NetBSD/sys/compat/svr4/svr4_misc.c

1622 lines
36 KiB
C

/* $NetBSD: svr4_misc.c,v 1.117 2006/06/09 23:24:24 christos Exp $ */
/*-
* Copyright (c) 1994 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Christos Zoulas.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* SVR4 compatibility module.
*
* SVR4 system calls that are implemented differently in BSD are
* handled here.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: svr4_misc.c,v 1.117 2006/06/09 23:24:24 christos Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/dirent.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/filedesc.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/mbuf.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/socket.h>
#include <sys/vnode.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <sys/utsname.h>
#include <sys/unistd.h>
#include <sys/times.h>
#include <sys/sem.h>
#include <sys/msg.h>
#include <sys/ptrace.h>
#include <sys/signalvar.h>
#include <netinet/in.h>
#include <sys/sa.h>
#include <sys/syscallargs.h>
#include <miscfs/specfs/specdev.h>
#include <compat/svr4/svr4_types.h>
#include <compat/svr4/svr4_signal.h>
#include <compat/svr4/svr4_lwp.h>
#include <compat/svr4/svr4_ucontext.h>
#include <compat/svr4/svr4_syscallargs.h>
#include <compat/svr4/svr4_util.h>
#include <compat/svr4/svr4_time.h>
#include <compat/svr4/svr4_dirent.h>
#include <compat/svr4/svr4_ulimit.h>
#include <compat/svr4/svr4_hrt.h>
#include <compat/svr4/svr4_wait.h>
#include <compat/svr4/svr4_statvfs.h>
#include <compat/svr4/svr4_sysconfig.h>
#include <compat/svr4/svr4_acl.h>
#include <compat/svr4/svr4_mman.h>
#include <machine/cpu.h>
#include <uvm/uvm_extern.h>
static int svr4_to_bsd_mmap_flags __P((int));
static inline clock_t timeval_to_clock_t __P((struct timeval *));
static int svr4_setinfo __P((struct proc *, int, svr4_siginfo_t *));
struct svr4_hrtcntl_args;
static int svr4_hrtcntl __P((struct lwp *, struct svr4_hrtcntl_args *,
register_t *));
static void bsd_statvfs_to_svr4_statvfs __P((const struct statvfs *,
struct svr4_statvfs *));
static void bsd_statvfs_to_svr4_statvfs64 __P((const struct statvfs *,
struct svr4_statvfs64 *));
static int svr4_copystatvfs64(struct svr4_statvfs64 *, const struct statvfs *);
static int svr4_copystatvfs(struct svr4_statvfs *, const struct statvfs *);
#define svr4_pfind(pid) p_find((pid), PFIND_UNLOCK | PFIND_ZOMBIE)
static int svr4_mknod __P((struct lwp *, register_t *, const char *,
svr4_mode_t, svr4_dev_t));
int
svr4_sys_wait(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_wait_args *uap = v;
struct sys_wait4_args w4;
struct proc *p = l->l_proc;
int error;
size_t sz = sizeof(*SCARG(&w4, status));
int st, sig;
SCARG(&w4, rusage) = NULL;
SCARG(&w4, options) = 0;
if (SCARG(uap, status) == NULL) {
caddr_t sg = stackgap_init(p, 0);
SCARG(&w4, status) = stackgap_alloc(p, &sg, sz);
}
else
SCARG(&w4, status) = SCARG(uap, status);
SCARG(&w4, pid) = WAIT_ANY;
if ((error = sys_wait4(l, &w4, retval)) != 0)
return error;
if ((error = copyin(SCARG(&w4, status), &st, sizeof(st))) != 0)
return error;
if (WIFSIGNALED(st)) {
sig = WTERMSIG(st);
if (sig >= 0 && sig < NSIG)
st = (st & ~0177) | native_to_svr4_signo[sig];
} else if (WIFSTOPPED(st)) {
sig = WSTOPSIG(st);
if (sig >= 0 && sig < NSIG)
st = (st & ~0xff00) | (native_to_svr4_signo[sig] << 8);
}
/*
* It looks like wait(2) on svr4/solaris/2.4 returns
* the status in retval[1], and the pid on retval[0].
*/
retval[1] = st;
if (SCARG(uap, status))
if ((error = copyout(&st, SCARG(uap, status), sizeof(st))) != 0)
return error;
return 0;
}
int
svr4_sys_execv(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_execv_args /* {
syscallarg(char *) path;
syscallarg(char **) argv;
} */ *uap = v;
struct sys_execve_args ap;
caddr_t sg;
sg = stackgap_init(l->l_proc, 0);
CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
SCARG(&ap, path) = SCARG(uap, path);
SCARG(&ap, argp) = SCARG(uap, argp);
SCARG(&ap, envp) = NULL;
return sys_execve(l, &ap, retval);
}
int
svr4_sys_execve(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_execve_args /* {
syscallarg(const char *) path;
syscallarg(char **) argv;
syscallarg(char **) envp;
} */ *uap = v;
struct sys_execve_args ap;
caddr_t sg;
sg = stackgap_init(l->l_proc, 0);
CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
SCARG(&ap, path) = SCARG(uap, path);
SCARG(&ap, argp) = SCARG(uap, argp);
SCARG(&ap, envp) = SCARG(uap, envp);
return sys_execve(l, &ap, retval);
}
int
svr4_sys_time(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_time_args *uap = v;
int error = 0;
struct timeval tv;
microtime(&tv);
if (SCARG(uap, t))
error = copyout(&tv.tv_sec, SCARG(uap, t),
sizeof(*(SCARG(uap, t))));
*retval = (int) tv.tv_sec;
return error;
}
/*
* Read SVR4-style directory entries. We suck them into kernel space so
* that they can be massaged before being copied out to user code. Like
* SunOS, we squish out `empty' entries.
