NetBSD/usr.bin/make/lst.c

639 lines
15 KiB
C

/* $NetBSD: lst.c,v 1.56 2020/08/29 10:41:12 rillig Exp $ */
/*
* Copyright (c) 1988, 1989, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdint.h>
#include "make.h"
#ifndef MAKE_NATIVE
static char rcsid[] = "$NetBSD: lst.c,v 1.56 2020/08/29 10:41:12 rillig Exp $";
#else
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: lst.c,v 1.56 2020/08/29 10:41:12 rillig Exp $");
#endif /* not lint */
#endif
struct ListNode {
struct ListNode *prev; /* previous element in list */
struct ListNode *next; /* next in list */
uint8_t useCount; /* Count of functions using the node.
* node may not be deleted until count
* goes to 0 */
Boolean deleted; /* List node should be removed when done */
union {
void *datum; /* datum associated with this element */
const GNode *gnode; /* alias, just for debugging */
const char *str; /* alias, just for debugging */
};
};
typedef enum {
Head, Middle, Tail, Unknown
} Where;
struct List {
LstNode first; /* first node in list */
LstNode last; /* last node in list */
/* fields for sequential access */
Boolean isOpen; /* true if list has been Lst_Open'ed */
Where lastAccess; /* Where in the list the last access was */
LstNode curr; /* current node, if open. NULL if
* *just* opened */
LstNode prev; /* Previous node, if open. Used by Lst_Remove */
};
/* Allocate and initialize a list node.
*
* The fields 'prev' and 'next' must be initialized by the caller.
*/
static LstNode
LstNodeNew(void *datum)
{
LstNode node = bmake_malloc(sizeof *node);
node->useCount = 0;
node->deleted = FALSE;
node->datum = datum;
return node;
}
static Boolean
LstIsEmpty(Lst list)
{
return list->first == NULL;
}
/* Create and initialize a new, empty list. */
Lst
Lst_Init(void)
{
Lst list = bmake_malloc(sizeof *list);
list->first = NULL;
list->last = NULL;
list->isOpen = FALSE;
list->lastAccess = Unknown;
return list;
}
/* Duplicate an entire list, usually by copying the datum pointers.
* If copyProc is given, that function is used to create the new datum from the
* old datum, usually by creating a copy of it. */
Lst
Lst_Copy(Lst list, LstCopyProc copyProc)
{
Lst newList;
LstNode node;
assert(list != NULL);
newList = Lst_Init();
for (node = list->first; node != NULL; node = node->next) {
void *datum = copyProc != NULL ? copyProc(node->datum) : node->datum;
Lst_Append(newList, datum);
}
return newList;
}
/* Free a list and all its nodes. The list data itself are not freed though. */
void
Lst_Free(Lst list)
{
LstNode node;
LstNode next;
assert(list != NULL);
for (node = list->first; node != NULL; node = next) {
next = node->next;
free(node);
}
free(list);
}
/* Destroy a list and free all its resources. If the freeProc is given, it is
* called with the datum from each node in turn before the node is freed. */
void
Lst_Destroy(Lst list, LstFreeProc freeProc)
{
LstNode node;
LstNode next;
assert(list != NULL);
assert(freeProc != NULL);
for (node = list->first; node != NULL; node = next) {
next = node->next;
freeProc(node->datum);
free(node);
}
free(list);
}
/*
* Functions to modify a list
*/
/* Insert a new node with the given piece of data before the given node in the
* given list. */
void
Lst_InsertBefore(Lst list, LstNode node, void *datum)
{
LstNode newNode;
assert(list != NULL);
assert(!LstIsEmpty(list));
assert(node != NULL);
assert(datum != NULL);
newNode = LstNodeNew(datum);
newNode->prev = node->prev;
newNode->next = node;
if (node->prev != NULL) {
node->prev->next = newNode;
}
node->prev = newNode;
if (node == list->first) {
list->first = newNode;
}
}
/* Add a piece of data at the start of the given list. */
void
Lst_Prepend(Lst list, void *datum)
{
LstNode node;
assert(list != NULL);
assert(datum != NULL);
node = LstNodeNew(datum);
node->prev = NULL;
node->next = list->first;
if (list->first == NULL) {
list->first = node;
list->last = node;
} else {
list->first->prev = node;
list->first = node;
}
}
/* Add a piece of data at the end of the given list. */
void
Lst_Append(Lst list, void *datum)
{
LstNode node;
assert(list != NULL);
assert(datum != NULL);
node = LstNodeNew(datum);
node->prev = list->last;
node->next = NULL;
if (list->last == NULL) {
list->first = node;
list->last = node;
} else {
list->last->next = node;
list->last = node;
}
}
/* Remove the given node from the given list.
