NetBSD/dist/ntp/ntpd/ntp_request.c
2000-04-22 15:49:31 +00:00

2468 lines
61 KiB
C

/* $NetBSD: ntp_request.c,v 1.2 2000/04/22 15:49:33 simonb Exp $ */
/*
* ntp_request.c - respond to information requests
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <sys/types.h>
#include <stdio.h>
#include <signal.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_request.h"
#include "ntp_control.h"
#include "ntp_refclock.h"
#include "ntp_if.h"
#include "ntp_stdlib.h"
#include "recvbuff.h"
#ifdef KERNEL_PLL
#include "ntp_syscall.h"
#endif /* KERNEL_PLL */
/*
* Structure to hold request procedure information
*/
#define NOAUTH 0
#define AUTH 1
#define NO_REQUEST (-1)
struct req_proc {
short request_code; /* defined request code */
short needs_auth; /* true when authentication needed */
short sizeofitem; /* size of request data item */
void (*handler) P((struct sockaddr_in *, struct interface *,
struct req_pkt *)); /* routine to handle request */
};
/*
* Universal request codes
*/
static struct req_proc univ_codes[] = {
{ NO_REQUEST, NOAUTH, 0, 0 }
};
static void req_ack P((struct sockaddr_in *, struct interface *, struct req_pkt *, int));
static char * prepare_pkt P((struct sockaddr_in *, struct interface *, struct req_pkt *, u_int));
static char * more_pkt P((void));
static void flush_pkt P((void));
static void peer_list P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void peer_list_sum P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void peer_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void peer_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void sys_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void sys_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void mem_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void io_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void timer_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void loop_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void dns_a P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_conf P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_unconf P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void set_sys_flag P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void clr_sys_flag P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void setclr_flags P((struct sockaddr_in *, struct interface *, struct req_pkt *, u_long));
static void list_restrict P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_resaddflags P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_ressubflags P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_unrestrict P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_restrict P((struct sockaddr_in *, struct interface *, struct req_pkt *, int));
static void mon_getlist_0 P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void mon_getlist_1 P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void reset_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void reset_peer P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_key_reread P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void trust_key P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void untrust_key P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_trustkey P((struct sockaddr_in *, struct interface *, struct req_pkt *, u_long));
static void get_auth_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void reset_auth_stats P((void));
static void req_get_traps P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void req_set_trap P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void req_clr_trap P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_setclr_trap P((struct sockaddr_in *, struct interface *, struct req_pkt *, int));
static void set_request_keyid P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void set_control_keyid P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void get_ctl_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
#ifdef KERNEL_PLL
static void get_kernel_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
#endif /* KERNEL_PLL */
#ifdef REFCLOCK
static void get_clock_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void set_clock_fudge P((struct sockaddr_in *, struct interface *, struct req_pkt *));
#endif /* REFCLOCK */
#ifdef REFCLOCK
static void get_clkbug_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
