NetBSD/sys/netinet/ip_mroute.c

3585 lines
87 KiB
C

/* $NetBSD: ip_mroute.c,v 1.104 2007/07/09 21:11:11 ad Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Stephen Deering of Stanford University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
*/
/*
* Copyright (c) 1989 Stephen Deering
*
* This code is derived from software contributed to Berkeley by
* Stephen Deering of Stanford University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
*/
/*
* IP multicast forwarding procedures
*
* Written by David Waitzman, BBN Labs, August 1988.
* Modified by Steve Deering, Stanford, February 1989.
* Modified by Mark J. Steiglitz, Stanford, May, 1991
* Modified by Van Jacobson, LBL, January 1993
* Modified by Ajit Thyagarajan, PARC, August 1993
* Modified by Bill Fenner, PARC, April 1994
* Modified by Charles M. Hannum, NetBSD, May 1995.
* Modified by Ahmed Helmy, SGI, June 1996
* Modified by George Edmond Eddy (Rusty), ISI, February 1998
* Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
* Modified by Hitoshi Asaeda, WIDE, August 2000
* Modified by Pavlin Radoslavov, ICSI, October 2002
*
* MROUTING Revision: 1.2
* and PIM-SMv2 and PIM-DM support, advanced API support,
* bandwidth metering and signaling
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.104 2007/07/09 21:11:11 ad Exp $");
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_pim.h"
#ifdef PIM
#define _PIM_VT 1
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/route.h>
#include <net/raw_cb.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/in_pcb.h>
#include <netinet/udp.h>
#include <netinet/igmp.h>
#include <netinet/igmp_var.h>
#include <netinet/ip_mroute.h>
#ifdef PIM
#include <netinet/pim.h>
#include <netinet/pim_var.h>
#endif
#include <netinet/ip_encap.h>
#ifdef IPSEC
#include <netinet6/ipsec.h>
#include <netkey/key.h>
#endif
#ifdef FAST_IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif
#include <machine/stdarg.h>
#define IP_MULTICASTOPTS 0
#define M_PULLUP(m, len) \
do { \
if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
(m) = m_pullup((m), (len)); \
} while (/*CONSTCOND*/ 0)
/*
* Globals. All but ip_mrouter and ip_mrtproto could be static,
* except for netstat or debugging purposes.
*/
struct socket *ip_mrouter = NULL;
int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
#define NO_RTE_FOUND 0x1
#define RTE_FOUND 0x2
#define MFCHASH(a, g) \
((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
u_long mfchash;
u_char nexpire[MFCTBLSIZ];
struct vif viftable[MAXVIFS];
struct mrtstat mrtstat;
u_int mrtdebug = 0; /* debug level */
#define DEBUG_MFC 0x02
#define DEBUG_FORWARD 0x04
#define DEBUG_EXPIRE 0x08
#define DEBUG_XMIT 0x10
#define DEBUG_PIM 0x20
#define VIFI_INVALID ((vifi_t) -1)
u_int tbfdebug = 0; /* tbf debug level */
#ifdef RSVP_ISI
u_int rsvpdebug = 0; /* rsvp debug level */
extern struct socket *ip_rsvpd;
extern int rsvp_on;
#endif /* RSVP_ISI */
/* vif attachment using sys/netinet/ip_encap.c */
static void vif_input(struct mbuf *, ...);
static int vif_encapcheck(struct mbuf *, int, int, void *);
static const struct protosw vif_protosw =
{ SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
vif_input, rip_output, 0, rip_ctloutput,
rip_usrreq,
0, 0, 0, 0,
};
#define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
#define UPCALL_EXPIRE 6 /* number of timeouts */
/*
* Define the token bucket filter structures
*/
#define TBF_REPROCESS (hz / 100) /* 100x / second */
static int get_sg_cnt(struct sioc_sg_req *);
static int get_vif_cnt(struct sioc_vif_req *);
static int ip_mrouter_init(struct socket *, struct mbuf *);
static int get_version(struct mbuf *);
static int set_assert(struct mbuf *);
static int get_assert(struct mbuf *);
static int add_vif(struct mbuf *);
static int del_vif(struct mbuf *);
static void update_mfc_params(struct mfc *, struct mfcctl2 *);
static void init_mfc_params(struct mfc *, struct mfcctl2 *);
static void expire_mfc(struct mfc *);
static int add_mfc(struct mbuf *);
#ifdef UPCALL_TIMING
static void collate(struct timeval *);
#endif
static int del_mfc(struct mbuf *);
static int set_api_config(struct mbuf *); /* chose API capabilities */
static int get_api_support(struct mbuf *);
static int get_api_config(struct mbuf *);
static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
static void expire_upcalls(void *);
#ifdef RSVP_ISI
static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
#else
static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
#endif
static void phyint_send(struct ip *, struct vif *, struct mbuf *);
static void encap_send(struct ip *, struct vif *, struct mbuf *);
static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
static void tbf_queue(struct vif *, struct mbuf *);
static void tbf_process_q(struct vif *);
static void tbf_reprocess_q(void *);
static int tbf_dq_sel(struct vif *, struct ip *);
static void tbf_send_packet(struct vif *, struct mbuf *);
static void tbf_update_tokens(struct vif *);
static int priority(struct vif *, struct ip *);
/*
* Bandwidth monitoring
*/
static void free_bw_list(struct bw_meter *);
static int add_bw_upcall(struct mbuf *);
static int del_bw_upcall(struct mbuf *);
static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
static void bw_upcalls_send(void);
static void schedule_bw_meter(struct bw_meter *, struct timeval *);
static void unschedule_bw_meter(struct bw_meter *);
static void bw_meter_process(void);
static void expire_bw_upcalls_send(void *);
static void expire_bw_meter_process(void *);
#ifdef PIM
static int pim_register_send(struct ip *, struct vif *,
struct mbuf *, struct mfc *);
static int pim_register_send_rp(struct ip *, struct vif *,
struct mbuf *, struct mfc *);
static int pim_register_send_upcall(struct ip *, struct vif *,
struct mbuf *, struct mfc *);
static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
#endif
/*
* 'Interfaces' associated with decapsulator (so we can tell
* packets that went through it from ones that get reflected
* by a broken gateway). These interfaces are never linked into
* the system ifnet list & no routes point to them. I.e., packets
* can't be sent this way. They only exist as a placeholder for
* multicast source verification.
*/
#if 0
struct ifnet multicast_decap_if[MAXVIFS];
#endif
#define ENCAP_TTL 64
#define ENCAP_PROTO IPPROTO_IPIP /* 4 */
/* prototype IP hdr for encapsulated packets */
struct ip multicast_encap_iphdr = {
.ip_hl = sizeof(struct ip) >> 2,
.ip_v = IPVERSION,
.ip_len = sizeof(struct ip),
.ip_ttl = ENCAP_TTL,
.ip_p = ENCAP_PROTO,
};
/*
* Bandwidth meter variables and constants
*/
/*
* Pending timeouts are stored in a hash table, the key being the
* expiration time. Periodically, the entries are analysed and processed.
*/
#define BW_METER_BUCKETS 1024
static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
struct callout bw_meter_ch;
#define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
/*
* Pending upcalls are stored in a vector which is flushed when
* full, or periodically
*/
static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
static u_int bw_upcalls_n; /* # of pending upcalls */
struct callout bw_upcalls_ch;
#define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
#ifdef PIM
struct pimstat pimstat;
/*
* Note: the PIM Register encapsulation adds the following in front of a
* data packet:
*
* struct pim_encap_hdr {
* struct ip ip;
* struct pim_encap_pimhdr pim;
* }
*
*/
struct pim_encap_pimhdr {
struct pim pim;
uint32_t flags;
};
static struct ip pim_encap_iphdr = {
.ip_v = IPVERSION,
.ip_hl = sizeof(struct ip) >> 2,
.ip_len = sizeof(struct ip),
.ip_ttl = ENCAP_TTL,
.ip_p = IPPROTO_PIM,
};
static struct pim_encap_pimhdr pim_encap_pimhdr = {
{
PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
0, /* reserved */
0, /* checksum */
},
0 /* flags */
};
static struct ifnet multicast_register_if;
static vifi_t reg_vif_num = VIFI_INVALID;
#endif /* PIM */
/*
* Private variables.
*/
static vifi_t numvifs = 0;
static struct callout expire_upcalls_ch;
/*
* whether or not special PIM assert processing is enabled.
*/
static int pim_assert;
/*
* Rate limit for assert notification messages, in usec
*/
#define ASSERT_MSG_TIME 3000000
/*
* Kernel multicast routing API capabilities and setup.
* If more API capabilities are added to the kernel, they should be
* recorded in `mrt_api_support'.
*/
static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
MRT_MFC_FLAGS_BORDER_VIF |
MRT_MFC_RP |
MRT_MFC_BW_UPCALL);
static u_int32_t mrt_api_config = 0;
/*
* Find a route for a given origin IP address and Multicast group address
* Type of service parameter to be added in the future!!!
* Statistics are updated by the caller if needed
* (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
*/
static struct mfc *
mfc_find(struct in_addr *o, struct in_addr *g)
{
struct mfc *rt;
LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
if (in_hosteq(rt->mfc_origin, *o) &&
in_hosteq(rt->mfc_mcastgrp, *g) &&
(rt->mfc_stall == NULL))
break;
}
return (rt);
}
/*
* Macros to compute elapsed time efficiently
* Borrowed from Van Jacobson's scheduling code
*/
#define TV_DELTA(a, b, delta) do { \
int xxs; \
delta = (a).tv_usec - (b).tv_usec; \
xxs = (a).tv_sec - (b).tv_sec; \
switch (xxs) { \
case 2: \
delta += 1000000; \
/* fall through */ \
case 1: \
delta += 1000000; \
/* fall through */ \
case 0: \
break; \
default: \
delta += (1000000 * xxs); \
break; \
} \
} while (/*CONSTCOND*/ 0)
#ifdef UPCALL_TIMING
u_int32_t upcall_data[51];
#endif /* UPCALL_TIMING */
/*
* Handle MRT setsockopt commands to modify the multicast routing tables.