*
* This is quite ugly, but what do you expect from compatibility code?
*/
int
svr4_sys_getdents64(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_getdents64_args *uap = v;
struct proc *p = l->l_proc;
struct dirent *bdp;
struct vnode *vp;
caddr_t inp, tbuf; /* BSD-format */
int len, reclen; /* BSD-format */
caddr_t outp; /* SVR4-format */
int resid, svr4_reclen; /* SVR4-format */
struct file *fp;
struct uio auio;
struct iovec aiov;
struct svr4_dirent64 idb;
off_t off; /* true file offset */
int buflen, error, eofflag;
off_t *cookiebuf = NULL, *cookie;
int ncookies;
/* getvnode() will use the descriptor for us */
if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
return (error);
if ((fp->f_flag & FREAD) == 0) {
error = EBADF;
goto out1;
}
vp = (struct vnode *)fp->f_data;
if (vp->v_type != VDIR) {
error = EINVAL;
goto out1;
}
buflen = min(MAXBSIZE, SCARG(uap, nbytes));
tbuf = malloc(buflen, M_TEMP, M_WAITOK);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
off = fp->f_offset;
again:
aiov.iov_base = tbuf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_resid = buflen;
auio.uio_offset = off;
UIO_SETUP_SYSSPACE(&auio);
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
&ncookies);
if (error)
goto out;
inp = tbuf;
outp = (char *) SCARG(uap, dp);
resid = SCARG(uap, nbytes);
if ((len = buflen - auio.uio_resid) == 0)
goto eof;
for (cookie = cookiebuf; len > 0; len -= reclen) {
bdp = (struct dirent *)inp;
reclen = bdp->d_reclen;
if (reclen & 3)
panic("svr4_getdents64: bad reclen");
if (bdp->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
if (cookie)
off = *cookie++;
else
off += reclen;
continue;
}
svr4_reclen = SVR4_RECLEN(&idb, bdp->d_namlen);
if (reclen > len || resid < svr4_reclen) {
/* entry too big for buffer, so just stop */
outp++;
break;
}
if (cookie)
off = *cookie++; /* each entry points to the next */
else
off += reclen;
/*
* Massage in place to make a SVR4-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*/
idb.d_ino = (svr4_ino64_t)bdp->d_fileno;
idb.d_off = (svr4_off64_t)off;
idb.d_reclen = (u_short)svr4_reclen;
strlcpy(idb.d_name, bdp->d_name, sizeof(idb.d_name));
if ((error = copyout((caddr_t)&idb, outp, svr4_reclen)))
goto out;
/* advance past this real entry */
inp += reclen;
/* advance output past SVR4-shaped entry */
outp += svr4_reclen;
resid -= svr4_reclen;
}
/* if we squished out the whole block, try again */
if (outp == (char *) SCARG(uap, dp))
goto again;
fp->f_offset = off; /* update the vnode offset */
eof:
*retval = SCARG(uap, nbytes) - resid;
out:
VOP_UNLOCK(vp, 0);
if (cookiebuf)
free(cookiebuf, M_TEMP);
free(tbuf, M_TEMP);
out1:
FILE_UNUSE(fp, l);
return error;
}
int
svr4_sys_getdents(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_getdents_args *uap = v;
struct proc *p = l->l_proc;
struct dirent *bdp;
struct vnode *vp;
caddr_t inp, tbuf; /* BSD-format */
int len, reclen; /* BSD-format */
caddr_t outp; /* SVR4-format */
int resid, svr4_reclen; /* SVR4-format */
struct file *fp;
struct uio auio;
struct iovec aiov;
struct svr4_dirent idb;
off_t off; /* true file offset */
int buflen, error, eofflag;
off_t *cookiebuf = NULL, *cookie;
int ncookies;
/* getvnode() will use the descriptor for us */
if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
return (error);
if ((fp->f_flag & FREAD) == 0) {
error = EBADF;
goto out1;
}
vp = (struct vnode *)fp->f_data;
if (vp->v_type != VDIR) {
error = EINVAL;
goto out1;
}
buflen = min(MAXBSIZE, SCARG(uap, nbytes));
tbuf = malloc(buflen, M_TEMP, M_WAITOK);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
off = fp->f_offset;
again:
aiov.iov_base = tbuf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_resid = buflen;
auio.uio_offset = off;
UIO_SETUP_SYSSPACE(&auio);
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
&ncookies);
if (error)
goto out;
inp = tbuf;
outp = SCARG(uap, buf);
resid = SCARG(uap, nbytes);
if ((len = buflen - auio.uio_resid) == 0)
goto eof;
for (cookie = cookiebuf; len > 0; len -= reclen) {
bdp = (struct dirent *)inp;
reclen = bdp->d_reclen;
if (reclen & 3)
panic("svr4_getdents: bad reclen");
if (cookie)
off = *cookie++; /* each entry points to the next */
else
off += reclen;
if ((off >> 32) != 0) {
compat_offseterr(vp, "svr4_getdents");
error = EINVAL;
goto out;
}
if (bdp->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
continue;
}
svr4_reclen = SVR4_RECLEN(&idb, bdp->d_namlen);
if (reclen > len || resid < svr4_reclen) {
/* entry too big for buffer, so just stop */
outp++;
break;
}
/*
* Massage in place to make a SVR4-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*/
idb.d_ino = (svr4_ino_t)bdp->d_fileno;
idb.d_off = (svr4_off_t)off;
idb.d_reclen = (u_short)svr4_reclen;
strlcpy(idb.d_name, bdp->d_name, sizeof(idb.d_name));
if ((error = copyout((caddr_t)&idb, outp, svr4_reclen)))
goto out;
/* advance past this real entry */
inp += reclen;
/* advance output past SVR4-shaped entry */
outp += svr4_reclen;
resid -= svr4_reclen;
}
/* if we squished out the whole block, try again */
if (outp == SCARG(uap, buf))
goto again;
fp->f_offset = off; /* update the vnode offset */
eof:
*retval = SCARG(uap, nbytes) - resid;
out:
VOP_UNLOCK(vp, 0);
if (cookiebuf)
free(cookiebuf, M_TEMP);
free(tbuf, M_TEMP);
out1:
FILE_UNUSE(fp, l);
return error;
}
static int
svr4_to_bsd_mmap_flags(f)
int f;
{
int type = f & SVR4_MAP_TYPE;
int nf;
if (type != MAP_PRIVATE && type != MAP_SHARED)
return -1;
nf = f & SVR4_MAP_COPYFLAGS;
if (f & SVR4_MAP_ANON)
nf |= MAP_ANON;
return nf;
}
int
svr4_sys_mmap(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_mmap_args *uap = v;
struct sys_mmap_args mm;
/*
* Verify the arguments.
*/
if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
return EINVAL; /* XXX still needed? */
if (SCARG(uap, len) == 0)
return EINVAL;
if ((SCARG(&mm, flags) = svr4_to_bsd_mmap_flags(SCARG(uap, flags))) == -1)
return EINVAL;
SCARG(&mm, prot) = SCARG(uap, prot);
SCARG(&mm, len) = SCARG(uap, len);
SCARG(&mm, fd) = SCARG(uap, fd);
SCARG(&mm, addr) = SCARG(uap, addr);
SCARG(&mm, pos) = SCARG(uap, pos);
return sys_mmap(l, &mm, retval);
}
int
svr4_sys_mmap64(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_mmap64_args *uap = v;
struct sys_mmap_args mm;
/*
* Verify the arguments.
*/
if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
return EINVAL; /* XXX still needed? */
if (SCARG(uap, len) == 0)
return EINVAL;
if ((SCARG(&mm, flags) = svr4_to_bsd_mmap_flags(SCARG(uap, flags))) == -1)
return EINVAL;
SCARG(&mm, prot) = SCARG(uap, prot);
SCARG(&mm, len) = SCARG(uap, len);
SCARG(&mm, fd) = SCARG(uap, fd);
SCARG(&mm, addr) = SCARG(uap, addr);
SCARG(&mm, pos) = SCARG(uap, pos);
return sys_mmap(l, &mm, retval);
}
static int
svr4_mknod(l, retval, path, mode, dev)
struct lwp *l;
register_t *retval;
const char *path;
svr4_mode_t mode;
svr4_dev_t dev;
{
caddr_t sg = stackgap_init(l->l_proc, 0);
CHECK_ALT_CREAT(l, &sg, path);
if (S_ISFIFO(mode)) {
struct sys_mkfifo_args ap;
SCARG(&ap, path) = path;
SCARG(&ap, mode) = mode;
return sys_mkfifo(l, &ap, retval);
} else {
struct sys_mknod_args ap;
SCARG(&ap, path) = path;
SCARG(&ap, mode) = mode;
SCARG(&ap, dev) = dev;
return sys_mknod(l, &ap, retval);
}
}
int
svr4_sys_mknod(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_mknod_args *uap = v;
