = (const struct iwi_firmware_hdr *)sc->sc_blob;
if (size < sizeof(struct iwi_firmware_hdr) + hdr->bsize + hdr->usize + hdr->fsize) {
aprint_error_dev(sc->sc_dev, "image '%s' too small\n",
sc->sc_fwname);
error = EIO;
goto fail2;
}
hdr = (const struct iwi_firmware_hdr *)sc->sc_blob;
DPRINTF(("firmware version = %d\n", le32toh(hdr->version)));
if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
(IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
aprint_error_dev(sc->sc_dev,
"version for '%s' %d.%d != %d.%d\n", sc->sc_fwname,
IWI_FW_GET_MAJOR(le32toh(hdr->version)),
IWI_FW_GET_MINOR(le32toh(hdr->version)),
IWI_FW_REQ_MAJOR, IWI_FW_REQ_MINOR);
error = EIO;
goto fail2;
}
kfw->boot_size = hdr->bsize;
kfw->ucode_size = hdr->usize;
kfw->main_size = hdr->fsize;
fw = sc->sc_blob + sizeof(struct iwi_firmware_hdr);
kfw->boot = fw;
fw += kfw->boot_size;
kfw->ucode = fw;
fw += kfw->ucode_size;
kfw->main = fw;
DPRINTF(("Firmware cached: boot %p, ucode %p, main %p\n",
kfw->boot, kfw->ucode, kfw->main));
DPRINTF(("Firmware cached: boot %u, ucode %u, main %u\n",
kfw->boot_size, kfw->ucode_size, kfw->main_size));
sc->flags |= IWI_FLAG_FW_CACHED;
return 0;
fail2: firmware_free(sc->sc_blob, 0);
fail1:
return error;
}
static void
iwi_free_firmware(struct iwi_softc *sc)
{
if (!(sc->flags & IWI_FLAG_FW_CACHED))
return;
firmware_free(sc->sc_blob, 0);
sc->flags &= ~IWI_FLAG_FW_CACHED;
}
static int
iwi_config(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct iwi_configuration config;
struct iwi_rateset rs;
struct iwi_txpower power;
struct ieee80211_key *wk;
struct iwi_wep_key wepkey;
uint32_t data;
int error, nchan, i;
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN, 0);
if (error != 0)
return error;
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = sc->bluetooth;
config.antenna = sc->antenna;
config.silence_threshold = 0x1e;
config.multicast_enabled = 1;
config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
config.disable_unicast_decryption = 1;
config.disable_multicast_decryption = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config, sizeof config,
0);
if (error != 0)
return error;
data = htole32(IWI_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data, 0);
if (error != 0)
return error;
data = htole32(ic->ic_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data, 0);
if (error != 0)
return error;
data = htole32(ic->ic_fragthreshold);
DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data, 0);
if (error != 0)
return error;
/*
* Set default Tx power for 802.11b/g and 802.11a channels.