*/
int
ip_mrouter_set(struct socket *so, int optname, struct mbuf **m)
{
int error;
if (optname != MRT_INIT && so != ip_mrouter)
error = ENOPROTOOPT;
else
switch (optname) {
case MRT_INIT:
error = ip_mrouter_init(so, *m);
break;
case MRT_DONE:
error = ip_mrouter_done();
break;
case MRT_ADD_VIF:
error = add_vif(*m);
break;
case MRT_DEL_VIF:
error = del_vif(*m);
break;
case MRT_ADD_MFC:
error = add_mfc(*m);
break;
case MRT_DEL_MFC:
error = del_mfc(*m);
break;
case MRT_ASSERT:
error = set_assert(*m);
break;
case MRT_API_CONFIG:
error = set_api_config(*m);
break;
case MRT_ADD_BW_UPCALL:
error = add_bw_upcall(*m);
break;
case MRT_DEL_BW_UPCALL:
error = del_bw_upcall(*m);
break;
default:
error = ENOPROTOOPT;
break;
}
if (*m)
m_free(*m);
return (error);
}
/*
* Handle MRT getsockopt commands
*/
int
ip_mrouter_get(struct socket *so, int optname, struct mbuf **m)
{
int error;
if (so != ip_mrouter)
error = ENOPROTOOPT;
else {
*m = m_get(M_WAIT, MT_SOOPTS);
MCLAIM(*m, so->so_mowner);
switch (optname) {
case MRT_VERSION:
error = get_version(*m);
break;
case MRT_ASSERT:
error = get_assert(*m);
break;
case MRT_API_SUPPORT:
error = get_api_support(*m);
break;
case MRT_API_CONFIG:
error = get_api_config(*m);
break;
default:
error = ENOPROTOOPT;
break;
}
if (error)
m_free(*m);
}
return (error);
}
/*
* Handle ioctl commands to obtain information from the cache
*/
int
mrt_ioctl(struct socket *so, u_long cmd, void *data)
{
int error;
if (so != ip_mrouter)
error = EINVAL;
else
switch (cmd) {
case SIOCGETVIFCNT:
error = get_vif_cnt((struct sioc_vif_req *)data);
break;
case SIOCGETSGCNT:
error = get_sg_cnt((struct sioc_sg_req *)data);
break;
default:
error = EINVAL;
break;
}
return (error);
}
/*
* returns the packet, byte, rpf-failure count for the source group provided
*/
static int
get_sg_cnt(struct sioc_sg_req *req)
{
int s;
struct mfc *rt;
s = splsoftnet();
rt = mfc_find(&req->src, &req->grp);
if (rt == NULL) {
splx(s);
req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
return (EADDRNOTAVAIL);
}
req->pktcnt = rt->mfc_pkt_cnt;
req->bytecnt = rt->mfc_byte_cnt;
req->wrong_if = rt->mfc_wrong_if;
splx(s);
return (0);
}
/*
* returns the input and output packet and byte counts on the vif provided
*/
static int
get_vif_cnt(struct sioc_vif_req *req)
{
vifi_t vifi = req->vifi;
if (vifi >= numvifs)
return (EINVAL);
req->icount = viftable[vifi].v_pkt_in;
req->ocount = viftable[vifi].v_pkt_out;
req->ibytes = viftable[vifi].v_bytes_in;
req->obytes = viftable[vifi].v_bytes_out;
return (0);
}
/*
* Enable multicast routing
*/
static int
ip_mrouter_init(struct socket *so, struct mbuf *m)
{
int *v;
if (mrtdebug)
log(LOG_DEBUG,
"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW ||
so->so_proto->pr_protocol != IPPROTO_IGMP)
return (EOPNOTSUPP);
if (m == NULL || m->m_len < sizeof(int))
return (EINVAL);
v = mtod(m, int *);
if (*v != 1)
return (EINVAL);
if (ip_mrouter != NULL)
return (EADDRINUSE);
ip_mrouter = so;
mfchashtbl =
hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash);
bzero((void *)nexpire, sizeof(nexpire));
pim_assert = 0;
callout_init(&expire_upcalls_ch, 0);
callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
expire_upcalls, NULL);
callout_init(&bw_upcalls_ch, 0);
callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
expire_bw_upcalls_send, NULL);
callout_init(&bw_meter_ch, 0);
callout_reset(&bw_meter_ch, BW_METER_PERIOD,
expire_bw_meter_process, NULL);
if (mrtdebug)
log(LOG_DEBUG, "ip_mrouter_init\n");
return (0);
}
/*
* Disable multicast routing
*/
int
ip_mrouter_done(void)
{
vifi_t vifi;
struct vif *vifp;
int i;
int s;
s = splsoftnet();
/* Clear out all the vifs currently in use. */
for (vifi = 0; vifi < numvifs; vifi++) {
vifp = &viftable[vifi];
if (!in_nullhost(vifp->v_lcl_addr))
reset_vif(vifp);
}
numvifs = 0;
pim_assert = 0;
mrt_api_config = 0;
callout_stop(&expire_upcalls_ch);
callout_stop(&bw_upcalls_ch);
callout_stop(&bw_meter_ch);
/*
* Free all multicast forwarding cache entries.
*/
for (i = 0; i < MFCTBLSIZ; i++) {
struct mfc *rt, *nrt;
for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
nrt = LIST_NEXT(rt, mfc_hash);
expire_mfc(rt);
}
}
bzero((void *)nexpire, sizeof(nexpire));
free(mfchashtbl, M_MRTABLE);
mfchashtbl = NULL;
bw_upcalls_n = 0;
bzero(bw_meter_timers, sizeof(bw_meter_timers));
/* Reset de-encapsulation cache. */
ip_mrouter = NULL;
splx(s);
if (mrtdebug)
log(LOG_DEBUG, "ip_mrouter_done\n");
return (0);
}
void
ip_mrouter_detach(struct ifnet *ifp)
{
int vifi, i;
struct vif *vifp;
struct mfc *rt;
struct rtdetq *rte;
/* XXX not sure about side effect to userland routing daemon */
for (vifi = 0; vifi < numvifs; vifi++) {
vifp = &viftable[vifi];
if (vifp->v_ifp == ifp)
reset_vif(vifp);
}
for (i = 0; i < MFCTBLSIZ; i++) {
if (nexpire[i] == 0)
continue;
LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
for (rte = rt->mfc_stall; rte; rte = rte->next) {
if (rte->ifp == ifp)
rte->ifp = NULL;
}
}
}
}
static int
get_version(struct mbuf *m)
{
int *v = mtod(m, int *);
*v = 0x0305; /* XXX !!!! */
m->m_len = sizeof(int);
return (0);
}
/*
* Set PIM assert processing global
*/
static int
set_assert(struct mbuf *m)
{
int *i;
if (m == NULL || m->m_len < sizeof(int))
return (EINVAL);
i = mtod(m, int *);
pim_assert = !!*i;
return (0);
}
/*
* Get PIM assert processing global
*/
static int
get_assert(struct mbuf *m)
{
int *i = mtod(m, int *);
*i = pim_assert;
m->m_len = sizeof(int);
return (0);
}
/*
* Configure API capabilities
*/
static int
set_api_config(struct mbuf *m)
{
int i;
u_int32_t *apival;
if (m == NULL || m->m_len < sizeof(u_int32_t))
return (EINVAL);
apival = mtod(m, u_int32_t *);
/*
* We can set the API capabilities only if it is the first operation
* after MRT_INIT. I.e.:
* - there are no vifs installed
* - pim_assert is not enabled
* - the MFC table is empty
*/
if (numvifs > 0) {
*apival = 0;
return (EPERM);
}
if (pim_assert) {
*apival = 0;
return (EPERM);
}
for (i = 0; i < MFCTBLSIZ; i++) {
if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
*apival = 0;
return (EPERM);
}
}
mrt_api_config = *apival & mrt_api_support;
*apival = mrt_api_config;
return (0);
}
/*
* Get API capabilities
*/
static int
get_api_support(struct mbuf *m)
{
u_int32_t *apival;
if (m == NULL || m->m_len < sizeof(u_int32_t))
return (EINVAL);
apival = mtod(m, u_int32_t *);
*apival = mrt_api_support;
return (0);
}
/*
* Get API configured capabilities
*/
static int
get_api_config(struct mbuf *m)
{
u_int32_t *apival;
if (m == NULL || m->m_len < sizeof(u_int32_t))
return (EINVAL);
apival = mtod(m, u_int32_t *);
*apival = mrt_api_config;
return (0);
}
static struct sockaddr_in sin = {
.sin_len = sizeof(sin),
.sin_family = AF_INET
};
/*
* Add a vif to the vif table
*/
static int
add_vif(struct mbuf *m)
{
struct vifctl *vifcp;
struct vif *vifp;
struct ifaddr *ifa;
struct ifnet *ifp;
struct ifreq ifr;
int error, s;
if (m == NULL || m->m_len < sizeof(struct vifctl))
return (EINVAL);
vifcp = mtod(m, struct vifctl *);
if (vifcp->vifc_vifi >= MAXVIFS)
return (EINVAL);
if (in_nullhost(vifcp->vifc_lcl_addr))
return (EADDRNOTAVAIL);
vifp = &viftable[vifcp->vifc_vifi];
if (!in_nullhost(vifp->v_lcl_addr))
return (EADDRINUSE);
/* Find the interface with an address in AF_INET family. */
#ifdef PIM
if (vifcp->vifc_flags & VIFF_REGISTER) {
/*
* XXX: Because VIFF_REGISTER does not really need a valid
* local interface (e.g. it could be 127.0.0.2), we don't
* check its address.
*/
ifp = NULL;
} else
#endif
{
sin.sin_addr = vifcp->vifc_lcl_addr;
ifa = ifa_ifwithaddr(sintosa(&sin));
if (ifa == NULL)
return (EADDRNOTAVAIL);
ifp = ifa->ifa_ifp;
}
if (vifcp->vifc_flags & VIFF_TUNNEL) {
if (vifcp->vifc_flags & VIFF_SRCRT) {
log(LOG_ERR, "source routed tunnels not supported\n");
return (EOPNOTSUPP);
}
/* attach this vif to decapsulator dispatch table */
/*
* XXX Use addresses in registration so that matching
* can be done with radix tree in decapsulator. But,
* we need to check inner header for multicast, so
* this requires both radix tree lookup and then a
* function to check, and this is not supported yet.