return svr4_mknod(l, retval,
SCARG(uap, path), SCARG(uap, mode),
svr4_to_bsd_odev_t(SCARG(uap, dev)));
}
int
svr4_sys_xmknod(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_xmknod_args *uap = v;
return svr4_mknod(l, retval,
SCARG(uap, path), SCARG(uap, mode),
svr4_to_bsd_dev_t(SCARG(uap, dev)));
}
int
svr4_sys_vhangup(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
return 0;
}
int
svr4_sys_sysconfig(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_sysconfig_args *uap = v;
extern int maxfiles;
switch (SCARG(uap, name)) {
case SVR4_CONFIG_NGROUPS:
*retval = NGROUPS_MAX;
break;
case SVR4_CONFIG_CHILD_MAX:
*retval = maxproc;
break;
case SVR4_CONFIG_OPEN_FILES:
*retval = maxfiles;
break;
case SVR4_CONFIG_POSIX_VER:
*retval = 198808;
break;
case SVR4_CONFIG_PAGESIZE:
*retval = PAGE_SIZE;
break;
case SVR4_CONFIG_CLK_TCK:
*retval = 60; /* should this be `hz', ie. 100? */
break;
case SVR4_CONFIG_XOPEN_VER:
*retval = 2; /* XXX: What should that be? */
break;
case SVR4_CONFIG_PROF_TCK:
*retval = 60; /* XXX: What should that be? */
break;
case SVR4_CONFIG_NPROC_CONF:
*retval = 1; /* Only one processor for now */
break;
case SVR4_CONFIG_NPROC_ONLN:
*retval = 1; /* And it better be online */
break;
case SVR4_CONFIG_AIO_LISTIO_MAX:
case SVR4_CONFIG_AIO_MAX:
case SVR4_CONFIG_AIO_PRIO_DELTA_MAX:
*retval = 0; /* No aio support */
break;
case SVR4_CONFIG_DELAYTIMER_MAX:
*retval = 0; /* No delaytimer support */
break;
case SVR4_CONFIG_MQ_OPEN_MAX:
#ifdef SYSVMSG
*retval = msginfo.msgmni;
#else
*retval = 0;
#endif
break;
case SVR4_CONFIG_MQ_PRIO_MAX:
*retval = 0; /* XXX: Don't know */
break;
case SVR4_CONFIG_RTSIG_MAX:
*retval = 0;
break;
case SVR4_CONFIG_SEM_NSEMS_MAX:
#ifdef SYSVSEM
*retval = seminfo.semmni;
#else
*retval = 0;
#endif
break;
case SVR4_CONFIG_SEM_VALUE_MAX:
#ifdef SYSVSEM
*retval = seminfo.semvmx;
#else
*retval = 0;
#endif
break;
case SVR4_CONFIG_SIGQUEUE_MAX:
*retval = 0; /* XXX: Don't know */
break;
case SVR4_CONFIG_SIGRT_MIN:
case SVR4_CONFIG_SIGRT_MAX:
*retval = 0; /* No real time signals */
break;
case SVR4_CONFIG_TIMER_MAX:
*retval = 3; /* XXX: real, virtual, profiling */
break;
case SVR4_CONFIG_PHYS_PAGES:
*retval = uvmexp.free; /* XXX: free instead of total */
break;
case SVR4_CONFIG_AVPHYS_PAGES:
*retval = uvmexp.active; /* XXX: active instead of avg */
break;
case SVR4_CONFIG_COHERENCY:
*retval = 0; /* XXX */
break;
case SVR4_CONFIG_SPLIT_CACHE:
*retval = 0; /* XXX */
break;
case SVR4_CONFIG_ICACHESZ:
*retval = 256; /* XXX */
break;
case SVR4_CONFIG_DCACHESZ:
*retval = 256; /* XXX */
break;
case SVR4_CONFIG_ICACHELINESZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_DCACHELINESZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_ICACHEBLKSZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_DCACHEBLKSZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_DCACHETBLKSZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_ICACHE_ASSOC:
*retval = 1; /* XXX */
break;
case SVR4_CONFIG_DCACHE_ASSOC:
*retval = 1; /* XXX */
break;
case SVR4_CONFIG_MAXPID:
*retval = PID_MAX;
break;
case SVR4_CONFIG_STACK_PROT:
*retval = PROT_READ|PROT_WRITE|PROT_EXEC;
break;
default:
return EINVAL;
}
return 0;
}
/* ARGSUSED */
int
svr4_sys_break(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_break_args *uap = v;
struct proc *p = l->l_proc;
struct vmspace *vm = p->p_vmspace;
vaddr_t new, old;
int error;
old = (vaddr_t) vm->vm_daddr;
new = round_page((vaddr_t)SCARG(uap, nsize));
if (new - old > p->p_rlimit[RLIMIT_DATA].rlim_cur && new > old)
return ENOMEM;
old = round_page(old + ctob(vm->vm_dsize));