#endif /* REFCLOCK */
/*
* ntpd request codes
*/
static struct req_proc ntp_codes[] = {
{ REQ_PEER_LIST, NOAUTH, 0, peer_list },
{ REQ_PEER_LIST_SUM, NOAUTH, 0, peer_list_sum },
{ REQ_PEER_INFO, NOAUTH, sizeof(struct info_peer_list), peer_info },
{ REQ_PEER_STATS, NOAUTH, sizeof(struct info_peer_list), peer_stats },
{ REQ_SYS_INFO, NOAUTH, 0, sys_info },
{ REQ_SYS_STATS, NOAUTH, 0, sys_stats },
{ REQ_IO_STATS, NOAUTH, 0, io_stats },
{ REQ_MEM_STATS, NOAUTH, 0, mem_stats },
{ REQ_LOOP_INFO, NOAUTH, 0, loop_info },
{ REQ_TIMER_STATS, NOAUTH, 0, timer_stats },
{ REQ_HOSTNAME_ASSOCID, AUTH, sizeof(struct info_dns_assoc), dns_a },
{ REQ_CONFIG, AUTH, sizeof(struct conf_peer), do_conf },
{ REQ_UNCONFIG, AUTH, sizeof(struct conf_unpeer), do_unconf },
{ REQ_SET_SYS_FLAG, AUTH, sizeof(struct conf_sys_flags), set_sys_flag },
{ REQ_CLR_SYS_FLAG, AUTH, sizeof(struct conf_sys_flags), clr_sys_flag },
{ REQ_GET_RESTRICT, NOAUTH, 0, list_restrict },
{ REQ_RESADDFLAGS, AUTH, sizeof(struct conf_restrict), do_resaddflags },
{ REQ_RESSUBFLAGS, AUTH, sizeof(struct conf_restrict), do_ressubflags },
{ REQ_UNRESTRICT, AUTH, sizeof(struct conf_restrict), do_unrestrict },
{ REQ_MON_GETLIST, NOAUTH, 0, mon_getlist_0 },
{ REQ_MON_GETLIST_1, NOAUTH, 0, mon_getlist_1 },
{ REQ_RESET_STATS, AUTH, sizeof(struct reset_flags), reset_stats },
{ REQ_RESET_PEER, AUTH, sizeof(struct conf_unpeer), reset_peer },
{ REQ_REREAD_KEYS, AUTH, 0, do_key_reread },
{ REQ_TRUSTKEY, AUTH, sizeof(u_long), trust_key },
{ REQ_UNTRUSTKEY, AUTH, sizeof(u_long), untrust_key },
{ REQ_AUTHINFO, NOAUTH, 0, get_auth_info },
{ REQ_TRAPS, NOAUTH, 0, req_get_traps },
{ REQ_ADD_TRAP, AUTH, sizeof(struct conf_trap), req_set_trap },
{ REQ_CLR_TRAP, AUTH, sizeof(struct conf_trap), req_clr_trap },
{ REQ_REQUEST_KEY, AUTH, sizeof(u_long), set_request_keyid },
{ REQ_CONTROL_KEY, AUTH, sizeof(u_long), set_control_keyid },
{ REQ_GET_CTLSTATS, NOAUTH, 0, get_ctl_stats },
#ifdef KERNEL_PLL
{ REQ_GET_KERNEL, NOAUTH, 0, get_kernel_info },
#endif
#ifdef REFCLOCK
{ REQ_GET_CLOCKINFO, NOAUTH, sizeof(u_int32), get_clock_info },
{ REQ_SET_CLKFUDGE, AUTH, sizeof(struct conf_fudge), set_clock_fudge },
{ REQ_GET_CLKBUGINFO, NOAUTH, sizeof(u_int32), get_clkbug_info },
#endif
{ NO_REQUEST, NOAUTH, 0, 0 }
};
/*
* Authentication keyid used to authenticate requests. Zero means we
* don't allow writing anything.
*/
keyid_t info_auth_keyid;
/*
* Statistic counters to keep track of requests and responses.
*/
u_long numrequests; /* number of requests we've received */
u_long numresppkts; /* number of resp packets sent with data */
u_long errorcounter[INFO_ERR_AUTH+1]; /* lazy way to count errors, indexed */
/* by the error code */
/*
* A hack. To keep the authentication module clear of ntp-ism's, we
* include a time reset variable for its stats here.
*/
static u_long auth_timereset;
/*
* Response packet used by these routines. Also some state information
* so that we can handle packet formatting within a common set of
* subroutines. Note we try to enter data in place whenever possible,
* but the need to set the more bit correctly means we occasionally
* use the extra buffer and copy.
*/
static struct resp_pkt rpkt;
static int reqver;
static int seqno;
static int nitems;
static int itemsize;
static int databytes;
static char exbuf[RESP_DATA_SIZE];
static int usingexbuf;
static struct sockaddr_in *toaddr;
static struct interface *frominter;
/*
* init_request - initialize request data
*/
void
init_request (void)
{
int i;
numrequests = 0;
numresppkts = 0;
auth_timereset = 0;
info_auth_keyid = 0; /* by default, can't do this */
for (i = 0; i < sizeof(errorcounter)/sizeof(errorcounter[0]); i++)
errorcounter[i] = 0;
}
/*
* req_ack - acknowledge request with no data
*/
static void
req_ack(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt,
int errcode
)
{
/*
* fill in the fields
*/
rpkt.rm_vn_mode = RM_VN_MODE(RESP_BIT, 0, reqver);
rpkt.auth_seq = AUTH_SEQ(0, 0);
rpkt.implementation = inpkt->implementation;
rpkt.request = inpkt->request;
rpkt.err_nitems = ERR_NITEMS(errcode, 0);
rpkt.mbz_itemsize = MBZ_ITEMSIZE(0);
/*
* send packet and bump counters
*/
sendpkt(srcadr, inter, -1, (struct pkt *)&rpkt, RESP_HEADER_SIZE);
errorcounter[errcode]++;
}
/*
* prepare_pkt - prepare response packet for transmission, return pointer
* to storage for data item.