* The datum stored in the node must be freed by the caller, if necessary. */
void
Lst_Remove(Lst list, LstNode node)
{
assert(list != NULL);
assert(node != NULL);
/*
* unlink it from the list
*/
if (node->next != NULL) {
node->next->prev = node->prev;
}
if (node->prev != NULL) {
node->prev->next = node->next;
}
/*
* if either the first or last of the list point to this node,
* adjust them accordingly
*/
if (list->first == node) {
list->first = node->next;
}
if (list->last == node) {
list->last = node->prev;
}
/*
* Sequential access stuff. If the node we're removing is the current
* node in the list, reset the current node to the previous one. If the
* previous one was non-existent (prev == NULL), we set the
* end to be Unknown, since it is.
*/
if (list->isOpen && list->curr == node) {
list->curr = list->prev;
if (list->curr == NULL) {
list->lastAccess = Unknown;
}
}
/*
* note that the datum is unmolested. The caller must free it as
* necessary and as expected.
*/
if (node->useCount == 0) {
free(node);
} else {
node->deleted = TRUE;
}
}
/* Replace the datum in the given node with the new datum. */
void
LstNode_Set(LstNode node, void *datum)
{
assert(node != NULL);
assert(datum != NULL);
node->datum = datum;
}
/* Replace the datum in the given node to NULL. */
void
LstNode_SetNull(LstNode node)
{
assert(node != NULL);
node->datum = NULL;
}
/*
* Node-specific functions
*/
/* Return the first node from the given list, or NULL if the list is empty. */
LstNode
Lst_First(Lst list)
{
assert(list != NULL);
return list->first;
}
/* Return the last node from the given list, or NULL if the list is empty. */
LstNode
Lst_Last(Lst list)
{
assert(list != NULL);
return list->last;
}
/* Return the successor to the given node on its list, or NULL. */
LstNode
LstNode_Next(LstNode node)
{
assert(node != NULL);
return node->next;
}
/* Return the predecessor to the given node on its list, or NULL. */
LstNode
LstNode_Prev(LstNode node)
{
assert(node != NULL);
return node->prev;
}
/* Return the datum stored in the given node. */
void *
Lst_Datum(LstNode node)
{
assert(node != NULL);
return node->datum;
}
/*
* Functions for entire lists
*/
/* Return TRUE if the given list is empty. */
Boolean
Lst_IsEmpty(Lst list)
{
assert(list != NULL);
return LstIsEmpty(list);
}
/* Return the first node from the list for which the match function returns
* TRUE, or NULL if none of the nodes matched. */
LstNode
Lst_Find(Lst list, LstFindProc match, const void *matchArgs)
{
return Lst_FindFrom(list, Lst_First(list), match, matchArgs);
}
/* Return the first node from the list, starting at the given node, for which
* the match function returns TRUE, or NULL if none of the nodes matches.
*
* The start node may be NULL, in which case nothing is found. This allows
* for passing Lst_First or LstNode_Next as the start node. */
LstNode
Lst_FindFrom(Lst list, LstNode node, LstFindProc match, const void *matchArgs)
{
LstNode tln;
assert(list != NULL);
assert(match != NULL);
for (tln = node; tln != NULL; tln = tln->next) {
if (match(tln->datum, matchArgs))
return tln;
}
return NULL;
}
/* Return the first node that contains the given datum, or NULL. */
LstNode
Lst_Member(Lst list, void *datum)
{
LstNode node;
assert(list != NULL);
assert(datum != NULL);
for (node = list->first; node != NULL; node = node->next) {
if (node->datum == datum) {
return node;
}
}
return NULL;
}
/* Apply the given function to each element of the given list. The function
* should return 0 if traversal should continue and non-zero if it should
* abort. */
int
Lst_ForEach(Lst list, LstActionProc proc, void *procData)
{
if (LstIsEmpty(list))
return 0; /* XXX: Document what this value means. */
return Lst_ForEachFrom(list, Lst_First(list), proc, procData);
}
/* Apply the given function to each element of the given list, starting from
* the given node. The function should return 0 if traversal should continue,
* and non-zero if it should abort. */
int
Lst_ForEachFrom(Lst list, LstNode node,
LstActionProc proc, void *procData)
{
LstNode tln = node;
LstNode next;
Boolean done;
int result;
assert(list != NULL);
assert(node != NULL);
assert(proc != NULL);
do {
/*
* Take care of having the current element deleted out from under
* us.