DPRINTF(("break(2): dsize = %x ctob %x\n",
vm->vm_dsize, ctob(vm->vm_dsize)));
if (new > old) {
error = uvm_map(&vm->vm_map, &old, new - old, NULL,
UVM_UNKNOWN_OFFSET, 0,
UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_COPY,
UVM_ADV_NORMAL,
UVM_FLAG_AMAPPAD|UVM_FLAG_FIXED|
UVM_FLAG_OVERLAY|UVM_FLAG_COPYONW));
if (error) {
uprintf("sbrk: grow failed, error = %d\n", error);
return error;
}
vm->vm_dsize += btoc(new - old);
} else if (new < old) {
uvm_deallocate(&vm->vm_map, new, old - new);
vm->vm_dsize -= btoc(old - new);
}
return 0;
}
static inline clock_t
timeval_to_clock_t(tv)
struct timeval *tv;
{
return tv->tv_sec * hz + tv->tv_usec / (1000000 / hz);
}
int
svr4_sys_times(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_times_args *uap = v;
struct proc *p = l->l_proc;
int error;
struct tms tms;
struct timeval t;
struct rusage *ru;
struct rusage r;
struct sys_getrusage_args ga;
caddr_t sg = stackgap_init(p, 0);
ru = stackgap_alloc(p, &sg, sizeof(struct rusage));
SCARG(&ga, who) = RUSAGE_SELF;
SCARG(&ga, rusage) = ru;
error = sys_getrusage(l, &ga, retval);
if (error)
return error;
if ((error = copyin(ru, &r, sizeof r)) != 0)
return error;
tms.tms_utime = timeval_to_clock_t(&r.ru_utime);
tms.tms_stime = timeval_to_clock_t(&r.ru_stime);
SCARG(&ga, who) = RUSAGE_CHILDREN;
error = sys_getrusage(l, &ga, retval);
if (error)
return error;
if ((error = copyin(ru, &r, sizeof r)) != 0)
return error;
tms.tms_cutime = timeval_to_clock_t(&r.ru_utime);
tms.tms_cstime = timeval_to_clock_t(&r.ru_stime);
microtime(&t);
*retval = timeval_to_clock_t(&t);
return copyout(&tms, SCARG(uap, tp), sizeof(tms));
}
int
svr4_sys_ulimit(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_ulimit_args *uap = v;
struct proc *p = l->l_proc;
switch (SCARG(uap, cmd)) {
case SVR4_GFILLIM:
*retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur / 512;
if (*retval == -1)
*retval = 0x7fffffff;
return 0;
case SVR4_SFILLIM:
{
int error;
struct sys_setrlimit_args srl;
struct rlimit krl;
caddr_t sg = stackgap_init(p, 0);
struct rlimit *url = (struct rlimit *)
stackgap_alloc(p, &sg, sizeof *url);
krl.rlim_cur = SCARG(uap, newlimit) * 512;
krl.rlim_max = p->p_rlimit[RLIMIT_FSIZE].rlim_max;
error = copyout(&krl, url, sizeof(*url));
if (error)
return error;
SCARG(&srl, which) = RLIMIT_FSIZE;
SCARG(&srl, rlp) = url;
error = sys_setrlimit(l, &srl, retval);
if (error)
return error;
*retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur;
if (*retval == -1)
*retval = 0x7fffffff;
return 0;
}
case SVR4_GMEMLIM:
{
struct vmspace *vm = p->p_vmspace;
register_t r = p->p_rlimit[RLIMIT_DATA].rlim_cur;
if (r == -1)
r = 0x7fffffff;
r += (long) vm->vm_daddr;
if (r < 0)
r = 0x7fffffff;
*retval = r;
return 0;
}
case SVR4_GDESLIM:
*retval = p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
if (*retval == -1)
*retval = 0x7fffffff;
return 0;
default:
return EINVAL;
}
}
int
svr4_sys_pgrpsys(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_pgrpsys_args *uap = v;
struct proc *p = l->l_proc;
switch (SCARG(uap, cmd)) {
case 1: /* setpgrp() */
/*
* SVR4 setpgrp() (which takes no arguments) has the
* semantics that the session ID is also created anew, so
* in almost every sense, setpgrp() is identical to
* setsid() for SVR4. (Under BSD, the difference is that
* a setpgid(0,0) will not create a new session.)
*/
sys_setsid(l, NULL, retval);
/*FALLTHROUGH*/
case 0: /* getpgrp() */
*retval = p->p_pgrp->pg_id;
return 0;
case 2: /* getsid(pid) */
if (SCARG(uap, pid) != 0 &&
(p = svr4_pfind(SCARG(uap, pid))) == NULL)
return ESRCH;
/*
* This has already been initialized to the pid of
* the session leader.