*/
static char *
prepare_pkt(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *pkt,
u_int structsize
)
{
#ifdef DEBUG
if (debug > 3)
printf("request: preparing pkt\n");
#endif
/*
* Fill in the implementation, reqest and itemsize fields
* since these won't change.
*/
rpkt.implementation = pkt->implementation;
rpkt.request = pkt->request;
rpkt.mbz_itemsize = MBZ_ITEMSIZE(structsize);
/*
* Compute the static data needed to carry on.
*/
toaddr = srcadr;
frominter = inter;
seqno = 0;
nitems = 0;
itemsize = structsize;
databytes = 0;
usingexbuf = 0;
/*
* return the beginning of the packet buffer.
*/
return &rpkt.data[0];
}
/*
* more_pkt - return a data pointer for a new item.
*/
static char *
more_pkt(void)
{
/*
* If we were using the extra buffer, send the packet.
*/
if (usingexbuf) {
#ifdef DEBUG
if (debug > 2)
printf("request: sending pkt\n");
#endif
rpkt.rm_vn_mode = RM_VN_MODE(RESP_BIT, MORE_BIT, reqver);
rpkt.auth_seq = AUTH_SEQ(0, seqno);
rpkt.err_nitems = htons((u_short)nitems);
sendpkt(toaddr, frominter, -1, (struct pkt *)&rpkt,
RESP_HEADER_SIZE+databytes);
numresppkts++;
/*
* Copy data out of exbuf into the packet.
*/
memmove(&rpkt.data[0], exbuf, (unsigned)itemsize);
seqno++;
databytes = 0;
nitems = 0;
usingexbuf = 0;
}
databytes += itemsize;
nitems++;
if (databytes + itemsize <= RESP_DATA_SIZE) {
#ifdef DEBUG
if (debug > 3)
printf("request: giving him more data\n");
#endif
/*
* More room in packet. Give him the
* next address.
*/
return &rpkt.data[databytes];
} else {
/*
* No room in packet. Give him the extra
* buffer unless this was the last in the sequence.
*/
#ifdef DEBUG
if (debug > 3)
printf("request: into extra buffer\n");
#endif
if (seqno == MAXSEQ)
return (char *)0;
else {
usingexbuf = 1;
return exbuf;
}
}
}
/*
* flush_pkt - we're done, return remaining information.
*/
static void
flush_pkt(void)
{
#ifdef DEBUG
if (debug > 2)
printf("request: flushing packet, %d items\n", nitems);
#endif
/*
* Must send the last packet. If nothing in here and nothing
* has been sent, send an error saying no data to be found.
*/
if (seqno == 0 && nitems == 0)
req_ack(toaddr, frominter, (struct req_pkt *)&rpkt,
INFO_ERR_NODATA);
else {
rpkt.rm_vn_mode = RM_VN_MODE(RESP_BIT, 0, reqver);
rpkt.auth_seq = AUTH_SEQ(0, seqno);
rpkt.err_nitems = htons((u_short)nitems);
sendpkt(toaddr, frominter, -1, (struct pkt *)&rpkt,
RESP_HEADER_SIZE+databytes);
numresppkts++;
}
}
/*
* process_private - process private mode (7) packets
*/
void
process_private(
struct recvbuf *rbufp,
int mod_okay
)
{
struct req_pkt *inpkt;
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_proc *proc;
int ec;
/*
* Initialize pointers, for convenience
*/
inpkt = (struct req_pkt *)&rbufp->recv_pkt;
srcadr = &rbufp->recv_srcadr;
inter = rbufp->dstadr;
#ifdef DEBUG
if (debug > 2)
printf("process_private: impl %d req %d\n",
inpkt->implementation, inpkt->request);
#endif
/*
* Do some sanity checks on the packet. Return a format
* error if it fails.