*/
next = tln->next;
/*
* We're done with the traversal if
* - the next node to examine doesn't exist and
* - nothing's been added after the current node (check this
* after proc() has been called).
*/
done = next == NULL;
tln->useCount++;
result = (*proc)(tln->datum, procData);
tln->useCount--;
/*
* Now check whether a node has been added.
* Note: this doesn't work if this node was deleted before
* the new node was added.
*/
if (next != tln->next) {
next = tln->next;
done = 0;
}
if (tln->deleted) {
free((char *)tln);
}
tln = next;
} while (!result && !LstIsEmpty(list) && !done);
return result;
}
/* Move all nodes from list2 to the end of list1.
* List2 is destroyed and freed. */
void
Lst_MoveAll(Lst list1, Lst list2)
{
assert(list1 != NULL);
assert(list2 != NULL);
if (list2->first != NULL) {
list2->first->prev = list1->last;
if (list1->last != NULL) {
list1->last->next = list2->first;
} else {
list1->first = list2->first;
}
list1->last = list2->last;
}
free(list2);
}
/* Copy the element data from src to the start of dst. */
void
Lst_PrependAll(Lst dst, Lst src)
{
LstNode node;
for (node = src->last; node != NULL; node = node->prev)
Lst_Prepend(dst, node->datum);
}
/* Copy the element data from src to the end of dst. */
void
Lst_AppendAll(Lst dst, Lst src)
{
LstNode node;
for (node = src->first; node != NULL; node = node->next)
Lst_Append(dst, node->datum);
}
/*
* these functions are for dealing with a list as a table, of sorts.
* An idea of the "current element" is kept and used by all the functions
* between Lst_Open() and Lst_Close().
*
* The sequential functions access the list in a slightly different way.
* CurPtr points to their idea of the current node in the list and they
* access the list based on it.
*/
/* Open a list for sequential access. A list can still be searched, etc.,
* without confusing these functions. */
void
Lst_Open(Lst list)
{
assert(list != NULL);
/* XXX: This assertion fails for NetBSD's "build.sh -j1 tools", somewhere
* between "dependall ===> compat" and "dependall ===> binstall".
* Building without the "-j1" succeeds though. */
if (DEBUG(LINT) && list->isOpen)
Parse_Error(PARSE_WARNING, "Internal inconsistency: list opened twice");
list->isOpen = TRUE;
list->lastAccess = LstIsEmpty(list) ? Head : Unknown;
list->curr = NULL;
}
/* Return the next node for the given list, or NULL if the end has been
* reached. */
LstNode
Lst_Next(Lst list)
{
LstNode node;
assert(list != NULL);
assert(list->isOpen);
list->prev = list->curr;
if (list->curr == NULL) {
if (list->lastAccess == Unknown) {
/*
* If we're just starting out, lastAccess will be Unknown.
* Then we want to start this thing off in the right
* direction -- at the start with lastAccess being Middle.
*/
list->curr = node = list->first;
list->lastAccess = Middle;
} else {
node = NULL;
list->lastAccess = Tail;
}
} else {
node = list->curr->next;
list->curr = node;
if (node == list->first || node == NULL) {
/*
* If back at the front, then we've hit the end...
*/
list->lastAccess = Tail;
} else {
/*
* Reset to Middle if gone past first.
*/
list->lastAccess = Middle;
}
}
return node;
}
/* Close a list which was opened for sequential access. */
void
Lst_Close(Lst list)
{
assert(list != NULL);
assert(list->isOpen);
list->isOpen = FALSE;
list->lastAccess = Unknown;
}
/*
* for using the list as a queue
*/
/* Add the datum to the tail of the given list. */
void
Lst_Enqueue(Lst list, void *datum)
{
Lst_Append(list, datum);
}
/* Remove and return the datum at the head of the given list. */
void *
Lst_Dequeue(Lst list)
{
void *datum;
assert(list != NULL);
assert(!LstIsEmpty(list));
datum = list->first->datum;
Lst_Remove(list, list->first);
assert(datum != NULL);
return datum;
}