NetBSD/lib/libkvm/kvm_sparc.c

417 lines
10 KiB
C

/* $NetBSD: kvm_sparc.c,v 1.9 1996/04/01 19:23:03 cgd Exp $ */
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software developed by the Computer Systems
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
* BG 91-66 and contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if defined(LIBC_SCCS) && !defined(lint)
#if 0
static char sccsid[] = "@(#)kvm_sparc.c 8.1 (Berkeley) 6/4/93";
#else
static char *rcsid = "$NetBSD: kvm_sparc.c,v 1.9 1996/04/01 19:23:03 cgd Exp $";
#endif
#endif /* LIBC_SCCS and not lint */
/*
* Sparc machine dependent routines for kvm. Hopefully, the forthcoming
* vm code will one day obsolete this module.
*/
#include <sys/param.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/device.h>
#include <unistd.h>
#include <nlist.h>
#include <kvm.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <machine/autoconf.h>
#include <limits.h>
#include <db.h>
#include "kvm_private.h"
#define MA_SIZE 32 /* XXX */
struct vmstate {
struct {
int x_seginval; /* [sun4/sun4c] only */
int x_npmemarr;
struct memarr x_pmemarr[MA_SIZE];
struct segmap x_segmap_store[NKREG*NSEGRG];
} x;
#define seginval x.x_seginval
#define npmemarr x.x_npmemarr
#define pmemarr x.x_pmemarr
#define segmap_store x.x_segmap_store
int *pte; /* [sun4/sun4c] only */
};
#define NPMEG(vm) ((vm)->seginval+1)
static int cputyp = -1;
static int pgshift, nptesg;
#define VA_VPG(va) ((cputyp == CPU_SUN4C || cputyp == CPU_SUN4M) \
? VA_SUN4C_VPG(va) \
: VA_SUN4_VPG(va))
static int _kvm_mustinit __P((kvm_t *));
#if 0
static int
getcputyp()
{
int mib[2];
size_t size;
mib[0] = CTL_HW;
mib[1] = HW_CLASS;
size = sizeof cputyp;
if (sysctl(mib, 2, &cputyp, &size, NULL, 0) == -1)
return (-1);
}
#endif
static int
_kvm_mustinit(kd)
kvm_t *kd;
{
static struct nlist nlist[2] = {
# define X_CPUTYP 0
{ "_cputyp" },
{ NULL },
};
off_t foff;
if (cputyp != -1)
return 0;
for (pgshift = 12; (1 << pgshift) != kd->nbpg; pgshift++)
;
nptesg = NBPSG / kd->nbpg;
if (kvm_nlist(kd, nlist) != 0) {
_kvm_err(kd, kd->program, "cannot find `cputyp' symbol");
return (-1);
}
/* Assume kernel mappings are all within first memory bank. */
foff = nlist[X_CPUTYP].n_value - KERNBASE;
if (lseek(kd->pmfd, foff, 0) == -1 ||
read(kd->pmfd, &cputyp, sizeof(cputyp)) < 0) {
_kvm_err(kd, kd->program, "cannot read `cputyp");
return (-1);
}
if (cputyp != CPU_SUN4 &&
cputyp != CPU_SUN4C &&
cputyp != CPU_SUN4M)
return (-1);
return (0);
}
void
_kvm_freevtop(kd)
kvm_t *kd;
{
if (kd->vmst != 0) {
if (kd->vmst->pte != 0)
free(kd->vmst->pte);
free(kd->vmst);
kd->vmst = 0;
}
}
/*
* Translate a kernel virtual address to a physical address using the
* mapping information in kd->vm. Returns the result in pa, and returns
* the number of bytes that are contiguously available from this
* physical address. This routine is used only for crashdumps.
*/
int
_kvm_kvatop(kd, va, pa)
kvm_t *kd;
u_long va;
u_long *pa;
{
if (_kvm_mustinit(kd) != 0)
return (-1);
return ((cputyp == CPU_SUN4M)
? _kvm_kvatop4m(kd, va, pa)
: _kvm_kvatop44c(kd, va, pa));
}
/*
* Prepare for translation of kernel virtual addresses into offsets
* into crash dump files. We use the MMU specific goop written at the
* and of crash dump by pmap_dumpmmu().
* (note: sun4/sun4c 2-level MMU specific)
*/
int
_kvm_initvtop(kd)
kvm_t *kd;
{
if (_kvm_mustinit(kd) != 0)
return (-1);
return ((cputyp == CPU_SUN4M)
? _kvm_initvtop4m(kd)
: _kvm_initvtop44c(kd));
}
#define VA_OFF(va) (va & (kd->nbpg - 1))
/*
* We use the MMU specific goop written at the end of crash dump
* by pmap_dumpmmu().
* (note: sun4 3-level MMU not yet supported)
*/
int
_kvm_initvtop44c(kd)
kvm_t *kd;
{
register struct vmstate *vm;
register int i;
off_t foff;
struct stat st;
if ((vm = kd->vmst) == 0) {
kd->vmst = vm = (struct vmstate *)_kvm_malloc(kd, sizeof(*vm));
if (vm == 0)
return (-1);
}
if (fstat(kd->pmfd, &st) < 0)
return (-1);
/*
* Read segment table.
*/
foff = st.st_size - roundup(sizeof(vm->x), kd->nbpg);
errno = 0;
if (lseek(kd->pmfd, (off_t)foff, 0) == -1 && errno != 0 ||
read(kd->pmfd, (char *)&vm->x, sizeof(vm->x)) < 0) {
_kvm_err(kd, kd->program, "cannot read segment map");
return (-1);
}
vm->pte = (int *)_kvm_malloc(kd, NPMEG(vm) * nptesg * sizeof(int));
if (vm->pte == 0) {
free(kd->vmst);
kd->vmst = 0;
return (-1);
}
/*
* Read PMEGs.