*/
ec = 0;
if ( (++ec, ISRESPONSE(inpkt->rm_vn_mode))
|| (++ec, ISMORE(inpkt->rm_vn_mode))
|| (++ec, INFO_VERSION(inpkt->rm_vn_mode) > NTP_VERSION)
|| (++ec, INFO_VERSION(inpkt->rm_vn_mode) < NTP_OLDVERSION)
|| (++ec, INFO_SEQ(inpkt->auth_seq) != 0)
|| (++ec, INFO_ERR(inpkt->err_nitems) != 0)
|| (++ec, INFO_MBZ(inpkt->mbz_itemsize) != 0)
|| (++ec, rbufp->recv_length > REQ_LEN_MAC)
|| (++ec, rbufp->recv_length < REQ_LEN_NOMAC)
) {
msyslog(LOG_ERR, "process_private: INFO_ERR_FMT: test %d failed", ec);
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
reqver = INFO_VERSION(inpkt->rm_vn_mode);
/*
* Get the appropriate procedure list to search.
*/
if (inpkt->implementation == IMPL_UNIV)
proc = univ_codes;
else if (inpkt->implementation == IMPL_XNTPD)
proc = ntp_codes;
else {
req_ack(srcadr, inter, inpkt, INFO_ERR_IMPL);
return;
}
/*
* Search the list for the request codes. If it isn't one
* we know, return an error.
*/
while (proc->request_code != NO_REQUEST) {
if (proc->request_code == (short) inpkt->request)
break;
proc++;
}
if (proc->request_code == NO_REQUEST) {
req_ack(srcadr, inter, inpkt, INFO_ERR_REQ);
return;
}
#ifdef DEBUG
if (debug > 3)
printf("found request in tables\n");
#endif
/*
* If we need to authenticate, do so. Note that an
* authenticatable packet must include a mac field, must
* have used key info_auth_keyid and must have included
* a time stamp in the appropriate field. The time stamp
* must be within INFO_TS_MAXSKEW of the receive
* time stamp.
*/
if (proc->needs_auth && sys_authenticate) {
l_fp ftmp;
double dtemp;
/*
* If this guy is restricted from doing this, don't let him
* If wrong key was used, or packet doesn't have mac, return.
*/
if (!INFO_IS_AUTH(inpkt->auth_seq) || info_auth_keyid == 0
|| ntohl(inpkt->keyid) != info_auth_keyid) {
#ifdef DEBUG
if (debug > 4)
printf("failed auth %d info_auth_keyid %lu pkt keyid %lu\n",
INFO_IS_AUTH(inpkt->auth_seq),
(u_long)info_auth_keyid,
(u_long)ntohl(inpkt->keyid));
#endif
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
if (rbufp->recv_length > REQ_LEN_MAC) {
#ifdef DEBUG
if (debug > 4)
printf("bad pkt length %d\n",
rbufp->recv_length);
#endif
msyslog(LOG_ERR, "process_private: bad pkt length %d",
rbufp->recv_length);
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
if (!mod_okay || !authhavekey(info_auth_keyid)) {
#ifdef DEBUG
if (debug > 4)
printf("failed auth mod_okay %d\n", mod_okay);
#endif
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
/*
* calculate absolute time difference between xmit time stamp
* and receive time stamp. If too large, too bad.
*/
NTOHL_FP(&inpkt->tstamp, &ftmp);
L_SUB(&ftmp, &rbufp->recv_time);
LFPTOD(&ftmp, dtemp);
if (fabs(dtemp) >= INFO_TS_MAXSKEW) {
/*
* He's a loser. Tell him.
*/
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
/*
* So far so good. See if decryption works out okay.
*/
if (!authdecrypt(info_auth_keyid, (u_int32 *)inpkt,
REQ_LEN_NOMAC, (int)(rbufp->recv_length - REQ_LEN_NOMAC))) {
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
}
/*
* If we need data, check to see if we have some. If we
* don't, check to see that there is none (picky, picky).