*/
nchan = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (!IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]))
continue;
power.chan[nchan].chan = i;
power.chan[nchan].power = IWI_TXPOWER_MAX;
nchan++;
}
power.nchan = nchan;
power.mode = IWI_MODE_11G;
DPRINTF(("Setting .11g channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0);
if (error != 0)
return error;
power.mode = IWI_MODE_11B;
DPRINTF(("Setting .11b channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0);
if (error != 0)
return error;
nchan = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (!IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]))
continue;
power.chan[nchan].chan = i;
power.chan[nchan].power = IWI_TXPOWER_MAX;
nchan++;
}
power.nchan = nchan;
if (nchan > 0) { /* 2915ABG only */
power.mode = IWI_MODE_11A;
DPRINTF(("Setting .11a channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power,
0);
if (error != 0)
return error;
}
rs.mode = IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
rs.nrates);
DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
if (error != 0)
return error;
rs.mode = IWI_MODE_11A;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
rs.nrates);
DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
if (error != 0)
return error;
/* if we have a desired ESSID, set it now */
if (ic->ic_des_esslen != 0) {
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
printf("Setting desired ESSID to ");
ieee80211_print_essid(ic->ic_des_essid,
ic->ic_des_esslen);
printf("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
ic->ic_des_esslen, 0);
if (error != 0)
return error;
}
data = htole32(arc4random());
DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data, 0);
if (error != 0)
return error;
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
/* XXX iwi_setwepkeys? */
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
wk = &ic->ic_crypto.cs_nw_keys[i];
wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
wepkey.idx = i;
wepkey.len = wk->wk_keylen;
memset(wepkey.key, 0, sizeof wepkey.key);
memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
DPRINTF(("Setting wep key index %u len %u\n",
wepkey.idx, wepkey.len));
error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
sizeof wepkey, 0);
if (error != 0)
return error;
}
}
/* Enable adapter */
DPRINTF(("Enabling adapter\n"));
return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0, 0);
}
static int
iwi_set_chan(struct iwi_softc *sc, struct ieee80211_channel *chan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_scan_v2 scan;
(void)memset(&scan, 0, sizeof scan);
scan.dwelltime[IWI_SCAN_TYPE_PASSIVE] = htole16(2000);
scan.channels[0] = 1 |
(IEEE80211_IS_CHAN_5GHZ(chan) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ);
scan.channels[1] = ieee80211_chan2ieee(ic, chan);
iwi_scan_type_set(scan, 1, IWI_SCAN_TYPE_PASSIVE);
DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan)));
return iwi_cmd(sc, IWI_CMD_SCAN_V2, &scan, sizeof scan, 1);
}
static int
iwi_scan(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_scan_v2 scan;
uint32_t type;
uint8_t *p;
int i, count, idx;
(void)memset(&scan, 0, sizeof scan);
scan.dwelltime[IWI_SCAN_TYPE_ACTIVE_BROADCAST] =
htole16(sc->dwelltime);
scan.dwelltime[IWI_SCAN_TYPE_ACTIVE_BDIRECT] =
htole16(sc->dwelltime);
/* tell the firmware about the desired essid */
if (ic->ic_des_esslen) {
int error;
DPRINTF(("%s: Setting adapter desired ESSID to %s\n",
__func__, ic->ic_des_essid));
error = iwi_cmd(sc, IWI_CMD_SET_ESSID,
ic->ic_des_essid, ic->ic_des_esslen, 1);
if (error)
return error;
type = IWI_SCAN_TYPE_ACTIVE_BDIRECT;
} else {
type = IWI_SCAN_TYPE_ACTIVE_BROADCAST;
}
p = &scan.channels[0];
count = idx = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]) &&
isset(ic->ic_chan_active, i)) {
*++p = i;
count++;
idx++;
iwi_scan_type_set(scan, idx, type);
}
}
if (count) {
*(p - count) = IWI_CHAN_5GHZ | count;
p++;
}
count = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]) &&
isset(ic->ic_chan_active, i)) {
*++p = i;
count++;
idx++;
iwi_scan_type_set(scan, idx, type);
}
}
*(p - count) = IWI_CHAN_2GHZ | count;
DPRINTF(("Start scanning\n"));
return iwi_cmd(sc, IWI_CMD_SCAN_V2, &scan, sizeof scan, 1);
}
static int
iwi_auth_and_assoc(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_wme_info wme;
struct iwi_configuration config;
struct iwi_associate assoc;
struct iwi_rateset rs;
uint16_t capinfo;
uint32_t data;
int error;
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = sc->bluetooth;
config.antenna = sc->antenna;
config.multicast_enabled = 1;
config.silence_threshold = 0x1e;
if (ic->ic_curmode == IEEE80211_MODE_11G)
config.use_protection = 1;
config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
config.disable_unicast_decryption = 1;
config.disable_multicast_decryption = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config,
sizeof config, 1);
if (error != 0)
return error;
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
aprint_debug_dev(sc->sc_dev, "Setting ESSID to ");
ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