*/
vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
vif_encapcheck, &vif_protosw, vifp);
if (!vifp->v_encap_cookie)
return (EINVAL);
/* Create a fake encapsulation interface. */
ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
bzero(ifp, sizeof(*ifp));
snprintf(ifp->if_xname, sizeof(ifp->if_xname),
"mdecap%d", vifcp->vifc_vifi);
/* Prepare cached route entry. */
bzero(&vifp->v_route, sizeof(vifp->v_route));
#ifdef PIM
} else if (vifcp->vifc_flags & VIFF_REGISTER) {
ifp = &multicast_register_if;
if (mrtdebug)
log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
(void *)ifp);
if (reg_vif_num == VIFI_INVALID) {
bzero(ifp, sizeof(*ifp));
snprintf(ifp->if_xname, sizeof(ifp->if_xname),
"register_vif");
ifp->if_flags = IFF_LOOPBACK;
bzero(&vifp->v_route, sizeof(vifp->v_route));
reg_vif_num = vifcp->vifc_vifi;
}
#endif
} else {
/* Make sure the interface supports multicast. */
if ((ifp->if_flags & IFF_MULTICAST) == 0)
return (EOPNOTSUPP);
/* Enable promiscuous reception of all IP multicasts. */
satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (void *)&ifr);
if (error)
return (error);
}
s = splsoftnet();
/* Define parameters for the tbf structure. */
vifp->tbf_q = NULL;
vifp->tbf_t = &vifp->tbf_q;
microtime(&vifp->tbf_last_pkt_t);
vifp->tbf_n_tok = 0;
vifp->tbf_q_len = 0;
vifp->tbf_max_q_len = MAXQSIZE;
vifp->v_flags = vifcp->vifc_flags;
vifp->v_threshold = vifcp->vifc_threshold;
/* scaling up here allows division by 1024 in critical code */
vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
vifp->v_ifp = ifp;
/* Initialize per vif pkt counters. */
vifp->v_pkt_in = 0;
vifp->v_pkt_out = 0;
vifp->v_bytes_in = 0;
vifp->v_bytes_out = 0;
callout_init(&vifp->v_repq_ch, 0);
#ifdef RSVP_ISI
vifp->v_rsvp_on = 0;
vifp->v_rsvpd = NULL;
#endif /* RSVP_ISI */
splx(s);
/* Adjust numvifs up if the vifi is higher than numvifs. */
if (numvifs <= vifcp->vifc_vifi)
numvifs = vifcp->vifc_vifi + 1;
if (mrtdebug)
log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
vifcp->vifc_vifi,
ntohl(vifcp->vifc_lcl_addr.s_addr),
(vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
ntohl(vifcp->vifc_rmt_addr.s_addr),
vifcp->vifc_threshold,
vifcp->vifc_rate_limit);
return (0);
}
void
reset_vif(struct vif *vifp)
{
struct mbuf *m, *n;
struct ifnet *ifp;
struct ifreq ifr;
callout_stop(&vifp->v_repq_ch);
/* detach this vif from decapsulator dispatch table */
encap_detach(vifp->v_encap_cookie);
vifp->v_encap_cookie = NULL;
/*
* Free packets queued at the interface
*/
for (m = vifp->tbf_q; m != NULL; m = n) {
n = m->m_nextpkt;
m_freem(m);
}
if (vifp->v_flags & VIFF_TUNNEL)
free(vifp->v_ifp, M_MRTABLE);
else if (vifp->v_flags & VIFF_REGISTER) {
#ifdef PIM
reg_vif_num = VIFI_INVALID;
#endif
} else {
satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
ifp = vifp->v_ifp;
(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)&ifr);
}
bzero((void *)vifp, sizeof(*vifp));
}
/*
* Delete a vif from the vif table
*/
static int
del_vif(struct mbuf *m)
{
vifi_t *vifip;
struct vif *vifp;
vifi_t vifi;
int s;
if (m == NULL || m->m_len < sizeof(vifi_t))
return (EINVAL);
vifip = mtod(m, vifi_t *);
if (*vifip >= numvifs)
return (EINVAL);
vifp = &viftable[*vifip];
if (in_nullhost(vifp->v_lcl_addr))
return (EADDRNOTAVAIL);
s = splsoftnet();
reset_vif(vifp);
/* Adjust numvifs down */
for (vifi = numvifs; vifi > 0; vifi--)
if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
break;
numvifs = vifi;
splx(s);
if (mrtdebug)
log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
return (0);
}
/*
* update an mfc entry without resetting counters and S,G addresses.
*/
static void
update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
{
int i;
rt->mfc_parent = mfccp->mfcc_parent;
for (i = 0; i < numvifs; i++) {
rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
MRT_MFC_FLAGS_ALL;
}
/* set the RP address */
if (mrt_api_config & MRT_MFC_RP)
rt->mfc_rp = mfccp->mfcc_rp;
else
rt->mfc_rp = zeroin_addr;
}
/*
* fully initialize an mfc entry from the parameter.
*/
static void
init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
{
rt->mfc_origin = mfccp->mfcc_origin;
rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
update_mfc_params(rt, mfccp);
/* initialize pkt counters per src-grp */
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
timerclear(&rt->mfc_last_assert);
}
static void
expire_mfc(struct mfc *rt)
{
struct rtdetq *rte, *nrte;
free_bw_list(rt->mfc_bw_meter);
for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
nrte = rte->next;
m_freem(rte->m);
free(rte, M_MRTABLE);
}
LIST_REMOVE(rt, mfc_hash);
free(rt, M_MRTABLE);
}
/*
* Add an mfc entry
*/
static int
add_mfc(struct mbuf *m)
{
struct mfcctl2 mfcctl2;
struct mfcctl2 *mfccp;
struct mfc *rt;
u_int32_t hash = 0;
struct rtdetq *rte, *nrte;
u_short nstl;
int s;
int mfcctl_size = sizeof(struct mfcctl);
if (mrt_api_config & MRT_API_FLAGS_ALL)
mfcctl_size = sizeof(struct mfcctl2);
if (m == NULL || m->m_len < mfcctl_size)
return (EINVAL);
/*
* select data size depending on API version.
*/
if (mrt_api_config & MRT_API_FLAGS_ALL) {
struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *);
bcopy(mp2, (void *)&mfcctl2, sizeof(*mp2));
} else {
struct mfcctl *mp = mtod(m, struct mfcctl *);
memcpy(&mfcctl2, mp, sizeof(*mp));
memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0,
sizeof(mfcctl2) - sizeof(struct mfcctl));
}
mfccp = &mfcctl2;
s = splsoftnet();
rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
/* If an entry already exists, just update the fields */
if (rt) {
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent);
update_mfc_params(rt, mfccp);
splx(s);
return (0);
}
/*
* Find the entry for which the upcall was made and update
*/
nstl = 0;
hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
rt->mfc_stall != NULL) {
if (nstl++)
log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
"multiple kernel entries",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent, rt->mfc_stall);
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent, rt->mfc_stall);
rte = rt->mfc_stall;
init_mfc_params(rt, mfccp);
rt->mfc_stall = NULL;
rt->mfc_expire = 0; /* Don't clean this guy up */
nexpire[hash]--;
/* free packets Qed at the end of this entry */
for (; rte != NULL; rte = nrte) {
nrte = rte->next;
if (rte->ifp) {
#ifdef RSVP_ISI
ip_mdq(rte->m, rte->ifp, rt, -1);
#else
ip_mdq(rte->m, rte->ifp, rt);
#endif /* RSVP_ISI */
}
m_freem(rte->m);
#ifdef UPCALL_TIMING
collate(&rte->t);
#endif /* UPCALL_TIMING */
free(rte, M_MRTABLE);
}
}
}
/*
* It is possible that an entry is being inserted without an upcall
*/
if (nstl == 0) {
/*
* No mfc; make a new one
*/
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent);
LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
init_mfc_params(rt, mfccp);
if (rt->mfc_expire)
nexpire[hash]--;
rt->mfc_expire = 0;
break; /* XXX */
}
}
if (rt == NULL) { /* no upcall, so make a new entry */
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
M_NOWAIT);
if (rt == NULL) {
splx(s);
return (ENOBUFS);
}
init_mfc_params(rt, mfccp);
rt->mfc_expire = 0;
rt->mfc_stall = NULL;
rt->mfc_bw_meter = NULL;
/* insert new entry at head of hash chain */
LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
}
}
splx(s);
return (0);
}
#ifdef UPCALL_TIMING
/*
* collect delay statistics on the upcalls
*/
static void
collate(struct timeval *t)
{
u_int32_t d;
struct timeval tp;
u_int32_t delta;
microtime(&tp);
if (timercmp(t, &tp, <)) {
TV_DELTA(tp, *t, delta);
d = delta >> 10;
if (d > 50)
d = 50;
++upcall_data[d];
}
}
#endif /* UPCALL_TIMING */
/*
* Delete an mfc entry
*/
static int
del_mfc(struct mbuf *m)
{
struct mfcctl2 mfcctl2;
struct mfcctl2 *mfccp;
struct mfc *rt;
int s;
int mfcctl_size = sizeof(struct mfcctl);
struct mfcctl *mp = mtod(m, struct mfcctl *);
/*
* XXX: for deleting MFC entries the information in entries
* of size "struct mfcctl" is sufficient.
*/
if (m == NULL || m->m_len < mfcctl_size)
return (EINVAL);
memcpy(&mfcctl2, mp, sizeof(*mp));
memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0,
sizeof(mfcctl2) - sizeof(struct mfcctl));
mfccp = &mfcctl2;
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr));
s = splsoftnet();
rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
if (rt == NULL) {
splx(s);
return (EADDRNOTAVAIL);
}
/*
* free the bw_meter entries
*/
free_bw_list(rt->mfc_bw_meter);
rt->mfc_bw_meter = NULL;
LIST_REMOVE(rt, mfc_hash);
free(rt, M_MRTABLE);
splx(s);
return (0);
}
static int
socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
{
if (s) {
if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
(struct mbuf *)NULL) != 0) {
sorwakeup(s);
return (0);
}
}
m_freem(mm);
return (-1);
}
/*
* IP multicast forwarding function. This function assumes that the packet
* pointed to by "ip" has arrived on (or is about to be sent to) the interface
* pointed to by "ifp", and the packet is to be relayed to other networks
* that have members of the packet's destination IP multicast group.
*
* The packet is returned unscathed to the caller, unless it is
* erroneous, in which case a non-zero return value tells the caller to
* discard it.
*/
#define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
#define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
int
#ifdef RSVP_ISI
ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
#else
ip_mforward(struct mbuf *m, struct ifnet *ifp)
#endif /* RSVP_ISI */
{
struct ip *ip = mtod(m, struct ip *);
struct mfc *rt;
static int srctun = 0;
struct mbuf *mm;
int s;
vifi_t vifi;
if (mrtdebug & DEBUG_FORWARD)
log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
/*
* Packet arrived via a physical interface or
* an encapsulated tunnel or a register_vif.