*/
if (INFO_ITEMSIZE(inpkt->mbz_itemsize) != proc->sizeofitem) {
msyslog(LOG_ERR, "INFO_ITEMSIZE(inpkt->mbz_itemsize) != proc->sizeofitem: %d != %d",
INFO_ITEMSIZE(inpkt->mbz_itemsize), proc->sizeofitem);
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
if (proc->sizeofitem != 0)
if (proc->sizeofitem*INFO_NITEMS(inpkt->err_nitems)
> sizeof(inpkt->data)) {
msyslog(LOG_ERR, "sizeofitem(%d)*NITEMS(%d) > data: %d > %ld",
proc->sizeofitem, INFO_NITEMS(inpkt->err_nitems),
proc->sizeofitem*INFO_NITEMS(inpkt->err_nitems),
(long)sizeof(inpkt->data));
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
#ifdef DEBUG
if (debug > 3)
printf("process_private: all okay, into handler\n");
#endif
/*
* Packet is okay. Call the handler to send him data.
*/
(proc->handler)(srcadr, inter, inpkt);
}
/*
* peer_list - send a list of the peers
*/
static void
peer_list(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_peer_list *ip;
register struct peer *pp;
register int i;
ip = (struct info_peer_list *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_peer_list));
for (i = 0; i < HASH_SIZE && ip != 0; i++) {
pp = peer_hash[i];
while (pp != 0 && ip != 0) {
ip->address = pp->srcadr.sin_addr.s_addr;
ip->port = pp->srcadr.sin_port;
ip->hmode = pp->hmode;
ip->flags = 0;
if (pp->flags & FLAG_CONFIG)
ip->flags |= INFO_FLAG_CONFIG;
if (pp == sys_peer)
ip->flags |= INFO_FLAG_SYSPEER;
if (pp->status == CTL_PST_SEL_SYNCCAND)
ip->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->status >= CTL_PST_SEL_SYSPEER)
ip->flags |= INFO_FLAG_SHORTLIST;
ip = (struct info_peer_list *)more_pkt();
pp = pp->next;
}
}
flush_pkt();
}
/*
* peer_list_sum - return extended peer list
*/
static void
peer_list_sum(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_peer_summary *ips;
register struct peer *pp;
register int i;
l_fp ltmp;
#ifdef DEBUG
if (debug > 2)
printf("wants peer list summary\n");
#endif
ips = (struct info_peer_summary *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_peer_summary));
for (i = 0; i < HASH_SIZE && ips != 0; i++) {
pp = peer_hash[i];
while (pp != 0 && ips != 0) {
#ifdef DEBUG
if (debug > 3)
printf("sum: got one\n");
#endif
ips->dstadr =
(pp->processed)
? pp->cast_flags == MDF_BCAST
? pp->dstadr->bcast.sin_addr.s_addr
: pp->cast_flags
? pp->dstadr->sin.sin_addr.s_addr
? pp->dstadr->sin.sin_addr.s_addr
: pp->dstadr->bcast.sin_addr.s_addr
: 1
: 5;
ips->srcadr = pp->srcadr.sin_addr.s_addr;
ips->srcport = pp->srcadr.sin_port;
ips->stratum = pp->stratum;
ips->hpoll = pp->hpoll;
ips->ppoll = pp->ppoll;
ips->reach = pp->reach;
ips->flags = 0;
if (pp == sys_peer)
ips->flags |= INFO_FLAG_SYSPEER;
if (pp->flags & FLAG_CONFIG)
ips->flags |= INFO_FLAG_CONFIG;
if (pp->flags & FLAG_REFCLOCK)
ips->flags |= INFO_FLAG_REFCLOCK;
if (pp->flags & FLAG_AUTHENABLE)
ips->flags |= INFO_FLAG_AUTHENABLE;
if (pp->flags & FLAG_PREFER)
ips->flags |= INFO_FLAG_PREFER;
if (pp->flags & FLAG_BURST)
ips->flags |= INFO_FLAG_BURST;
if (pp->status == CTL_PST_SEL_SYNCCAND)
ips->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->status >= CTL_PST_SEL_SYSPEER)
ips->flags |= INFO_FLAG_SHORTLIST;
ips->hmode = pp->hmode;
ips->delay = HTONS_FP(DTOFP(pp->delay));
DTOLFP(pp->offset, &ltmp);
HTONL_FP(&ltmp, &ips->offset);
ips->dispersion = HTONS_FP(DTOUFP(pp->disp));
pp = pp->next;
ips = (struct info_peer_summary *)more_pkt();