*/
*retval = (register_t) p->p_session->s_sid;
return 0;
case 3: /* setsid() */
return sys_setsid(l, NULL, retval);
case 4: /* getpgid(pid) */
if (SCARG(uap, pid) != 0 &&
(p = svr4_pfind(SCARG(uap, pid))) == NULL)
return ESRCH;
*retval = (int) p->p_pgrp->pg_id;
return 0;
case 5: /* setpgid(pid, pgid); */
{
struct sys_setpgid_args sa;
SCARG(&sa, pid) = SCARG(uap, pid);
SCARG(&sa, pgid) = SCARG(uap, pgid);
return sys_setpgid(l, &sa, retval);
}
default:
return EINVAL;
}
}
struct svr4_hrtcntl_args {
syscallarg(int) cmd;
syscallarg(int) fun;
syscallarg(int) clk;
syscallarg(svr4_hrt_interval_t *) iv;
syscallarg(svr4_hrt_time_t *) ti;
};
static int
svr4_hrtcntl(l, uap, retval)
struct lwp *l;
struct svr4_hrtcntl_args *uap;
register_t *retval;
{
switch (SCARG(uap, fun)) {
case SVR4_HRT_CNTL_RES:
DPRINTF(("htrcntl(RES)\n"));
*retval = SVR4_HRT_USEC;
return 0;
case SVR4_HRT_CNTL_TOFD:
DPRINTF(("htrcntl(TOFD)\n"));
{
struct timeval tv;
svr4_hrt_time_t t;
if (SCARG(uap, clk) != SVR4_HRT_CLK_STD) {
DPRINTF(("clk == %d\n", SCARG(uap, clk)));
return EINVAL;
}
if (SCARG(uap, ti) == NULL) {
DPRINTF(("ti NULL\n"));
return EINVAL;
}
microtime(&tv);
t.h_sec = tv.tv_sec;
t.h_rem = tv.tv_usec;
t.h_res = SVR4_HRT_USEC;
return copyout(&t, SCARG(uap, ti), sizeof(t));
}
case SVR4_HRT_CNTL_START:
DPRINTF(("htrcntl(START)\n"));
return ENOSYS;
case SVR4_HRT_CNTL_GET:
DPRINTF(("htrcntl(GET)\n"));
return ENOSYS;
default:
DPRINTF(("Bad htrcntl command %d\n", SCARG(uap, fun)));
return ENOSYS;
}
}
int
svr4_sys_hrtsys(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_hrtsys_args *uap = v;
switch (SCARG(uap, cmd)) {
case SVR4_HRT_CNTL:
return svr4_hrtcntl(l, (struct svr4_hrtcntl_args *) uap,
retval);
case SVR4_HRT_ALRM:
DPRINTF(("hrtalarm\n"));
return ENOSYS;
case SVR4_HRT_SLP:
DPRINTF(("hrtsleep\n"));
return ENOSYS;
case SVR4_HRT_CAN:
DPRINTF(("hrtcancel\n"));
return ENOSYS;
default:
DPRINTF(("Bad hrtsys command %d\n", SCARG(uap, cmd)));
return EINVAL;
}
}
static int
svr4_setinfo(p, st, s)
struct proc *p;
int st;
svr4_siginfo_t *s;
{
svr4_siginfo_t i;
int sig;
memset(&i, 0, sizeof(i));
i.si_signo = SVR4_SIGCHLD;
i.si_errno = 0; /* XXX? */
if (p) {
i.si_pid = p->p_pid;
if (p->p_stat == SZOMB) {
i.si_stime = p->p_ru->ru_stime.tv_sec;
i.si_utime = p->p_ru->ru_utime.tv_sec;
}
else {
i.si_stime = p->p_stats->p_ru.ru_stime.tv_sec;
i.si_utime = p->p_stats->p_ru.ru_utime.tv_sec;
}
}
if (WIFEXITED(st)) {
i.si_status = WEXITSTATUS(st);
i.si_code = SVR4_CLD_EXITED;
} else if (WIFSTOPPED(st)) {
sig = WSTOPSIG(st);
if (sig >= 0 && sig < NSIG)
i.si_status = native_to_svr4_signo[sig];
if (i.si_status == SVR4_SIGCONT)
i.si_code = SVR4_CLD_CONTINUED;
else
i.si_code = SVR4_CLD_STOPPED;
} else {
sig = WTERMSIG(st);
if (sig >= 0 && sig < NSIG)
i.si_status = native_to_svr4_signo[sig];
if (WCOREDUMP(st))
i.si_code = SVR4_CLD_DUMPED;
else
i.si_code = SVR4_CLD_KILLED;
}
DPRINTF(("siginfo [pid %ld signo %d code %d errno %d status %d]\n",
(long) i.si_pid,
i.si_signo, i.si_code, i.si_errno, i.si_status));
return copyout(&i, s, sizeof(i));
}
int
svr4_sys_waitsys(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_waitsys_args *uap = v;
int options;
int error;
struct proc *parent = l->l_proc;
struct proc *child;
switch (SCARG(uap, grp)) {
case SVR4_P_PID:
break;
case SVR4_P_PGID:
SCARG(uap, id) = -parent->p_pgid;
break;
case SVR4_P_ALL:
SCARG(uap, id) = WAIT_ANY;
break;
default:
return EINVAL;
}
/* Translate options */
options = 0;
if (SCARG(uap, options) & SVR4_WNOWAIT)
options |= WNOWAIT;
if (SCARG(uap, options) & SVR4_WNOHANG)
options |= WNOHANG;
if ((SCARG(uap, options) & (SVR4_WEXITED|SVR4_WTRAPPED)) == 0)
options |= WNOZOMBIE;
if (SCARG(uap, options) & (SVR4_WSTOPPED|SVR4_WCONTINUED))
options |= WUNTRACED;
DPRINTF(("waitsys(%d, %d, %p, %x)\n",
SCARG(uap, grp), SCARG(uap, id),
SCARG(uap, info), SCARG(uap, options)));
error = find_stopped_child(parent, SCARG(uap, id), options, &child);
if (error != 0)
return error;
*retval = 0;
if (child == NULL)
return svr4_setinfo(NULL, 0, SCARG(uap, info));