*/
} else {
/*
* Packet arrived through a source-route tunnel.
* Source-route tunnels are no longer supported.
*/
if ((srctun++ % 1000) == 0)
log(LOG_ERR,
"ip_mforward: received source-routed packet from %x\n",
ntohl(ip->ip_src.s_addr));
return (1);
}
#ifdef RSVP_ISI
if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
if (ip->ip_ttl < MAXTTL)
ip->ip_ttl++; /* compensate for -1 in *_send routines */
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
struct vif *vifp = viftable + vifi;
printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
vifp->v_ifp->if_xname);
}
return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
}
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
ntohl(ip->ip_src), ntohl(ip->ip_dst));
}
#endif /* RSVP_ISI */
/*
* Don't forward a packet with time-to-live of zero or one,
* or a packet destined to a local-only group.
*/
if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
return (0);
/*
* Determine forwarding vifs from the forwarding cache table
*/
s = splsoftnet();
++mrtstat.mrts_mfc_lookups;
rt = mfc_find(&ip->ip_src, &ip->ip_dst);
/* Entry exists, so forward if necessary */
if (rt != NULL) {
splx(s);
#ifdef RSVP_ISI
return (ip_mdq(m, ifp, rt, -1));
#else
return (ip_mdq(m, ifp, rt));
#endif /* RSVP_ISI */
} else {
/*
* If we don't have a route for packet's origin,
* Make a copy of the packet & send message to routing daemon
*/
struct mbuf *mb0;
struct rtdetq *rte;
u_int32_t hash;
int hlen = ip->ip_hl << 2;
#ifdef UPCALL_TIMING
struct timeval tp;
microtime(&tp);
#endif /* UPCALL_TIMING */
++mrtstat.mrts_mfc_misses;
mrtstat.mrts_no_route++;
if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
ntohl(ip->ip_src.s_addr),
ntohl(ip->ip_dst.s_addr));
/*
* Allocate mbufs early so that we don't do extra work if we are
* just going to fail anyway. Make sure to pullup the header so
* that other people can't step on it.
*/
rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
M_NOWAIT);
if (rte == NULL) {
splx(s);
return (ENOBUFS);
}
mb0 = m_copy(m, 0, M_COPYALL);
M_PULLUP(mb0, hlen);
if (mb0 == NULL) {
free(rte, M_MRTABLE);
splx(s);
return (ENOBUFS);
}
/* is there an upcall waiting for this flow? */
hash = MFCHASH(ip->ip_src, ip->ip_dst);
LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
rt->mfc_stall != NULL)
break;
}
if (rt == NULL) {
int i;
struct igmpmsg *im;
/*
* Locate the vifi for the incoming interface for
* this packet.
* If none found, drop packet.
*/
for (vifi = 0; vifi < numvifs &&
viftable[vifi].v_ifp != ifp; vifi++)
;
if (vifi >= numvifs) /* vif not found, drop packet */
goto non_fatal;
/* no upcall, so make a new entry */
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
M_NOWAIT);
if (rt == NULL)
goto fail;
/*
* Make a copy of the header to send to the user level
* process
*/
mm = m_copy(m, 0, hlen);
M_PULLUP(mm, hlen);
if (mm == NULL)
goto fail1;
/*
* Send message to routing daemon to install
* a route into the kernel table
*/
im = mtod(mm, struct igmpmsg *);
im->im_msgtype = IGMPMSG_NOCACHE;
im->im_mbz = 0;
im->im_vif = vifi;
mrtstat.mrts_upcalls++;
sin.sin_addr = ip->ip_src;
if (socket_send(ip_mrouter, mm, &sin) < 0) {
log(LOG_WARNING,
"ip_mforward: ip_mrouter socket queue full\n");
++mrtstat.mrts_upq_sockfull;
fail1:
free(rt, M_MRTABLE);
fail:
free(rte, M_MRTABLE);
m_freem(mb0);
splx(s);
return (ENOBUFS);
}
/* insert new entry at head of hash chain */
rt->mfc_origin = ip->ip_src;
rt->mfc_mcastgrp = ip->ip_dst;
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
rt->mfc_expire = UPCALL_EXPIRE;
nexpire[hash]++;
for (i = 0; i < numvifs; i++) {
rt->mfc_ttls[i] = 0;
rt->mfc_flags[i] = 0;
}
rt->mfc_parent = -1;
/* clear the RP address */
rt->mfc_rp = zeroin_addr;
rt->mfc_bw_meter = NULL;
/* link into table */
LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
/* Add this entry to the end of the queue */
rt->mfc_stall = rte;
} else {
/* determine if q has overflowed */
struct rtdetq **p;
int npkts = 0;
/*
* XXX ouch! we need to append to the list, but we
* only have a pointer to the front, so we have to
* scan the entire list every time.
*/
for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
if (++npkts > MAX_UPQ) {
mrtstat.mrts_upq_ovflw++;
non_fatal:
free(rte, M_MRTABLE);
m_freem(mb0);
splx(s);
return (0);
}
/* Add this entry to the end of the queue */
*p = rte;
}
rte->next = NULL;
rte->m = mb0;
rte->ifp = ifp;
#ifdef UPCALL_TIMING
rte->t = tp;
#endif /* UPCALL_TIMING */
splx(s);
return (0);
}
}
/*ARGSUSED*/
static void
expire_upcalls(void *v)
{
int i;
int s;
s = splsoftnet();
for (i = 0; i < MFCTBLSIZ; i++) {
struct mfc *rt, *nrt;
if (nexpire[i] == 0)
continue;
for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
nrt = LIST_NEXT(rt, mfc_hash);
if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
continue;
nexpire[i]--;
/*
* free the bw_meter entries
*/
while (rt->mfc_bw_meter != NULL) {
struct bw_meter *x = rt->mfc_bw_meter;
rt->mfc_bw_meter = x->bm_mfc_next;
free(x, M_BWMETER);
}
++mrtstat.mrts_cache_cleanups;
if (mrtdebug & DEBUG_EXPIRE)
log(LOG_DEBUG,
"expire_upcalls: expiring (%x %x)\n",
ntohl(rt->mfc_origin.s_addr),
ntohl(rt->mfc_mcastgrp.s_addr));
expire_mfc(rt);
}
}
splx(s);
callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
expire_upcalls, NULL);
}
/*
* Packet forwarding routine once entry in the cache is made
*/
static int
#ifdef RSVP_ISI
ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
#else
ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
#endif /* RSVP_ISI */
{
struct ip *ip = mtod(m, struct ip *);
vifi_t vifi;
struct vif *vifp;
int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
/*
* Macro to send packet on vif. Since RSVP packets don't get counted on
* input, they shouldn't get counted on output, so statistics keeping is
* separate.
*/
#define MC_SEND(ip, vifp, m) do { \
if ((vifp)->v_flags & VIFF_TUNNEL) \
encap_send((ip), (vifp), (m)); \
else \
phyint_send((ip), (vifp), (m)); \
} while (/*CONSTCOND*/ 0)
#ifdef RSVP_ISI
/*
* If xmt_vif is not -1, send on only the requested vif.
*
* (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
*/
if (xmt_vif < numvifs) {
#ifdef PIM
if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
pim_register_send(ip, viftable + xmt_vif, m, rt);
else
#endif
MC_SEND(ip, viftable + xmt_vif, m);
return (1);
}
#endif /* RSVP_ISI */
/*
* Don't forward if it didn't arrive from the parent vif for its origin.
*/
vifi = rt->mfc_parent;
if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
/* came in the wrong interface */
if (mrtdebug & DEBUG_FORWARD)
log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
ifp, vifi,
vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
++mrtstat.mrts_wrong_if;
++rt->mfc_wrong_if;
/*
* If we are doing PIM assert processing, send a message
* to the routing daemon.
*
* XXX: A PIM-SM router needs the WRONGVIF detection so it
* can complete the SPT switch, regardless of the type
* of the iif (broadcast media, GRE tunnel, etc).
*/
if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
struct timeval now;
u_int32_t delta;
#ifdef PIM
if (ifp == &multicast_register_if)
pimstat.pims_rcv_registers_wrongiif++;
#endif
/* Get vifi for the incoming packet */
for (vifi = 0;
vifi < numvifs && viftable[vifi].v_ifp != ifp;
vifi++)
;
if (vifi >= numvifs) {
/* The iif is not found: ignore the packet. */
return (0);
}
if (rt->mfc_flags[vifi] &
MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
/* WRONGVIF disabled: ignore the packet */
return (0);
}
microtime(&now);
TV_DELTA(rt->mfc_last_assert, now, delta);
if (delta > ASSERT_MSG_TIME) {
struct igmpmsg *im;
int hlen = ip->ip_hl << 2;
struct mbuf *mm = m_copy(m, 0, hlen);
M_PULLUP(mm, hlen);
if (mm == NULL)
return (ENOBUFS);
rt->mfc_last_assert = now;
im = mtod(mm, struct igmpmsg *);
im->im_msgtype = IGMPMSG_WRONGVIF;
im->im_mbz = 0;
im->im_vif = vifi;
mrtstat.mrts_upcalls++;
sin.sin_addr = im->im_src;
if (socket_send(ip_mrouter, mm, &sin) < 0) {
log(LOG_WARNING,
"ip_mforward: ip_mrouter socket queue full\n");
++mrtstat.mrts_upq_sockfull;
return (ENOBUFS);
}
}
}
return (0);
}
/* If I sourced this packet, it counts as output, else it was input. */
if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
viftable[vifi].v_pkt_out++;
viftable[vifi].v_bytes_out += plen;
} else {
viftable[vifi].v_pkt_in++;
viftable[vifi].v_bytes_in += plen;
}
rt->mfc_pkt_cnt++;
rt->mfc_byte_cnt += plen;
/*
* For each vif, decide if a copy of the packet should be forwarded.
* Forward if:
* - the ttl exceeds the vif's threshold
* - there are group members downstream on interface
*/
for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
if ((rt->mfc_ttls[vifi] > 0) &&
(ip->ip_ttl > rt->mfc_ttls[vifi])) {
vifp->v_pkt_out++;
vifp->v_bytes_out += plen;
#ifdef PIM
if (vifp->v_flags & VIFF_REGISTER)
pim_register_send(ip, vifp, m, rt);
else
#endif
MC_SEND(ip, vifp, m);
}
/*
* Perform upcall-related bw measuring.