aprint_debug("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen, 1);
if (error != 0)
return error;
/* the rate set has already been "negotiated" */
rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_NEGOTIATED;
rs.nrates = ni->ni_rates.rs_nrates;
if (rs.nrates > IWI_RATESET_SIZE) {
DPRINTF(("Truncating negotiated rate set from %u\n",
rs.nrates));
rs.nrates = IWI_RATESET_SIZE;
}
memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 1);
if (error != 0)
return error;
if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) {
wme.wme_id = IEEE80211_ELEMID_VENDOR;
wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
wme.wme_oui[0] = 0x00;
wme.wme_oui[1] = 0x50;
wme.wme_oui[2] = 0xf2;
wme.wme_type = WME_OUI_TYPE;
wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
wme.wme_version = WME_VERSION;
wme.wme_info = 0;
DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
error = iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme, 1);
if (error != 0)
return error;
}
if (ic->ic_opt_ie != NULL) {
DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len));
error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie,
ic->ic_opt_ie_len, 1);
if (error != 0)
return error;
}
data = htole32(ni->ni_rssi);
DPRINTF(("Setting sensitivity to %d\n", (int8_t)ni->ni_rssi));
error = iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &data, sizeof data, 1);
if (error != 0)
return error;
memset(&assoc, 0, sizeof assoc);
if (IEEE80211_IS_CHAN_A(ni->ni_chan))
assoc.mode = IWI_MODE_11A;
else if (IEEE80211_IS_CHAN_G(ni->ni_chan))
assoc.mode = IWI_MODE_11G;
else if (IEEE80211_IS_CHAN_B(ni->ni_chan))
assoc.mode = IWI_MODE_11B;
assoc.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
if (ni->ni_authmode == IEEE80211_AUTH_SHARED)
assoc.auth = (ic->ic_crypto.cs_def_txkey << 4) | IWI_AUTH_SHARED;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
assoc.plen = IWI_ASSOC_SHPREAMBLE;
if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
assoc.policy |= htole16(IWI_POLICY_WME);
if (ic->ic_flags & IEEE80211_F_WPA)
assoc.policy |= htole16(IWI_POLICY_WPA);
if (ic->ic_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
assoc.type = IWI_HC_IBSS_START;
else
assoc.type = IWI_HC_ASSOC;
memcpy(assoc.tstamp, ni->ni_tstamp.data, 8);
if (ic->ic_opmode == IEEE80211_M_IBSS)
capinfo = IEEE80211_CAPINFO_IBSS;
else
capinfo = IEEE80211_CAPINFO_ESS;
if (ic->ic_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_SHSLOT)
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
assoc.capinfo = htole16(capinfo);
assoc.lintval = htole16(ic->ic_lintval);
assoc.intval = htole16(ni->ni_intval);
IEEE80211_ADDR_COPY(assoc.bssid, ni->ni_bssid);
if (ic->ic_opmode == IEEE80211_M_IBSS)
IEEE80211_ADDR_COPY(assoc.dst, ifp->if_broadcastaddr);
else
IEEE80211_ADDR_COPY(assoc.dst, ni->ni_bssid);
DPRINTF(("%s bssid %s dst %s channel %u policy 0x%x "
"auth %u capinfo 0x%x lintval %u bintval %u\n",
assoc.type == IWI_HC_IBSS_START ? "Start" : "Join",
ether_sprintf(assoc.bssid), ether_sprintf(assoc.dst),
assoc.chan, le16toh(assoc.policy), assoc.auth,
le16toh(assoc.capinfo), le16toh(assoc.lintval),
le16toh(assoc.intval)));
return iwi_cmd(sc, IWI_CMD_ASSOCIATE, &assoc, sizeof assoc, 1);
}
static int
iwi_init(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_firmware *fw = &sc->fw;
int i, error;
/* exit immediately if firmware has not been ioctl'd */
if (!(sc->flags & IWI_FLAG_FW_CACHED)) {
if ((error = iwi_cache_firmware(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not cache the firmware\n");
goto fail;
}
}
iwi_stop(ifp, 0);
if ((error = iwi_reset(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
goto fail;
}
if ((error = iwi_load_firmware(sc, fw->boot, fw->boot_size)) != 0) {
aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
goto fail;
}
if ((error = iwi_load_ucode(sc, fw->ucode, fw->ucode_size)) != 0) {
aprint_error_dev(sc->sc_dev, "could not load microcode\n");
goto fail;
}
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.desc_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].desc_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].desc_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].desc_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].desc_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
for (i = 0; i < sc->rxq.count; i++)
CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4,
sc->rxq.data[i].map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count -1);
if ((error = iwi_load_firmware(sc, fw->main, fw->main_size)) != 0) {
aprint_error_dev(sc->sc_dev, "could not load main firmware\n");
goto fail;
}
sc->flags |= IWI_FLAG_FW_INITED;
if ((error = iwi_config(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "device configuration failed\n");
goto fail;
}
ic->ic_state = IEEE80211_S_INIT;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
} else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return 0;
fail: ifp->if_flags &= ~IFF_UP;
iwi_stop(ifp, 0);
return error;
}
/*
* Return whether or not the radio is enabled in hardware
* (i.e. the rfkill switch is "off").