if (child->p_stat == SZOMB) {
DPRINTF(("found %d\n", child->p_pid));
if ((error = svr4_setinfo(child, child->p_xstat,
SCARG(uap, info))) != 0)
return error;
if ((SCARG(uap, options) & SVR4_WNOWAIT)) {
DPRINTF(("Don't wait\n"));
return 0;
}
proc_free(child);
return 0;
}
DPRINTF(("jobcontrol %d\n", child->p_pid));
return svr4_setinfo(child, W_STOPCODE(child->p_xstat),
SCARG(uap, info));
}
static int
svr4_copystatvfs64(struct svr4_statvfs64 *sufs, const struct statvfs *bufs)
{
struct svr4_statvfs64 *skfs = malloc(sizeof(*skfs), M_TEMP, M_WAITOK);
struct statvfs *bkfs = malloc(sizeof(*bkfs), M_TEMP, M_WAITOK);
int error;
if ((error = copyin(sufs, bkfs, sizeof(*bkfs))) != 0)
goto out;
bsd_statvfs_to_svr4_statvfs64(bkfs, skfs);
error = copyout(skfs, sufs, sizeof(*skfs));
out:
free(skfs, M_TEMP);
free(bkfs, M_TEMP);
return error;
}
static int
svr4_copystatvfs(struct svr4_statvfs *sufs, const struct statvfs *bufs)
{
struct svr4_statvfs *skfs = malloc(sizeof(*skfs), M_TEMP, M_WAITOK);
struct statvfs *bkfs = malloc(sizeof(*bkfs), M_TEMP, M_WAITOK);
int error;
if ((error = copyin(bufs, bkfs, sizeof(*bkfs))) != 0)
goto out;
bsd_statvfs_to_svr4_statvfs(bkfs, skfs);
error = copyout(skfs, sufs, sizeof(*skfs));
out:
free(skfs, M_TEMP);
free(bkfs, M_TEMP);
return error;
}
static void
bsd_statvfs_to_svr4_statvfs(const struct statvfs *bfs,
struct svr4_statvfs *sfs)
{
sfs->f_bsize = bfs->f_bsize;
sfs->f_frsize = bfs->f_frsize;
sfs->f_blocks = bfs->f_blocks;
sfs->f_bfree = bfs->f_bfree;
sfs->f_bavail = bfs->f_bavail;
sfs->f_files = bfs->f_files;
sfs->f_ffree = bfs->f_ffree;
sfs->f_favail = bfs->f_favail;
sfs->f_fsid = bfs->f_fsidx.__fsid_val[0];
memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype));
sfs->f_flag = 0;
if (bfs->f_flag & MNT_RDONLY)
sfs->f_flag |= SVR4_ST_RDONLY;
if (bfs->f_flag & MNT_NOSUID)
sfs->f_flag |= SVR4_ST_NOSUID;
sfs->f_namemax = MAXNAMLEN;
memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */
memset(sfs->f_filler, 0, sizeof(sfs->f_filler));
}
static void
bsd_statvfs_to_svr4_statvfs64(const struct statvfs *bfs,
struct svr4_statvfs64 *sfs)
{
sfs->f_bsize = bfs->f_bsize;
sfs->f_frsize = bfs->f_frsize;
sfs->f_blocks = bfs->f_blocks;
sfs->f_bfree = bfs->f_bfree;
sfs->f_bavail = bfs->f_bavail;
sfs->f_files = bfs->f_files;
sfs->f_ffree = bfs->f_ffree;
sfs->f_favail = bfs->f_ffree;
sfs->f_fsid = bfs->f_fsidx.__fsid_val[0];
memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype));
sfs->f_flag = 0;
if (bfs->f_flag & MNT_RDONLY)
sfs->f_flag |= SVR4_ST_RDONLY;
if (bfs->f_flag & MNT_NOSUID)
sfs->f_flag |= SVR4_ST_NOSUID;
sfs->f_namemax = MAXNAMLEN;
memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */
memset(sfs->f_filler, 0, sizeof(sfs->f_filler));
}
int
svr4_sys_statvfs(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_statvfs_args *uap = v;
struct sys_statvfs1_args fs_args;
struct proc *p = l->l_proc;
caddr_t sg = stackgap_init(p, 0);
struct statvfs *fs = stackgap_alloc(p, &sg, sizeof(struct statvfs));
int error;
CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
SCARG(&fs_args, path) = SCARG(uap, path);
SCARG(&fs_args, buf) = fs;
SCARG(&fs_args, flags) = ST_WAIT;
if ((error = sys_statvfs1(l, &fs_args, retval)) != 0)
return error;
return svr4_copystatvfs(SCARG(uap, fs), fs);
}
int
svr4_sys_fstatvfs(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_fstatvfs_args *uap = v;
struct proc *p = l->l_proc;
struct sys_fstatvfs1_args fs_args;
caddr_t sg = stackgap_init(p, 0);
struct statvfs *fs = stackgap_alloc(p, &sg, sizeof(struct statvfs));
int error;
SCARG(&fs_args, fd) = SCARG(uap, fd);
SCARG(&fs_args, buf) = fs;
SCARG(&fs_args, flags) = ST_WAIT;
if ((error = sys_fstatvfs1(l, &fs_args, retval)) != 0)
return error;
return svr4_copystatvfs(SCARG(uap, fs), fs);
}
int
svr4_sys_statvfs64(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_statvfs64_args *uap = v;
struct proc *p = l->l_proc;
struct sys_statvfs1_args fs_args;
caddr_t sg = stackgap_init(p, 0);
struct statvfs *fs = stackgap_alloc(p, &sg, sizeof(struct statvfs));
