NetBSD/sys/net/npf/npf_inet.c
rmind 0e21825481 NPF:
- Implement dynamic NPF rules.  Controlled through npf(3) library of via
  npfctl rule command.  A rule can be removed using a unique identifier,
  returned on addition, or using a key which is SHA1 hash of the rule.
  Adjust npftest and add a regression test.
- Improvements to rule inspection mechanism.
- Initial BPF support as an alternative to n-code.
- Minor fixes; bump the version.
2013-02-09 03:35:31 +00:00

619 lines
14 KiB
C

/* $NetBSD: npf_inet.c,v 1.21 2013/02/09 03:35:32 rmind Exp $ */
/*-
* Copyright (c) 2009-2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Various procotol related helper routines.
*
* This layer manipulates npf_cache_t structure i.e. caches requested headers
* and stores which information was cached in the information bit field.
* It is also responsibility of this layer to update or invalidate the cache
* on rewrites (e.g. by translation routines).
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.21 2013/02/09 03:35:32 rmind Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <net/pfil.h>
#include <net/if.h>
#include <net/ethertypes.h>
#include <net/if_ether.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#include "npf_impl.h"
/*
* npf_fixup{16,32}_cksum: update IPv4 checksum.
*/
uint16_t
npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
{
uint32_t sum;
/*
* RFC 1624:
* HC' = ~(~HC + ~m + m')
*/
sum = ~ntohs(cksum) & 0xffff;
sum += (~ntohs(odatum) & 0xffff) + ntohs(ndatum);
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
return htons(~sum & 0xffff);
}
uint16_t
npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
{
cksum = npf_fixup16_cksum(cksum, odatum & 0xffff, ndatum & 0xffff);
cksum = npf_fixup16_cksum(cksum, odatum >> 16, ndatum >> 16);
return cksum;
}
/*
* npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
*/
uint16_t
npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
const npf_addr_t *naddr)
{
const uint32_t *oip32 = (const uint32_t *)oaddr;
const uint32_t *nip32 = (const uint32_t *)naddr;
KASSERT(sz % sizeof(uint32_t) == 0);
do {
cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
sz -= sizeof(uint32_t);
} while (sz);
return cksum;
}
/*
* npf_addr_sum: provide IP address as a summed (if needed) 32-bit integer.
* Note: used for hash function.
*/
uint32_t
npf_addr_sum(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
{
uint32_t mix = 0;
int i;
KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
for (i = 0; i < (sz >> 2); i++) {
mix += a1->s6_addr32[i];
mix += a2->s6_addr32[i];
}
return mix;
}
/*
* npf_addr_mask: apply the mask to a given address and store the result.
*/
void
npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
const int alen, npf_addr_t *out)
{
const int nwords = alen >> 2;
uint_fast8_t length = mask;
/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
KASSERT(length <= NPF_MAX_NETMASK);
for (int i = 0; i < nwords; i++) {
uint32_t wordmask;
if (length >= 32) {
wordmask = htonl(0xffffffff);
length -= 32;
} else if (length) {
wordmask = htonl(0xffffffff << (32 - length));
length = 0;
} else {
wordmask = 0;
}
out->s6_addr32[i] = addr->s6_addr32[i] & wordmask;
}
}
/*
* npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
*
* => Return 0 if equal and negative/positive if less/greater accordingly.
* => Ignore the mask, if NPF_NO_NETMASK is specified.
*/
int
npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
{
npf_addr_t realaddr1, realaddr2;
if (mask1 != NPF_NO_NETMASK) {
npf_addr_mask(addr1, mask1, alen, &realaddr1);
addr1 = &realaddr1;
}
if (mask2 != NPF_NO_NETMASK) {
npf_addr_mask(addr2, mask2, alen, &realaddr2);
addr2 = &realaddr2;
}
return memcmp(addr1, addr2, alen);
}
/*
* npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
*
* => Returns all values in host byte-order.
*/
int
npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
{
const struct tcphdr *th = npc->npc_l4.tcp;
u_int thlen;
KASSERT(npf_iscached(npc, NPC_TCP));
*seq = ntohl(th->th_seq);
*ack = ntohl(th->th_ack);
*win = (uint32_t)ntohs(th->th_win);
thlen = th->th_off << 2;
if (npf_iscached(npc, NPC_IP4)) {
const struct ip *ip = npc->npc_ip.v4;
return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
} else if (npf_iscached(npc, NPC_IP6)) {
const struct ip6_hdr *ip6 = npc->npc_ip.v6;
return ntohs(ip6->ip6_plen) - thlen;
}
return 0;
}
/*
* npf_fetch_tcpopts: parse and return TCP options.