}
}
flush_pkt();
}
/*
* peer_info - send information for one or more peers
*/
static void
peer_info (
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_peer_list *ipl;
register struct peer *pp;
register struct info_peer *ip;
register int items;
register int i, j;
struct sockaddr_in addr;
extern struct peer *sys_peer;
l_fp ltmp;
memset((char *)&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
items = INFO_NITEMS(inpkt->err_nitems);
ipl = (struct info_peer_list *) inpkt->data;
ip = (struct info_peer *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_peer));
while (items-- > 0 && ip != 0) {
addr.sin_port = ipl->port;
addr.sin_addr.s_addr = ipl->address;
ipl++;
if ((pp = findexistingpeer(&addr, (struct peer *)0, -1)) == 0)
continue;
ip->dstadr =
(pp->processed)
? pp->cast_flags == MDF_BCAST
? pp->dstadr->bcast.sin_addr.s_addr
: pp->cast_flags
? pp->dstadr->sin.sin_addr.s_addr
? pp->dstadr->sin.sin_addr.s_addr
: pp->dstadr->bcast.sin_addr.s_addr
: 2
: 6;
ip->srcadr = NSRCADR(&pp->srcadr);
ip->srcport = NSRCPORT(&pp->srcadr);
ip->flags = 0;
if (pp == sys_peer)
ip->flags |= INFO_FLAG_SYSPEER;
if (pp->flags & FLAG_CONFIG)
ip->flags |= INFO_FLAG_CONFIG;
if (pp->flags & FLAG_REFCLOCK)
ip->flags |= INFO_FLAG_REFCLOCK;
if (pp->flags & FLAG_AUTHENABLE)
ip->flags |= INFO_FLAG_AUTHENABLE;
if (pp->flags & FLAG_PREFER)
ip->flags |= INFO_FLAG_PREFER;
if (pp->flags & FLAG_BURST)
ip->flags |= INFO_FLAG_BURST;
if (pp->status == CTL_PST_SEL_SYNCCAND)
ip->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->status >= CTL_PST_SEL_SYSPEER)
ip->flags |= INFO_FLAG_SHORTLIST;
ip->leap = pp->leap;
ip->hmode = pp->hmode;
ip->keyid = pp->keyid;
ip->stratum = pp->stratum;
ip->ppoll = pp->ppoll;
ip->hpoll = pp->hpoll;
ip->precision = pp->precision;
ip->version = pp->version;
ip->valid = pp->valid;
ip->reach = pp->reach;
ip->unreach = pp->unreach;
ip->flash = (u_char)pp->flash;
ip->flash2 = pp->flash;
ip->estbdelay = HTONS_FP(DTOFP(pp->estbdelay));
ip->ttl = pp->ttl;
ip->associd = htons(pp->associd);
ip->rootdelay = HTONS_FP(DTOUFP(pp->rootdelay));
ip->rootdispersion = HTONS_FP(DTOUFP(pp->rootdispersion));
ip->refid = pp->refid;
HTONL_FP(&pp->reftime, &ip->reftime);
HTONL_FP(&pp->org, &ip->org);
HTONL_FP(&pp->rec, &ip->rec);
HTONL_FP(&pp->xmt, &ip->xmt);
j = pp->filter_nextpt - 1;
for (i = 0; i < NTP_SHIFT; i++, j--) {
if (j < 0)
j = NTP_SHIFT-1;
ip->filtdelay[i] = HTONS_FP(DTOFP(pp->filter_delay[j]));
DTOLFP(pp->filter_offset[j], &ltmp);
HTONL_FP(&ltmp, &ip->filtoffset[i]);
ip->order[i] = (pp->filter_nextpt+NTP_SHIFT-1)
- pp->filter_order[i];
if (ip->order[i] >= NTP_SHIFT)
ip->order[i] -= NTP_SHIFT;
}
DTOLFP(pp->offset, &ltmp);
HTONL_FP(&ltmp, &ip->offset);
ip->delay = HTONS_FP(DTOFP(pp->delay));
ip->dispersion = HTONS_FP(DTOUFP(SQRT(pp->disp)));
ip->selectdisp = HTONS_FP(DTOUFP(SQRT(pp->variance)));
ip = (struct info_peer *)more_pkt();
}
flush_pkt();
}
/*
* peer_stats - send statistics for one or more peers
*/
static void
peer_stats (
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_peer_list *ipl;
register struct peer *pp;
register struct info_peer_stats *ip;
register int items;
struct sockaddr_in addr;
extern struct peer *sys_peer;
memset((char *)&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
items = INFO_NITEMS(inpkt->err_nitems);