*/
if (rt->mfc_bw_meter != NULL) {
struct bw_meter *x;
struct timeval now;
microtime(&now);
for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
bw_meter_receive_packet(x, plen, &now);
}
return (0);
}
#ifdef RSVP_ISI
/*
* check if a vif number is legal/ok. This is used by ip_output.
*/
int
legal_vif_num(int vif)
{
if (vif >= 0 && vif < numvifs)
return (1);
else
return (0);
}
#endif /* RSVP_ISI */
static void
phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
{
struct mbuf *mb_copy;
int hlen = ip->ip_hl << 2;
/*
* Make a new reference to the packet; make sure that
* the IP header is actually copied, not just referenced,
* so that ip_output() only scribbles on the copy.
*/
mb_copy = m_copy(m, 0, M_COPYALL);
M_PULLUP(mb_copy, hlen);
if (mb_copy == NULL)
return;
if (vifp->v_rate_limit <= 0)
tbf_send_packet(vifp, mb_copy);
else
tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
ntohs(ip->ip_len));
}
static void
encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
{
struct mbuf *mb_copy;
struct ip *ip_copy;
int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
/* Take care of delayed checksums */
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
/*
* copy the old packet & pullup it's IP header into the
* new mbuf so we can modify it. Try to fill the new
* mbuf since if we don't the ethernet driver will.
*/
MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
if (mb_copy == NULL)
return;
mb_copy->m_data += max_linkhdr;
mb_copy->m_pkthdr.len = len;
mb_copy->m_len = sizeof(multicast_encap_iphdr);
if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
m_freem(mb_copy);
return;
}
i = MHLEN - max_linkhdr;
if (i > len)
i = len;
mb_copy = m_pullup(mb_copy, i);
if (mb_copy == NULL)
return;
/*
* fill in the encapsulating IP header.
*/
ip_copy = mtod(mb_copy, struct ip *);
*ip_copy = multicast_encap_iphdr;
ip_copy->ip_id = ip_newid();
ip_copy->ip_len = htons(len);
ip_copy->ip_src = vifp->v_lcl_addr;
ip_copy->ip_dst = vifp->v_rmt_addr;
/*
* turn the encapsulated IP header back into a valid one.
*/
ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
--ip->ip_ttl;
ip->ip_sum = 0;
mb_copy->m_data += sizeof(multicast_encap_iphdr);
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
mb_copy->m_data -= sizeof(multicast_encap_iphdr);
if (vifp->v_rate_limit <= 0)
tbf_send_packet(vifp, mb_copy);
else
tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
}
/*
* De-encapsulate a packet and feed it back through ip input.
*/
static void
vif_input(struct mbuf *m, ...)
{
int off, proto;
va_list ap;
struct vif *vifp;
int s;
struct ifqueue *ifq;
va_start(ap, m);
off = va_arg(ap, int);
proto = va_arg(ap, int);
va_end(ap);
vifp = (struct vif *)encap_getarg(m);
if (!vifp || proto != ENCAP_PROTO) {
m_freem(m);
mrtstat.mrts_bad_tunnel++;
return;
}
m_adj(m, off);
m->m_pkthdr.rcvif = vifp->v_ifp;
ifq = &ipintrq;
s = splnet();
if (IF_QFULL(ifq)) {
IF_DROP(ifq);
m_freem(m);
} else {
IF_ENQUEUE(ifq, m);
/*
* normally we would need a "schednetisr(NETISR_IP)"
* here but we were called by ip_input and it is going
* to loop back & try to dequeue the packet we just
* queued as soon as we return so we avoid the
* unnecessary software interrrupt.
*/
}
splx(s);
}
/*
* Check if the packet should be received on the vif denoted by arg.
* (The encap selection code will call this once per vif since each is
* registered separately.)
*/
static int
vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
{
struct vif *vifp;
struct ip ip;
#ifdef DIAGNOSTIC
if (!arg || proto != IPPROTO_IPV4)
panic("unexpected arg in vif_encapcheck");
#endif
/*
* Accept the packet only if the inner heaader is multicast
* and the outer header matches a tunnel-mode vif. Order
* checks in the hope that common non-matching packets will be
* rejected quickly. Assume that unicast IPv4 traffic in a
* parallel tunnel (e.g. gif(4)) is unlikely.
*/
/* Obtain the outer IP header and the vif pointer. */
m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
vifp = (struct vif *)arg;
/*
* The outer source must match the vif's remote peer address.
* For a multicast router with several tunnels, this is the
* only check that will fail on packets in other tunnels,
* assuming the local address is the same.
*/
if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
return 0;
/* The outer destination must match the vif's local address. */
if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
return 0;
/* The vif must be of tunnel type. */
if ((vifp->v_flags & VIFF_TUNNEL) == 0)
return 0;
/* Check that the inner destination is multicast. */
m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
if (!IN_MULTICAST(ip.ip_dst.s_addr))
return 0;
/*
* We have checked that both the outer src and dst addresses
* match the vif, and that the inner destination is multicast
* (224/5). By claiming more than 64, we intend to
* preferentially take packets that also match a parallel
* gif(4).
*/
return 32 + 32 + 5;
}
/*
* Token bucket filter module
*/
static void
tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
{
if (len > MAX_BKT_SIZE) {
/* drop if packet is too large */
mrtstat.mrts_pkt2large++;
m_freem(m);
return;
}
tbf_update_tokens(vifp);
/*
* If there are enough tokens, and the queue is empty, send this packet
* out immediately. Otherwise, try to insert it on this vif's queue.
*/
if (vifp->tbf_q_len == 0) {
if (len <= vifp->tbf_n_tok) {
vifp->tbf_n_tok -= len;
tbf_send_packet(vifp, m);
} else {
/* queue packet and timeout till later */
tbf_queue(vifp, m);
callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
tbf_reprocess_q, vifp);
}
} else {
if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
!tbf_dq_sel(vifp, ip)) {
/* queue full, and couldn't make room */
mrtstat.mrts_q_overflow++;
m_freem(m);
} else {
/* queue length low enough, or made room */
tbf_queue(vifp, m);
tbf_process_q(vifp);
}
}
}
/*
* adds a packet to the queue at the interface
*/
static void
tbf_queue(struct vif *vifp, struct mbuf *m)
{
int s = splsoftnet();
/* insert at tail */
*vifp->tbf_t = m;
vifp->tbf_t = &m->m_nextpkt;
vifp->tbf_q_len++;
splx(s);
}
/*
* processes the queue at the interface
*/
static void
tbf_process_q(struct vif *vifp)
{
struct mbuf *m;
int len;
int s = splsoftnet();
/*
* Loop through the queue at the interface and send as many packets
* as possible.
*/
for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
len = ntohs(mtod(m, struct ip *)->ip_len);
/* determine if the packet can be sent */
if (len <= vifp->tbf_n_tok) {
/* if so,
* reduce no of tokens, dequeue the packet,
* send the packet.
*/
if ((vifp->tbf_q = m->m_nextpkt) == NULL)
vifp->tbf_t = &vifp->tbf_q;
--vifp->tbf_q_len;
m->m_nextpkt = NULL;
vifp->tbf_n_tok -= len;
tbf_send_packet(vifp, m);
} else
break;
}
splx(s);
}
static void
tbf_reprocess_q(void *arg)
{
struct vif *vifp = arg;
if (ip_mrouter == NULL)
return;
tbf_update_tokens(vifp);
tbf_process_q(vifp);
if (vifp->tbf_q_len != 0)
callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
tbf_reprocess_q, vifp);
}
/* function that will selectively discard a member of the queue
* based on the precedence value and the priority
*/
static int
tbf_dq_sel(struct vif *vifp, struct ip *ip)
{
u_int p;
struct mbuf **mp, *m;
int s = splsoftnet();
p = priority(vifp, ip);
for (mp = &vifp->tbf_q, m = *mp;
m != NULL;
mp = &m->m_nextpkt, m = *mp) {
if (p > priority(vifp, mtod(m, struct ip *))) {
if ((*mp = m->m_nextpkt) == NULL)
vifp->tbf_t = mp;
--vifp->tbf_q_len;
m_freem(m);
mrtstat.mrts_drop_sel++;
splx(s);
return (1);
}
}
splx(s);
return (0);
}
static void
tbf_send_packet(struct vif *vifp, struct mbuf *m)
{
int error;
int s = splsoftnet();
if (vifp->v_flags & VIFF_TUNNEL) {
/* If tunnel options */
ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
IP_FORWARDING, (struct ip_moptions *)NULL,
(struct socket *)NULL);
} else {
/* if physical interface option, extract the options and then send */
struct ip_moptions imo;
imo.imo_multicast_ifp = vifp->v_ifp;
imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
imo.imo_multicast_loop = 1;
#ifdef RSVP_ISI
imo.imo_multicast_vif = -1;
#endif
error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
&imo, NULL);
if (mrtdebug & DEBUG_XMIT)
log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
(long)(vifp - viftable), error);
}
splx(s);
}
/* determine the current time and then
* the elapsed time (between the last time and time now)
* in milliseconds & update the no. of tokens in the bucket
*/
static void
tbf_update_tokens(struct vif *vifp)
{
struct timeval tp;
u_int32_t tm;
int s = splsoftnet();
microtime(&tp);
TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
/*
* This formula is actually
* "time in seconds" * "bytes/second".
*
* (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
*
* The (1000/1024) was introduced in add_vif to optimize
* this divide into a shift.
*/
vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
vifp->tbf_last_pkt_t = tp;
if (vifp->tbf_n_tok > MAX_BKT_SIZE)
vifp->tbf_n_tok = MAX_BKT_SIZE;
splx(s);
}
static int
priority(struct vif *vifp, struct ip *ip)
{
int prio = 50; /* the lowest priority -- default case */
/* temporary hack; may add general packet classifier some day */
/*
* The UDP port space is divided up into four priority ranges:
* [0, 16384) : unclassified - lowest priority
* [16384, 32768) : audio - highest priority
* [32768, 49152) : whiteboard - medium priority
* [49152, 65536) : video - low priority
*/
if (ip->ip_p == IPPROTO_UDP) {
struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
switch (ntohs(udp->uh_dport) & 0xc000) {
case 0x4000:
prio = 70;
break;
case 0x8000:
prio = 60;
break;
case 0xc000:
prio = 55;
break;
}
if (tbfdebug > 1)
log(LOG_DEBUG, "port %x prio %d\n",
ntohs(udp->uh_dport), prio);
}
return (prio);
}
/*
* End of token bucket filter modifications
*/
#ifdef RSVP_ISI
int
ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
{
int vifi, s;
if (rsvpdebug)
printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW ||
so->so_proto->pr_protocol != IPPROTO_RSVP)
return (EOPNOTSUPP);
/* Check mbuf. */
if (m == NULL || m->m_len != sizeof(int)) {
return (EINVAL);
}
vifi = *(mtod(m, int *));
if (rsvpdebug)
printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
vifi, rsvp_on);
s = splsoftnet();
/* Check vif. */
if (!legal_vif_num(vifi)) {
splx(s);
return (EADDRNOTAVAIL);
}
/* Check if socket is available. */
if (viftable[vifi].v_rsvpd != NULL) {
splx(s);
return (EADDRINUSE);
}
viftable[vifi].v_rsvpd = so;
/*
* This may seem silly, but we need to be sure we don't over-increment
* the RSVP counter, in case something slips up.