*/
bool
npf_fetch_tcpopts(npf_cache_t *npc, nbuf_t *nbuf, uint16_t *mss, int *wscale)
{
const struct tcphdr *th = npc->npc_l4.tcp;
int topts_len, step;
void *nptr;
uint8_t val;
bool ok;
KASSERT(npf_iscached(npc, NPC_IP46));
KASSERT(npf_iscached(npc, NPC_TCP));
/* Determine if there are any TCP options, get their length. */
topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
if (topts_len <= 0) {
/* No options. */
return false;
}
KASSERT(topts_len <= MAX_TCPOPTLEN);
/* First step: IP and TCP header up to options. */
step = npc->npc_hlen + sizeof(struct tcphdr);
nbuf_reset(nbuf);
next:
if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
ok = false;
goto done;
}
val = *(uint8_t *)nptr;
switch (val) {
case TCPOPT_EOL:
/* Done. */
ok = true;
goto done;
case TCPOPT_NOP:
topts_len--;
step = 1;
break;
case TCPOPT_MAXSEG:
if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
ok = false;
goto done;
}
if (mss) {
if (*mss) {
memcpy(nptr, mss, sizeof(uint16_t));
} else {
memcpy(mss, nptr, sizeof(uint16_t));
}
}
topts_len -= TCPOLEN_MAXSEG;
step = 2;
break;
case TCPOPT_WINDOW:
/* TCP Window Scaling (RFC 1323). */
if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
ok = false;
goto done;
}
val = *(uint8_t *)nptr;
*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
topts_len -= TCPOLEN_WINDOW;
step = 1;
break;
default:
if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
ok = false;
goto done;
}
val = *(uint8_t *)nptr;
if (val < 2 || val > topts_len) {
ok = false;
goto done;
}
topts_len -= val;
step = val - 1;
}
/* Any options left? */
if (__predict_true(topts_len > 0)) {
goto next;
}
ok = true;
done:
if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
npf_recache(npc, nbuf);
}
return ok;
}
static int
npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
{
const void *nptr = nbuf_dataptr(nbuf);
const uint8_t ver = *(const uint8_t *)nptr;
int flags = 0;
switch (ver >> 4) {
case IPVERSION: {
struct ip *ip;
ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
if (ip == NULL) {
return 0;
}
/* Check header length and fragment offset. */
if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
return 0;
}
if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
/* Note fragmentation. */
flags |= NPC_IPFRAG;
}
/* Cache: layer 3 - IPv4. */
npc->npc_alen = sizeof(struct in_addr);
npc->npc_srcip = (npf_addr_t *)&ip->ip_src;
npc->npc_dstip = (npf_addr_t *)&ip->ip_dst;
npc->npc_hlen = ip->ip_hl << 2;
npc->npc_proto = ip->ip_p;
npc->npc_ip.v4 = ip;
flags |= NPC_IP4;
break;
}
case (IPV6_VERSION >> 4): {
struct ip6_hdr *ip6;
struct ip6_ext *ip6e;
size_t off, hlen;
ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
if (ip6 == NULL) {
return 0;
}
/* Set initial next-protocol value. */
hlen = sizeof(struct ip6_hdr);
npc->npc_proto = ip6->ip6_nxt;
npc->npc_hlen = hlen;
/*
* Advance by the length of the current header.
*/
off = nbuf_offset(nbuf);
while (nbuf_advance(nbuf, hlen, 0) != NULL) {
ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
if (ip6e == NULL) {
return 0;
}
/*
* Determine whether we are going to continue.
*/
switch (npc->npc_proto) {
case IPPROTO_HOPOPTS:
case IPPROTO_DSTOPTS:
case IPPROTO_ROUTING:
hlen = (ip6e->ip6e_len + 1) << 3;
break;
case IPPROTO_FRAGMENT:
hlen = sizeof(struct ip6_frag);
flags |= NPC_IPFRAG;
break;
case IPPROTO_AH:
hlen = (ip6e->ip6e_len + 2) << 2;
break;
default:
hlen = 0;
break;
}
if (!hlen) {
break;
}
npc->npc_proto = ip6e->ip6e_nxt;
npc->npc_hlen += hlen;
}
/* Restore the offset. */
nbuf_reset(nbuf);
if (off) {
nbuf_advance(nbuf, off, 0);
}
/* Cache: layer 3 - IPv6. */
npc->npc_alen = sizeof(struct in6_addr);
npc->npc_srcip = (npf_addr_t *)&ip6->ip6_src;
npc->npc_dstip = (npf_addr_t *)&ip6->ip6_dst;
npc->npc_ip.v6 = ip6;
flags |= NPC_IP6;
break;
}
default:
break;
}
return flags;
}
/*
* npf_cache_all: general routine to cache all relevant IP (v4 or v6)
* and TCP, UDP or ICMP headers.
*
* => nbuf offset shall be set accordingly.
*/
int
npf_cache_all(npf_cache_t *npc, nbuf_t *nbuf)
{
int flags, l4flags;
u_int hlen;
/*
* This routine is a main point where the references are cached,
* therefore clear the flag as we reset.
*/
again:
nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
/*
* First, cache the L3 header (IPv4 or IPv6). If IP packet is
* fragmented, then we cannot look into L4.