ipl = (struct info_peer_list *) inpkt->data;
ip = (struct info_peer_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_peer_stats));
while (items-- > 0 && ip != 0) {
addr.sin_port = ipl->port;
addr.sin_addr.s_addr = ipl->address;
ipl++;
if ((pp = findexistingpeer(&addr, (struct peer *)0, -1)) == 0)
continue;
ip->dstadr =
(pp->processed)
? pp->cast_flags == MDF_BCAST
? pp->dstadr->bcast.sin_addr.s_addr
: pp->cast_flags
? pp->dstadr->sin.sin_addr.s_addr
? pp->dstadr->sin.sin_addr.s_addr
: pp->dstadr->bcast.sin_addr.s_addr
: 3
: 7;
ip->srcadr = NSRCADR(&pp->srcadr);
ip->srcport = NSRCPORT(&pp->srcadr);
ip->flags = 0;
if (pp == sys_peer)
ip->flags |= INFO_FLAG_SYSPEER;
if (pp->flags & FLAG_CONFIG)
ip->flags |= INFO_FLAG_CONFIG;
if (pp->flags & FLAG_REFCLOCK)
ip->flags |= INFO_FLAG_REFCLOCK;
if (pp->flags & FLAG_AUTHENABLE)
ip->flags |= INFO_FLAG_AUTHENABLE;
if (pp->flags & FLAG_PREFER)
ip->flags |= INFO_FLAG_PREFER;
if (pp->flags & FLAG_BURST)
ip->flags |= INFO_FLAG_BURST;
if (pp->status == CTL_PST_SEL_SYNCCAND)
ip->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->status >= CTL_PST_SEL_SYSPEER)
ip->flags |= INFO_FLAG_SHORTLIST;
ip->timereceived = htonl((u_int32)(current_time - pp->timereceived));
ip->timetosend = htonl(pp->nextdate - current_time);
ip->timereachable = htonl((u_int32)(current_time - pp->timereachable));
ip->sent = htonl((u_int32)(pp->sent));
ip->processed = htonl((u_int32)(pp->processed));
ip->badauth = htonl((u_int32)(pp->badauth));
ip->bogusorg = htonl((u_int32)(pp->bogusorg));
ip->oldpkt = htonl((u_int32)(pp->oldpkt));
ip->seldisp = htonl((u_int32)(pp->seldisptoolarge));
ip->selbroken = htonl((u_int32)(pp->selbroken));
ip->candidate = pp->status;
ip = (struct info_peer_stats *)more_pkt();
}
flush_pkt();
}
/*
* sys_info - return system info
*/
static void
sys_info(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_sys *is;
/*
* Importations from the protocol module
*/
extern u_char sys_leap;
extern u_char sys_stratum;
extern s_char sys_precision;
extern double sys_rootdelay;
extern double sys_rootdispersion;
extern u_int32 sys_refid;
extern l_fp sys_reftime;
extern u_char sys_poll;
extern struct peer *sys_peer;
extern int sys_bclient;
extern double sys_bdelay;
extern l_fp sys_authdelay;
extern double clock_stability;
extern double sys_error;
is = (struct info_sys *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_sys));
if (sys_peer != 0) {
is->peer = NSRCADR(&sys_peer->srcadr);
is->peer_mode = sys_peer->hmode;
} else {
is->peer = 0;
is->peer_mode = 0;
}
is->leap = sys_leap;
is->stratum = sys_stratum;
is->precision = sys_precision;
is->rootdelay = htonl(DTOFP(sys_rootdelay));
is->rootdispersion = htonl(DTOUFP(sys_rootdispersion));
is->frequency = htonl(DTOFP(sys_error));
is->stability = htonl(DTOUFP(clock_stability * 1e6));
is->refid = sys_refid;
HTONL_FP(&sys_reftime, &is->reftime);
is->poll = sys_poll;
is->flags = 0;
if (sys_bclient)
is->flags |= INFO_FLAG_BCLIENT;
if (sys_authenticate)
is->flags |= INFO_FLAG_AUTHENTICATE;
if (kern_enable)
is->flags |= INFO_FLAG_KERNEL;
if (ntp_enable)
is->flags |= INFO_FLAG_NTP;
if (pll_control)
is->flags |= INFO_FLAG_PLL_SYNC;
if (pps_control)
is->flags |= INFO_FLAG_PPS_SYNC;
if (mon_enabled != MON_OFF)
is->flags |= INFO_FLAG_MONITOR;
if (stats_control)
is->flags |= INFO_FLAG_FILEGEN;
is->bdelay = HTONS_FP(DTOFP(sys_bdelay));