*/
if (!viftable[vifi].v_rsvp_on) {
viftable[vifi].v_rsvp_on = 1;
rsvp_on++;
}
splx(s);
return (0);
}
int
ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
{
int vifi, s;
if (rsvpdebug)
printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW ||
so->so_proto->pr_protocol != IPPROTO_RSVP)
return (EOPNOTSUPP);
/* Check mbuf. */
if (m == NULL || m->m_len != sizeof(int)) {
return (EINVAL);
}
vifi = *(mtod(m, int *));
s = splsoftnet();
/* Check vif. */
if (!legal_vif_num(vifi)) {
splx(s);
return (EADDRNOTAVAIL);
}
if (rsvpdebug)
printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
viftable[vifi].v_rsvpd, so);
viftable[vifi].v_rsvpd = NULL;
/*
* This may seem silly, but we need to be sure we don't over-decrement
* the RSVP counter, in case something slips up.
*/
if (viftable[vifi].v_rsvp_on) {
viftable[vifi].v_rsvp_on = 0;
rsvp_on--;
}
splx(s);
return (0);
}
void
ip_rsvp_force_done(struct socket *so)
{
int vifi, s;
/* Don't bother if it is not the right type of socket. */
if (so->so_type != SOCK_RAW ||
so->so_proto->pr_protocol != IPPROTO_RSVP)
return;
s = splsoftnet();
/*
* The socket may be attached to more than one vif...this
* is perfectly legal.
*/
for (vifi = 0; vifi < numvifs; vifi++) {
if (viftable[vifi].v_rsvpd == so) {
viftable[vifi].v_rsvpd = NULL;
/*
* This may seem silly, but we need to be sure we don't
* over-decrement the RSVP counter, in case something
* slips up.
*/
if (viftable[vifi].v_rsvp_on) {
viftable[vifi].v_rsvp_on = 0;
rsvp_on--;
}
}
}
splx(s);
return;
}
void
rsvp_input(struct mbuf *m, struct ifnet *ifp)
{
int vifi, s;
struct ip *ip = mtod(m, struct ip *);
static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
if (rsvpdebug)
printf("rsvp_input: rsvp_on %d\n", rsvp_on);
/*
* Can still get packets with rsvp_on = 0 if there is a local member
* of the group to which the RSVP packet is addressed. But in this
* case we want to throw the packet away.
*/
if (!rsvp_on) {
m_freem(m);
return;
}
/*
* If the old-style non-vif-associated socket is set, then use
* it and ignore the new ones.
*/
if (ip_rsvpd != NULL) {
if (rsvpdebug)
printf("rsvp_input: "
"Sending packet up old-style socket\n");
rip_input(m); /*XXX*/
return;
}
s = splsoftnet();
if (rsvpdebug)
printf("rsvp_input: check vifs\n");
/* Find which vif the packet arrived on. */
for (vifi = 0; vifi < numvifs; vifi++) {
if (viftable[vifi].v_ifp == ifp)
break;
}
if (vifi == numvifs) {
/* Can't find vif packet arrived on. Drop packet. */
if (rsvpdebug)
printf("rsvp_input: "
"Can't find vif for packet...dropping it.\n");
m_freem(m);
splx(s);
return;
}
if (rsvpdebug)
printf("rsvp_input: check socket\n");
if (viftable[vifi].v_rsvpd == NULL) {
/*
* drop packet, since there is no specific socket for this
* interface
*/
if (rsvpdebug)
printf("rsvp_input: No socket defined for vif %d\n",
vifi);
m_freem(m);
splx(s);
return;
}
rsvp_src.sin_addr = ip->ip_src;
if (rsvpdebug && m)
printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
if (rsvpdebug)
printf("rsvp_input: Failed to append to socket\n");
else
if (rsvpdebug)
printf("rsvp_input: send packet up\n");
splx(s);
}
#endif /* RSVP_ISI */
/*
* Code for bandwidth monitors
*/
/*
* Define common interface for timeval-related methods
*/
#define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
#define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
#define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
static uint32_t
compute_bw_meter_flags(struct bw_upcall *req)
{
uint32_t flags = 0;
if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
flags |= BW_METER_UNIT_PACKETS;
if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
flags |= BW_METER_UNIT_BYTES;
if (req->bu_flags & BW_UPCALL_GEQ)
flags |= BW_METER_GEQ;
if (req->bu_flags & BW_UPCALL_LEQ)
flags |= BW_METER_LEQ;
return flags;
}
/*
* Add a bw_meter entry
*/
static int
add_bw_upcall(struct mbuf *m)
{
int s;
struct mfc *mfc;
struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
struct timeval now;
struct bw_meter *x;
uint32_t flags;
struct bw_upcall *req;
if (m == NULL || m->m_len < sizeof(struct bw_upcall))
return EINVAL;
req = mtod(m, struct bw_upcall *);
if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
return EOPNOTSUPP;
/* Test if the flags are valid */
if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
return EINVAL;
if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
return EINVAL;
if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
== (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
return EINVAL;
/* Test if the threshold time interval is valid */
if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
return EINVAL;
flags = compute_bw_meter_flags(req);
/*
* Find if we have already same bw_meter entry
*/
s = splsoftnet();
mfc = mfc_find(&req->bu_src, &req->bu_dst);
if (mfc == NULL) {
splx(s);
return EADDRNOTAVAIL;
}
for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
&req->bu_threshold.b_time, ==)) &&
(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
(x->bm_flags & BW_METER_USER_FLAGS) == flags) {
splx(s);
return 0; /* XXX Already installed */
}
}
/* Allocate the new bw_meter entry */
x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
if (x == NULL) {
splx(s);
return ENOBUFS;
}
/* Set the new bw_meter entry */
x->bm_threshold.b_time = req->bu_threshold.b_time;
microtime(&now);
x->bm_start_time = now;
x->bm_threshold.b_packets = req->bu_threshold.b_packets;
x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags = flags;
x->bm_time_next = NULL;
x->bm_time_hash = BW_METER_BUCKETS;
/* Add the new bw_meter entry to the front of entries for this MFC */
x->bm_mfc = mfc;
x->bm_mfc_next = mfc->mfc_bw_meter;
mfc->mfc_bw_meter = x;
schedule_bw_meter(x, &now);
splx(s);
return 0;
}
static void
free_bw_list(struct bw_meter *list)
{
while (list != NULL) {
struct bw_meter *x = list;
list = list->bm_mfc_next;
unschedule_bw_meter(x);
free(x, M_BWMETER);
}
}
/*
* Delete one or multiple bw_meter entries
*/
static int
del_bw_upcall(struct mbuf *m)
{
int s;
struct mfc *mfc;
struct bw_meter *x;
struct bw_upcall *req;
if (m == NULL || m->m_len < sizeof(struct bw_upcall))
return EINVAL;
req = mtod(m, struct bw_upcall *);
if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
return EOPNOTSUPP;
s = splsoftnet();
/* Find the corresponding MFC entry */
mfc = mfc_find(&req->bu_src, &req->bu_dst);
if (mfc == NULL) {
splx(s);
return EADDRNOTAVAIL;
} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
/*
* Delete all bw_meter entries for this mfc
*/
struct bw_meter *list;
list = mfc->mfc_bw_meter;
mfc->mfc_bw_meter = NULL;
free_bw_list(list);
splx(s);
return 0;
} else { /* Delete a single bw_meter entry */
struct bw_meter *prev;
uint32_t flags = 0;
flags = compute_bw_meter_flags(req);
/* Find the bw_meter entry to delete */
for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
prev = x, x = x->bm_mfc_next) {
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
&req->bu_threshold.b_time, ==)) &&
(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
(x->bm_flags & BW_METER_USER_FLAGS) == flags)
break;
}
if (x != NULL) { /* Delete entry from the list for this MFC */
if (prev != NULL)
prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
else
x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
unschedule_bw_meter(x);
splx(s);
/* Free the bw_meter entry */
free(x, M_BWMETER);
return 0;
} else {
splx(s);
return EINVAL;
}
}
/* NOTREACHED */
}
/*
* Perform bandwidth measurement processing that may result in an upcall
*/
static void
bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
{
struct timeval delta;
delta = *nowp;
BW_TIMEVALDECR(&delta, &x->bm_start_time);
if (x->bm_flags & BW_METER_GEQ) {
/*
* Processing for ">=" type of bw_meter entry
*/
if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
/* Reset the bw_meter entry */
x->bm_start_time = *nowp;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
}
/* Record that a packet is received */
x->bm_measured.b_packets++;
x->bm_measured.b_bytes += plen;
/*
* Test if we should deliver an upcall
*/
if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
(x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
((x->bm_flags & BW_METER_UNIT_BYTES) &&
(x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
/* Prepare an upcall for delivery */
bw_meter_prepare_upcall(x, nowp);
x->bm_flags |= BW_METER_UPCALL_DELIVERED;
}
}
} else if (x->bm_flags & BW_METER_LEQ) {
/*
* Processing for "<=" type of bw_meter entry
*/
if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
/*
* We are behind time with the multicast forwarding table
* scanning for "<=" type of bw_meter entries, so test now
* if we should deliver an upcall.
*/
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
(x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
((x->bm_flags & BW_METER_UNIT_BYTES) &&
(x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
/* Prepare an upcall for delivery */
bw_meter_prepare_upcall(x, nowp);
}
/* Reschedule the bw_meter entry */
unschedule_bw_meter(x);
schedule_bw_meter(x, nowp);
}
/* Record that a packet is received */
x->bm_measured.b_packets++;
x->bm_measured.b_bytes += plen;
/*
* Test if we should restart the measuring interval
*/
if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
(x->bm_flags & BW_METER_UNIT_BYTES &&
x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
/* Don't restart the measuring interval */
} else {
/* Do restart the measuring interval */
/*
* XXX: note that we don't unschedule and schedule, because this
* might be too much overhead per packet. Instead, when we process
* all entries for a given timer hash bin, we check whether it is
* really a timeout. If not, we reschedule at that time.