*/
static int
iwi_getrfkill(struct iwi_softc *sc)
{
return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
}
static int
iwi_sysctl_radio(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct iwi_softc *sc;
int val, error;
node = *rnode;
sc = (struct iwi_softc *)node.sysctl_data;
val = !iwi_getrfkill(sc);
node.sysctl_data = &val;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
return 0;
}
#ifdef IWI_DEBUG
SYSCTL_SETUP(sysctl_iwi, "sysctl iwi(4) subtree setup")
{
int rc;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
goto err;
if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "iwi",
SYSCTL_DESCR("iwi global controls"),
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
/* control debugging printfs */
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &iwi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
return;
err:
aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}
#endif /* IWI_DEBUG */
/*
* Add sysctl knobs.
*/
static void
iwi_sysctlattach(struct iwi_softc *sc)
{
int rc;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
struct sysctllog **clog = &sc->sc_sysctllog;
if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
goto err;
if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
SYSCTL_DESCR("iwi controls and statistics"),
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
iwi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
sc->dwelltime = 100;
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"dwell", SYSCTL_DESCR("channel dwell time (ms) for AP/station scanning"),
NULL, 0, &sc->dwelltime, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
sc->bluetooth = 0;
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"bluetooth", SYSCTL_DESCR("bluetooth coexistence"),
NULL, 0, &sc->bluetooth, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
sc->antenna = IWI_ANTENNA_AUTO;
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"antenna", SYSCTL_DESCR("antenna (0=auto)"),
NULL, 0, &sc->antenna, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
return;
err:
aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}
static void
iwi_stop(struct ifnet *ifp, int disable)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
IWI_LED_OFF(sc);
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SW_RESET);
/* reset rings */
iwi_reset_cmd_ring(sc, &sc->cmdq);
iwi_reset_tx_ring(sc, &sc->txq[0]);
iwi_reset_tx_ring(sc, &sc->txq[1]);
iwi_reset_tx_ring(sc, &sc->txq[2]);
iwi_reset_tx_ring(sc, &sc->txq[3]);
iwi_reset_rx_ring(sc, &sc->rxq);
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
static void
iwi_led_set(struct iwi_softc *sc, uint32_t state, int toggle)
{
uint32_t val;
val = MEM_READ_4(sc, IWI_MEM_EVENT_CTL);
switch (sc->nictype) {
case 1:
/* special NIC type: reversed leds */
if (state == IWI_LED_ACTIVITY) {
state &= ~IWI_LED_ACTIVITY;
state |= IWI_LED_ASSOCIATED;
} else if (state == IWI_LED_ASSOCIATED) {
state &= ~IWI_LED_ASSOCIATED;
state |= IWI_LED_ACTIVITY;
}
/* and ignore toggle effect */
val |= state;
break;
case 0:
case 2:
case 3:
case 4:
val = (toggle && (val & state)) ? val & ~state : val | state;
break;
default:
aprint_normal_dev(sc->sc_dev, "unknown NIC type %d\n",
sc->nictype);
return;
break;
}
MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, val);
return;
}