int error;
CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
SCARG(&fs_args, path) = SCARG(uap, path);
SCARG(&fs_args, buf) = fs;
SCARG(&fs_args, flags) = ST_WAIT;
if ((error = sys_statvfs1(l, &fs_args, retval)) != 0)
return error;
return svr4_copystatvfs64(SCARG(uap, fs), fs);
}
int
svr4_sys_fstatvfs64(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_fstatvfs64_args *uap = v;
struct proc *p = l->l_proc;
struct sys_fstatvfs1_args fs_args;
caddr_t sg = stackgap_init(p, 0);
struct statvfs *fs = stackgap_alloc(p, &sg, sizeof(struct statvfs));
int error;
SCARG(&fs_args, fd) = SCARG(uap, fd);
SCARG(&fs_args, buf) = fs;
SCARG(&fs_args, flags) = ST_WAIT;
if ((error = sys_fstatvfs1(l, &fs_args, retval)) != 0)
return error;
return svr4_copystatvfs64(SCARG(uap, fs), fs);
}
int
svr4_sys_alarm(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_alarm_args *uap = v;
struct proc *p = l->l_proc;
int error;
struct itimerval *ntp, *otp, tp;
struct sys_setitimer_args sa;
caddr_t sg = stackgap_init(p, 0);
ntp = stackgap_alloc(p, &sg, sizeof(struct itimerval));
otp = stackgap_alloc(p, &sg, sizeof(struct itimerval));
timerclear(&tp.it_interval);
tp.it_value.tv_sec = SCARG(uap, sec);
tp.it_value.tv_usec = 0;
if ((error = copyout(&tp, ntp, sizeof(tp))) != 0)
return error;
SCARG(&sa, which) = ITIMER_REAL;
SCARG(&sa, itv) = ntp;
SCARG(&sa, oitv) = otp;
if ((error = sys_setitimer(l, &sa, retval)) != 0)
return error;
if ((error = copyin(otp, &tp, sizeof(tp))) != 0)
return error;
if (tp.it_value.tv_usec)
tp.it_value.tv_sec++;
*retval = (register_t) tp.it_value.tv_sec;
return 0;
}
int
svr4_sys_gettimeofday(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_gettimeofday_args *uap = v;
if (SCARG(uap, tp)) {
struct timeval atv;
microtime(&atv);
return copyout(&atv, SCARG(uap, tp), sizeof (atv));
}
return 0;
}
int
svr4_sys_facl(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_facl_args *uap = v;
*retval = 0;
switch (SCARG(uap, cmd)) {
case SVR4_SYS_SETACL:
/* We don't support acls on any filesystem */
return ENOSYS;
case SVR4_SYS_GETACL:
return copyout(retval, &SCARG(uap, num),
sizeof(SCARG(uap, num)));
case SVR4_SYS_GETACLCNT:
return 0;
default:
return EINVAL;
}
}
int
svr4_sys_acl(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
return svr4_sys_facl(l, v, retval); /* XXX: for now the same */
}
int
svr4_sys_auditsys(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
/*
* XXX: Big brother is *not* watching.
*/
return 0;
}
int
svr4_sys_memcntl(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_memcntl_args *uap = v;
switch (SCARG(uap, cmd)) {
case SVR4_MC_SYNC:
{
struct sys___msync13_args msa;
SCARG(&msa, addr) = SCARG(uap, addr);
SCARG(&msa, len) = SCARG(uap, len);
SCARG(&msa, flags) = (int)(u_long)SCARG(uap, arg);
return sys___msync13(l, &msa, retval);
}
case SVR4_MC_ADVISE:
{
struct sys_madvise_args maa;
SCARG(&maa, addr) = SCARG(uap, addr);
SCARG(&maa, len) = SCARG(uap, len);
SCARG(&maa, behav) = (int)(u_long)SCARG(uap, arg);
return sys_madvise(l, &maa, retval);
}
case SVR4_MC_LOCK:
case SVR4_MC_UNLOCK:
case SVR4_MC_LOCKAS:
case SVR4_MC_UNLOCKAS:
return EOPNOTSUPP;
default:
return ENOSYS;
}
}
int
svr4_sys_nice(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_nice_args *uap = v;
struct sys_setpriority_args ap;
int error;
SCARG(&ap, which) = PRIO_PROCESS;
SCARG(&ap, who) = 0;
SCARG(&ap, prio) = SCARG(uap, prio);
if ((error = sys_setpriority(l, &ap, retval)) != 0)
return error;
if ((error = sys_getpriority(l, &ap, retval)) != 0)
return error;
return 0;
}
int
svr4_sys_resolvepath(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct svr4_sys_resolvepath_args *uap = v;
struct nameidata nd;
int error;
size_t len;
NDINIT(&nd, LOOKUP, NOFOLLOW | SAVENAME, UIO_USERSPACE,
SCARG(uap, path), l);
if ((error = namei(&nd)) != 0)
return error;
if ((error = copyoutstr(nd.ni_cnd.cn_pnbuf, SCARG(uap, buf),
SCARG(uap, bufsiz), &len)) != 0)
goto bad;
*retval = len;
bad:
vrele(nd.ni_vp);
PNBUF_PUT(nd.ni_cnd.cn_pnbuf);
return error;
}