*/
x->bm_start_time = *nowp;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
}
}
}
/*
* Prepare a bandwidth-related upcall
*/
static void
bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
{
struct timeval delta;
struct bw_upcall *u;
/*
* Compute the measured time interval
*/
delta = *nowp;
BW_TIMEVALDECR(&delta, &x->bm_start_time);
/*
* If there are too many pending upcalls, deliver them now
*/
if (bw_upcalls_n >= BW_UPCALLS_MAX)
bw_upcalls_send();
/*
* Set the bw_upcall entry
*/
u = &bw_upcalls[bw_upcalls_n++];
u->bu_src = x->bm_mfc->mfc_origin;
u->bu_dst = x->bm_mfc->mfc_mcastgrp;
u->bu_threshold.b_time = x->bm_threshold.b_time;
u->bu_threshold.b_packets = x->bm_threshold.b_packets;
u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
u->bu_measured.b_time = delta;
u->bu_measured.b_packets = x->bm_measured.b_packets;
u->bu_measured.b_bytes = x->bm_measured.b_bytes;
u->bu_flags = 0;
if (x->bm_flags & BW_METER_UNIT_PACKETS)
u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
if (x->bm_flags & BW_METER_UNIT_BYTES)
u->bu_flags |= BW_UPCALL_UNIT_BYTES;
if (x->bm_flags & BW_METER_GEQ)
u->bu_flags |= BW_UPCALL_GEQ;
if (x->bm_flags & BW_METER_LEQ)
u->bu_flags |= BW_UPCALL_LEQ;
}
/*
* Send the pending bandwidth-related upcalls
*/
static void
bw_upcalls_send(void)
{
struct mbuf *m;
int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
struct sockaddr_in k_igmpsrc = {
.sin_len = sizeof(k_igmpsrc),
.sin_family = AF_INET,
};
static struct igmpmsg igmpmsg = { 0, /* unused1 */
0, /* unused2 */
IGMPMSG_BW_UPCALL,/* im_msgtype */
0, /* im_mbz */
0, /* im_vif */
0, /* unused3 */
{ 0 }, /* im_src */
{ 0 } }; /* im_dst */
if (bw_upcalls_n == 0)
return; /* No pending upcalls */
bw_upcalls_n = 0;
/*
* Allocate a new mbuf, initialize it with the header and
* the payload for the pending calls.
*/
MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m == NULL) {
log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
return;
}
m->m_len = m->m_pkthdr.len = 0;
m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
/*
* Send the upcalls
* XXX do we need to set the address in k_igmpsrc ?
*/
mrtstat.mrts_upcalls++;
if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
++mrtstat.mrts_upq_sockfull;
}
}
/*
* Compute the timeout hash value for the bw_meter entries
*/
#define BW_METER_TIMEHASH(bw_meter, hash) \
do { \
struct timeval next_timeval = (bw_meter)->bm_start_time; \
\
BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
(hash) = next_timeval.tv_sec; \
if (next_timeval.tv_usec) \
(hash)++; /* XXX: make sure we don't timeout early */ \
(hash) %= BW_METER_BUCKETS; \
} while (/*CONSTCOND*/ 0)
/*
* Schedule a timer to process periodically bw_meter entry of type "<="
* by linking the entry in the proper hash bucket.
*/
static void
schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
{
int time_hash;
if (!(x->bm_flags & BW_METER_LEQ))
return; /* XXX: we schedule timers only for "<=" entries */
/*
* Reset the bw_meter entry
*/
x->bm_start_time = *nowp;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
/*
* Compute the timeout hash value and insert the entry
*/
BW_METER_TIMEHASH(x, time_hash);
x->bm_time_next = bw_meter_timers[time_hash];
bw_meter_timers[time_hash] = x;
x->bm_time_hash = time_hash;
}
/*
* Unschedule the periodic timer that processes bw_meter entry of type "<="
* by removing the entry from the proper hash bucket.
*/
static void
unschedule_bw_meter(struct bw_meter *x)
{
int time_hash;
struct bw_meter *prev, *tmp;
if (!(x->bm_flags & BW_METER_LEQ))
return; /* XXX: we schedule timers only for "<=" entries */
/*
* Compute the timeout hash value and delete the entry
*/
time_hash = x->bm_time_hash;
if (time_hash >= BW_METER_BUCKETS)
return; /* Entry was not scheduled */
for (prev = NULL, tmp = bw_meter_timers[time_hash];
tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
if (tmp == x)
break;
if (tmp == NULL)
panic("unschedule_bw_meter: bw_meter entry not found");
if (prev != NULL)
prev->bm_time_next = x->bm_time_next;
else
bw_meter_timers[time_hash] = x->bm_time_next;
x->bm_time_next = NULL;
x->bm_time_hash = BW_METER_BUCKETS;
}
/*
* Process all "<=" type of bw_meter that should be processed now,
* and for each entry prepare an upcall if necessary. Each processed
* entry is rescheduled again for the (periodic) processing.
*
* This is run periodically (once per second normally). On each round,
* all the potentially matching entries are in the hash slot that we are
* looking at.
*/
static void
bw_meter_process(void)
{
int s;
static uint32_t last_tv_sec; /* last time we processed this */
uint32_t loops;
int i;
struct timeval now, process_endtime;
microtime(&now);
if (last_tv_sec == now.tv_sec)
return; /* nothing to do */
loops = now.tv_sec - last_tv_sec;
last_tv_sec = now.tv_sec;
if (loops > BW_METER_BUCKETS)
loops = BW_METER_BUCKETS;
s = splsoftnet();
/*
* Process all bins of bw_meter entries from the one after the last
* processed to the current one. On entry, i points to the last bucket
* visited, so we need to increment i at the beginning of the loop.
*/
for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
struct bw_meter *x, *tmp_list;
if (++i >= BW_METER_BUCKETS)
i = 0;
/* Disconnect the list of bw_meter entries from the bin */
tmp_list = bw_meter_timers[i];
bw_meter_timers[i] = NULL;
/* Process the list of bw_meter entries */
while (tmp_list != NULL) {
x = tmp_list;
tmp_list = tmp_list->bm_time_next;
/* Test if the time interval is over */
process_endtime = x->bm_start_time;
BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
/* Not yet: reschedule, but don't reset */
int time_hash;
BW_METER_TIMEHASH(x, time_hash);
if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
/*
* XXX: somehow the bin processing is a bit ahead of time.
* Put the entry in the next bin.
*/
if (++time_hash >= BW_METER_BUCKETS)
time_hash = 0;
}
x->bm_time_next = bw_meter_timers[time_hash];
bw_meter_timers[time_hash] = x;
x->bm_time_hash = time_hash;
continue;
}
/*
* Test if we should deliver an upcall
*/
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
(x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
((x->bm_flags & BW_METER_UNIT_BYTES) &&
(x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
/* Prepare an upcall for delivery */
bw_meter_prepare_upcall(x, &now);
}
/*
* Reschedule for next processing
*/
schedule_bw_meter(x, &now);
}
}
/* Send all upcalls that are pending delivery */
bw_upcalls_send();
splx(s);
}
/*
* A periodic function for sending all upcalls that are pending delivery
*/
static void
expire_bw_upcalls_send(void *unused)
{
int s;
s = splsoftnet();
bw_upcalls_send();
splx(s);
callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
expire_bw_upcalls_send, NULL);
}
/*
* A periodic function for periodic scanning of the multicast forwarding
* table for processing all "<=" bw_meter entries.
*/
static void
expire_bw_meter_process(void *unused)
{
if (mrt_api_config & MRT_MFC_BW_UPCALL)
bw_meter_process();
callout_reset(&bw_meter_ch, BW_METER_PERIOD,
expire_bw_meter_process, NULL);
}
/*
* End of bandwidth monitoring code
*/
#ifdef PIM
/*
* Send the packet up to the user daemon, or eventually do kernel encapsulation
*/
static int
pim_register_send(struct ip *ip, struct vif *vifp,
struct mbuf *m, struct mfc *rt)
{
struct mbuf *mb_copy, *mm;
if (mrtdebug & DEBUG_PIM)
log(LOG_DEBUG, "pim_register_send: ");
mb_copy = pim_register_prepare(ip, m);
if (mb_copy == NULL)
return ENOBUFS;
/*
* Send all the fragments. Note that the mbuf for each fragment
* is freed by the sending machinery.
*/
for (mm = mb_copy; mm; mm = mb_copy) {
mb_copy = mm->m_nextpkt;
mm->m_nextpkt = NULL;
mm = m_pullup(mm, sizeof(struct ip));
if (mm != NULL) {
ip = mtod(mm, struct ip *);
if ((mrt_api_config & MRT_MFC_RP) &&
!in_nullhost(rt->mfc_rp)) {
pim_register_send_rp(ip, vifp, mm, rt);
} else {
pim_register_send_upcall(ip, vifp, mm, rt);
}
}
}
return 0;
}
/*
* Return a copy of the data packet that is ready for PIM Register
* encapsulation.
* XXX: Note that in the returned copy the IP header is a valid one.
*/
static struct mbuf *
pim_register_prepare(struct ip *ip, struct mbuf *m)
{
struct mbuf *mb_copy = NULL;
int mtu;
/* Take care of delayed checksums */
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
/*
* Copy the old packet & pullup its IP header into the
* new mbuf so we can modify it.
*/
mb_copy = m_copy(m, 0, M_COPYALL);
if (mb_copy == NULL)
return NULL;
mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
if (mb_copy == NULL)
return NULL;
/* take care of the TTL */
ip = mtod(mb_copy, struct ip *);
--ip->ip_ttl;
/* Compute the MTU after the PIM Register encapsulation */
mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
if (ntohs(ip->ip_len) <= mtu) {
/* Turn the IP header into a valid one */
ip->ip_sum = 0;
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
} else {
/* Fragment the packet */
if (ip_fragment(mb_copy, NULL, mtu) != 0) {
/* XXX: mb_copy was freed by ip_fragment() */
return NULL;
}
}
return mb_copy;
}
/*
* Send an upcall with the data packet to the user-level process.