*/
flags = npf_cache_ip(npc, nbuf);
if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
npc->npc_info |= flags;
return flags;
}
hlen = npc->npc_hlen;
switch (npc->npc_proto) {
case IPPROTO_TCP:
/* Cache: layer 4 - TCP. */
npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
sizeof(struct tcphdr));
l4flags = NPC_LAYER4 | NPC_TCP;
break;
case IPPROTO_UDP:
/* Cache: layer 4 - UDP. */
npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
sizeof(struct udphdr));
l4flags = NPC_LAYER4 | NPC_UDP;
break;
case IPPROTO_ICMP:
/* Cache: layer 4 - ICMPv4. */
npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
offsetof(struct icmp, icmp_void));
l4flags = NPC_LAYER4 | NPC_ICMP;
break;
case IPPROTO_ICMPV6:
/* Cache: layer 4 - ICMPv6. */
npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
offsetof(struct icmp6_hdr, icmp6_data32));
l4flags = NPC_LAYER4 | NPC_ICMP;
break;
default:
l4flags = 0;
break;
}
if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
goto again;
}
/* Add the L4 flags if nbuf_advance() succeeded. */
if (l4flags && npc->npc_l4.hdr) {
flags |= l4flags;
}
npc->npc_info |= flags;
return flags;
}
void
npf_recache(npf_cache_t *npc, nbuf_t *nbuf)
{
const int mflags __unused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
int flags;
nbuf_reset(nbuf);
npc->npc_info = 0;
flags = npf_cache_all(npc, nbuf);
KASSERT((flags & mflags) == mflags);
KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
}
/*
* npf_rwrip: rewrite required IP address.
*/
bool
npf_rwrip(const npf_cache_t *npc, int di, const npf_addr_t *addr)
{
npf_addr_t *oaddr;
KASSERT(npf_iscached(npc, NPC_IP46));
/*
* Rewrite source address if outgoing and destination if incoming.
*/
oaddr = (di == PFIL_OUT) ? npc->npc_srcip : npc->npc_dstip;
memcpy(oaddr, addr, npc->npc_alen);
return true;
}
/*
* npf_rwrport: rewrite required TCP/UDP port.
*/
bool
npf_rwrport(const npf_cache_t *npc, int di, const in_port_t port)
{
const int proto = npc->npc_proto;
in_port_t *oport;
KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
/* Get the offset and store the port in it. */
if (proto == IPPROTO_TCP) {
struct tcphdr *th = npc->npc_l4.tcp;
oport = (di == PFIL_OUT) ? &th->th_sport : &th->th_dport;
} else {
struct udphdr *uh = npc->npc_l4.udp;
oport = (di == PFIL_OUT) ? &uh->uh_sport : &uh->uh_dport;
}
memcpy(oport, &port, sizeof(in_port_t));
return true;
}
/*
* npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
*/
bool
npf_rwrcksum(const npf_cache_t *npc, const int di,
const npf_addr_t *addr, const in_port_t port)
{
const int proto = npc->npc_proto;
const int alen = npc->npc_alen;
npf_addr_t *oaddr;
uint16_t *ocksum;
in_port_t oport;
KASSERT(npf_iscached(npc, NPC_LAYER4));
oaddr = (di == PFIL_OUT) ? npc->npc_srcip : npc->npc_dstip;
if (npf_iscached(npc, NPC_IP4)) {
struct ip *ip = npc->npc_ip.v4;
uint16_t ipsum = ip->ip_sum;
/* Recalculate IPv4 checksum and rewrite. */
ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
} else {
/* No checksum for IPv6. */
KASSERT(npf_iscached(npc, NPC_IP6));
}
/* Nothing else to do for ICMP. */
if (proto == IPPROTO_ICMP) {
return true;
}
KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
/*
* Calculate TCP/UDP checksum:
* - Skip if UDP and the current checksum is zero.
* - Fixup the IP address change.
* - Fixup the port change, if required (non-zero).
*/
if (proto == IPPROTO_TCP) {
struct tcphdr *th = npc->npc_l4.tcp;
ocksum = &th->th_sum;
oport = (di == PFIL_OUT) ? th->th_sport : th->th_dport;
} else {
struct udphdr *uh = npc->npc_l4.udp;
KASSERT(proto == IPPROTO_UDP);
ocksum = &uh->uh_sum;
if (*ocksum == 0) {
/* No need to update. */
return true;
}
oport = (di == PFIL_OUT) ? uh->uh_sport : uh->uh_dport;
}
uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
if (port) {
cksum = npf_fixup16_cksum(cksum, oport, port);
}
/* Rewrite TCP/UDP checksum. */
memcpy(ocksum, &cksum, sizeof(uint16_t));
return true;
}
#if defined(DDB) || defined(_NPF_TESTING)
void
npf_addr_dump(const npf_addr_t *addr)
{
printf("IP[%x:%x:%x:%x]\n",
addr->s6_addr32[0], addr->s6_addr32[1],
addr->s6_addr32[2], addr->s6_addr32[3]);
}
#endif