*/
foff = st.st_size - roundup(sizeof(vm->x), kd->nbpg) -
roundup(NPMEG(vm) * nptesg * sizeof(int), kd->nbpg);
errno = 0;
if (lseek(kd->pmfd, foff, 0) == -1 && errno != 0 ||
read(kd->pmfd, (char *)vm->pte, NPMEG(vm) * nptesg * sizeof(int)) < 0) {
_kvm_err(kd, kd->program, "cannot read PMEG table");
return (-1);
}
return (0);
}
int
_kvm_kvatop44c(kd, va, pa)
kvm_t *kd;
u_long va;
u_long *pa;
{
register int vr, vs, pte, off, nmem;
register struct vmstate *vm = kd->vmst;
struct regmap *rp;
struct segmap *sp;
struct memarr *mp;
if (va < KERNBASE)
goto err;
vr = VA_VREG(va);
vs = VA_VSEG(va);
sp = &vm->segmap_store[(vr-NUREG)*NSEGRG + vs];
if (sp->sg_npte == 0)
goto err;
if (sp->sg_pmeg == vm->seginval)
goto err;
pte = vm->pte[sp->sg_pmeg * nptesg + VA_VPG(va)];
if ((pte & PG_V) != 0) {
register long p, dumpoff = 0;
off = VA_OFF(va);
p = (pte & PG_PFNUM) << pgshift;
/* Translate (sparse) pfnum to (packed) dump offset */
for (mp = vm->pmemarr, nmem = vm->npmemarr; --nmem >= 0; mp++) {
if (mp->addr <= p && p < mp->addr + mp->len)
break;
dumpoff += mp->len;
}
if (nmem < 0)
goto err;
*pa = (dumpoff + p - mp->addr) | off;
return (kd->nbpg - off);
}
err:
_kvm_err(kd, 0, "invalid address (%x)", va);
return (0);
}
/*
* Prepare for translation of kernel virtual addresses into offsets
* into crash dump files. Since the sun4m pagetables are all in memory,
* we use nlist to bootstrap the translation tables. This assumes that
* the kernel mappings all reside in the first physical memory bank.
*/
int
_kvm_initvtop4m(kd)
kvm_t *kd;
{
register int i;
register off_t foff;
register struct vmstate *vm;
struct stat st;
static struct nlist nlist[4] = {
# define X_KSEGSTORE 0
{ "_kernel_segmap_store" },
# define X_PMEMARR 1
{ "_pmemarr" },
# define X_NPMEMARR 2
{ "_npmemarr" },
{ NULL },
};
if ((vm = kd->vmst) == 0) {
kd->vmst = vm = (struct vmstate *)_kvm_malloc(kd, sizeof(*vm));
if (vm == 0)
return (-1);
}
if (kvm_nlist(kd, nlist) != 0) {
_kvm_err(kd, kd->program, "cannot read symbols");
return (-1);
}
/* Assume kernel mappings are all within first memory bank. */
foff = nlist[X_KSEGSTORE].n_value - KERNBASE;
if (lseek(kd->pmfd, foff, 0) == -1 ||
read(kd->pmfd, vm->segmap_store, sizeof(vm->segmap_store)) < 0) {
_kvm_err(kd, kd->program, "cannot read segment map");
return (-1);
}
foff = nlist[X_PMEMARR].n_value - KERNBASE;
if (lseek(kd->pmfd, foff, 0) == -1 ||
read(kd->pmfd, vm->pmemarr, sizeof(vm->pmemarr)) < 0) {
_kvm_err(kd, kd->program, "cannot read pmemarr");
return (-1);
}
foff = nlist[X_NPMEMARR].n_value - KERNBASE;
if (lseek(kd->pmfd, foff, 0) == -1 ||
read(kd->pmfd, &vm->npmemarr, sizeof(vm->npmemarr)) < 0) {
_kvm_err(kd, kd->program, "cannot read npmemarr");
return (-1);
}
return (0);
}
int
_kvm_kvatop4m(kd, va, pa)
kvm_t *kd;
u_long va;
u_long *pa;
{
register struct vmstate *vm = kd->vmst;
register int vr, vs, nmem, off;
int pte;
off_t foff;
struct regmap *rp;
struct segmap *sp;
struct memarr *mp;
if (va < KERNBASE)
goto err;
vr = VA_VREG(va);
vs = VA_VSEG(va);
sp = &vm->segmap_store[(vr-NUREG)*NSEGRG + vs];
if (sp->sg_npte == 0)
goto err;
/* Assume kernel mappings are all within first memory bank. */
foff = (long)&sp->sg_pte[VA_VPG(va)] - KERNBASE;
if (lseek(kd->pmfd, foff, 0) == -1 ||
read(kd->pmfd, (void *)&pte, sizeof(pte)) < 0) {
_kvm_err(kd, kd->program, "cannot read pte");
goto err;
}
if ((pte & SRMMU_TETYPE) == SRMMU_TEPTE) {
register long p, dumpoff = 0;
off = VA_OFF(va);
p = (pte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT;
/* Translate (sparse) pfnum to (packed) dump offset */
for (mp = vm->pmemarr, nmem = vm->npmemarr; --nmem >= 0; mp++) {
if (mp->addr <= p && p < mp->addr + mp->len)
break;
dumpoff += mp->len;
}
if (nmem < 0)
goto err;
*pa = (dumpoff + p - mp->addr) | off;
return (kd->nbpg - off);
}
err:
_kvm_err(kd, 0, "invalid address (%x)", va);
return (0);
}