*/
static int
pim_register_send_upcall(struct ip *ip, struct vif *vifp,
struct mbuf *mb_copy, struct mfc *rt)
{
struct mbuf *mb_first;
int len = ntohs(ip->ip_len);
struct igmpmsg *im;
struct sockaddr_in k_igmpsrc = {
.sin_len = sizeof(k_igmpsrc),
.sin_family = AF_INET,
};
/*
* Add a new mbuf with an upcall header
*/
MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
if (mb_first == NULL) {
m_freem(mb_copy);
return ENOBUFS;
}
mb_first->m_data += max_linkhdr;
mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
mb_first->m_len = sizeof(struct igmpmsg);
mb_first->m_next = mb_copy;
/* Send message to routing daemon */
im = mtod(mb_first, struct igmpmsg *);
im->im_msgtype = IGMPMSG_WHOLEPKT;
im->im_mbz = 0;
im->im_vif = vifp - viftable;
im->im_src = ip->ip_src;
im->im_dst = ip->ip_dst;
k_igmpsrc.sin_addr = ip->ip_src;
mrtstat.mrts_upcalls++;
if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
if (mrtdebug & DEBUG_PIM)
log(LOG_WARNING,
"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
++mrtstat.mrts_upq_sockfull;
return ENOBUFS;
}
/* Keep statistics */
pimstat.pims_snd_registers_msgs++;
pimstat.pims_snd_registers_bytes += len;
return 0;
}
/*
* Encapsulate the data packet in PIM Register message and send it to the RP.
*/
static int
pim_register_send_rp(struct ip *ip, struct vif *vifp,
struct mbuf *mb_copy, struct mfc *rt)
{
struct mbuf *mb_first;
struct ip *ip_outer;
struct pim_encap_pimhdr *pimhdr;
int len = ntohs(ip->ip_len);
vifi_t vifi = rt->mfc_parent;
if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
m_freem(mb_copy);
return EADDRNOTAVAIL; /* The iif vif is invalid */
}
/*
* Add a new mbuf with the encapsulating header
*/
MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
if (mb_first == NULL) {
m_freem(mb_copy);
return ENOBUFS;
}
mb_first->m_data += max_linkhdr;
mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
mb_first->m_next = mb_copy;
mb_first->m_pkthdr.len = len + mb_first->m_len;
/*
* Fill in the encapsulating IP and PIM header
*/
ip_outer = mtod(mb_first, struct ip *);
*ip_outer = pim_encap_iphdr;
ip_outer->ip_id = ip_newid();
ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
sizeof(pim_encap_pimhdr));
ip_outer->ip_src = viftable[vifi].v_lcl_addr;
ip_outer->ip_dst = rt->mfc_rp;
/*
* Copy the inner header TOS to the outer header, and take care of the
* IP_DF bit.
*/
ip_outer->ip_tos = ip->ip_tos;
if (ntohs(ip->ip_off) & IP_DF)
ip_outer->ip_off |= htons(IP_DF);
pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
+ sizeof(pim_encap_iphdr));
*pimhdr = pim_encap_pimhdr;
/* If the iif crosses a border, set the Border-bit */
if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
mb_first->m_data += sizeof(pim_encap_iphdr);
pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
mb_first->m_data -= sizeof(pim_encap_iphdr);
if (vifp->v_rate_limit == 0)
tbf_send_packet(vifp, mb_first);
else
tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
/* Keep statistics */
pimstat.pims_snd_registers_msgs++;
pimstat.pims_snd_registers_bytes += len;
return 0;
}
/*
* PIM-SMv2 and PIM-DM messages processing.
* Receives and verifies the PIM control messages, and passes them
* up to the listening socket, using rip_input().
* The only message with special processing is the PIM_REGISTER message
* (used by PIM-SM): the PIM header is stripped off, and the inner packet
* is passed to if_simloop().
*/
void
pim_input(struct mbuf *m, ...)
{
struct ip *ip = mtod(m, struct ip *);
struct pim *pim;
int minlen;
int datalen;
int ip_tos;
int proto;
int iphlen;
va_list ap;
va_start(ap, m);
iphlen = va_arg(ap, int);
proto = va_arg(ap, int);
va_end(ap);
datalen = ntohs(ip->ip_len) - iphlen;
/* Keep statistics */
pimstat.pims_rcv_total_msgs++;
pimstat.pims_rcv_total_bytes += datalen;
/*
* Validate lengths
*/
if (datalen < PIM_MINLEN) {
pimstat.pims_rcv_tooshort++;
log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
datalen, (u_long)ip->ip_src.s_addr);
m_freem(m);
return;
}
/*
* If the packet is at least as big as a REGISTER, go agead
* and grab the PIM REGISTER header size, to avoid another
* possible m_pullup() later.
*
* PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
* PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
*/
minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
/*
* Get the IP and PIM headers in contiguous memory, and
* possibly the PIM REGISTER header.
*/
if ((m->m_flags & M_EXT || m->m_len < minlen) &&
(m = m_pullup(m, minlen)) == NULL) {
log(LOG_ERR, "pim_input: m_pullup failure\n");
return;
}
/* m_pullup() may have given us a new mbuf so reset ip. */
ip = mtod(m, struct ip *);
ip_tos = ip->ip_tos;
/* adjust mbuf to point to the PIM header */
m->m_data += iphlen;
m->m_len -= iphlen;
pim = mtod(m, struct pim *);
/*
* Validate checksum. If PIM REGISTER, exclude the data packet.
*
* XXX: some older PIMv2 implementations don't make this distinction,
* so for compatibility reason perform the checksum over part of the
* message, and if error, then over the whole message.
*/
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
/* do nothing, checksum okay */
} else if (in_cksum(m, datalen)) {
pimstat.pims_rcv_badsum++;
if (mrtdebug & DEBUG_PIM)
log(LOG_DEBUG, "pim_input: invalid checksum");
m_freem(m);
return;
}
/* PIM version check */
if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
pimstat.pims_rcv_badversion++;
log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
PIM_VT_V(pim->pim_vt), PIM_VERSION);
m_freem(m);
return;
}
/* restore mbuf back to the outer IP */
m->m_data -= iphlen;
m->m_len += iphlen;
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
/*
* Since this is a REGISTER, we'll make a copy of the register
* headers ip + pim + u_int32 + encap_ip, to be passed up to the
* routing daemon.
*/
int s;
struct sockaddr_in dst = {
.sin_len = sizeof(dst),
.sin_family = AF_INET,
};
struct mbuf *mcp;
struct ip *encap_ip;
u_int32_t *reghdr;
struct ifnet *vifp;
s = splsoftnet();
if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
splx(s);
if (mrtdebug & DEBUG_PIM)
log(LOG_DEBUG,
"pim_input: register vif not set: %d\n", reg_vif_num);
m_freem(m);
return;
}
/* XXX need refcnt? */
vifp = viftable[reg_vif_num].v_ifp;
splx(s);
/*
* Validate length
*/
if (datalen < PIM_REG_MINLEN) {
pimstat.pims_rcv_tooshort++;
pimstat.pims_rcv_badregisters++;
log(LOG_ERR,
"pim_input: register packet size too small %d from %lx\n",
datalen, (u_long)ip->ip_src.s_addr);
m_freem(m);
return;
}
reghdr = (u_int32_t *)(pim + 1);
encap_ip = (struct ip *)(reghdr + 1);
if (mrtdebug & DEBUG_PIM) {
log(LOG_DEBUG,
"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
(u_long)ntohl(encap_ip->ip_src.s_addr),
(u_long)ntohl(encap_ip->ip_dst.s_addr),
ntohs(encap_ip->ip_len));
}
/* verify the version number of the inner packet */
if (encap_ip->ip_v != IPVERSION) {
pimstat.pims_rcv_badregisters++;
if (mrtdebug & DEBUG_PIM) {
log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
"of the inner packet\n", encap_ip->ip_v);
}
m_freem(m);
return;
}
/* verify the inner packet is destined to a mcast group */
if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
pimstat.pims_rcv_badregisters++;
if (mrtdebug & DEBUG_PIM)
log(LOG_DEBUG,
"pim_input: inner packet of register is not "
"multicast %lx\n",
(u_long)ntohl(encap_ip->ip_dst.s_addr));
m_freem(m);
return;
}
/* If a NULL_REGISTER, pass it to the daemon */
if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
goto pim_input_to_daemon;
/*
* Copy the TOS from the outer IP header to the inner IP header.
*/
if (encap_ip->ip_tos != ip_tos) {
/* Outer TOS -> inner TOS */
encap_ip->ip_tos = ip_tos;
/* Recompute the inner header checksum. Sigh... */
/* adjust mbuf to point to the inner IP header */
m->m_data += (iphlen + PIM_MINLEN);
m->m_len -= (iphlen + PIM_MINLEN);
encap_ip->ip_sum = 0;
encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
/* restore mbuf to point back to the outer IP header */
m->m_data -= (iphlen + PIM_MINLEN);
m->m_len += (iphlen + PIM_MINLEN);
}
/*
* Decapsulate the inner IP packet and loopback to forward it
* as a normal multicast packet. Also, make a copy of the
* outer_iphdr + pimhdr + reghdr + encap_iphdr
* to pass to the daemon later, so it can take the appropriate
* actions (e.g., send back PIM_REGISTER_STOP).
* XXX: here m->m_data points to the outer IP header.
*/
mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
if (mcp == NULL) {
log(LOG_ERR,
"pim_input: pim register: could not copy register head\n");
m_freem(m);
return;
}
/* Keep statistics */
/* XXX: registers_bytes include only the encap. mcast pkt */
pimstat.pims_rcv_registers_msgs++;
pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
/*
* forward the inner ip packet; point m_data at the inner ip.
*/
m_adj(m, iphlen + PIM_MINLEN);
if (mrtdebug & DEBUG_PIM) {
log(LOG_DEBUG,
"pim_input: forwarding decapsulated register: "
"src %lx, dst %lx, vif %d\n",
(u_long)ntohl(encap_ip->ip_src.s_addr),
(u_long)ntohl(encap_ip->ip_dst.s_addr),
reg_vif_num);
}
/* NB: vifp was collected above; can it change on us? */
looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL);
/* prepare the register head to send to the mrouting daemon */
m = mcp;
}
pim_input_to_daemon:
/*
* Pass the PIM message up to the daemon; if it is a Register message,
* pass the 'head' only up to the daemon. This includes the
* outer IP header, PIM header, PIM-Register header and the
* inner IP header.
* XXX: the outer IP header pkt size of a Register is not adjust to
* reflect the fact that the inner multicast data is truncated.
*/
rip_input(m, iphlen, proto);
return;
}
#endif /* PIM */