HTONL_UF(sys_authdelay.l_f, &is->authdelay);
(void) more_pkt();
flush_pkt();
}
/*
* sys_stats - return system statistics
*/
static void
sys_stats(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_sys_stats *ss;
/*
* Importations from the protocol module
*/
extern u_long sys_stattime;
extern u_long sys_badstratum;
extern u_long sys_oldversionpkt;
extern u_long sys_newversionpkt;
extern u_long sys_unknownversion;
extern u_long sys_badlength;
extern u_long sys_processed;
extern u_long sys_badauth;
extern u_long sys_limitrejected;
ss = (struct info_sys_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_sys_stats));
ss->timeup = htonl((u_int32)current_time);
ss->timereset = htonl((u_int32)(current_time - sys_stattime));
ss->badstratum = htonl((u_int32)sys_badstratum);
ss->oldversionpkt = htonl((u_int32)sys_oldversionpkt);
ss->newversionpkt = htonl((u_int32)sys_newversionpkt);
ss->unknownversion = htonl((u_int32)sys_unknownversion);
ss->badlength = htonl((u_int32)sys_badlength);
ss->processed = htonl((u_int32)sys_processed);
ss->badauth = htonl((u_int32)sys_badauth);
ss->limitrejected = htonl((u_int32)sys_limitrejected);
(void) more_pkt();
flush_pkt();
}
/*
* mem_stats - return memory statistics
*/
static void
mem_stats(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_mem_stats *ms;
register int i;
/*
* Importations from the peer module
*/
extern int peer_hash_count[HASH_SIZE];
extern int peer_free_count;
extern u_long peer_timereset;
extern u_long findpeer_calls;
extern u_long peer_allocations;
extern u_long peer_demobilizations;
extern int total_peer_structs;
ms = (struct info_mem_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_mem_stats));
ms->timereset = htonl((u_int32)(current_time - peer_timereset));
ms->totalpeermem = htons((u_short)total_peer_structs);
ms->freepeermem = htons((u_short)peer_free_count);
ms->findpeer_calls = htonl((u_int32)findpeer_calls);
ms->allocations = htonl((u_int32)peer_allocations);
ms->demobilizations = htonl((u_int32)peer_demobilizations);
for (i = 0; i < HASH_SIZE; i++) {
if (peer_hash_count[i] > 255)
ms->hashcount[i] = 255;
else
ms->hashcount[i] = (u_char)peer_hash_count[i];
}
(void) more_pkt();
flush_pkt();
}
/*
* io_stats - return io statistics
*/
static void
io_stats(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_io_stats *io;
/*
* Importations from the io module
*/
extern u_long io_timereset;
io = (struct info_io_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_io_stats));
io->timereset = htonl((u_int32)(current_time - io_timereset));
io->totalrecvbufs = htons((u_short) total_recvbuffs());
io->freerecvbufs = htons((u_short) free_recvbuffs());
io->fullrecvbufs = htons((u_short) full_recvbuffs());
io->lowwater = htons((u_short) lowater_additions());
io->dropped = htonl((u_int32)packets_dropped);
io->ignored = htonl((u_int32)packets_ignored);
io->received = htonl((u_int32)packets_received);
io->sent = htonl((u_int32)packets_sent);
io->notsent = htonl((u_int32)packets_notsent);
io->interrupts = htonl((u_int32)handler_calls);
io->int_received = htonl((u_int32)handler_pkts);
(void) more_pkt();
flush_pkt();
}
/*
* timer_stats - return timer statistics
*/
static void
timer_stats(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_timer_stats *ts;
/*
* Importations from the timer module
*/
extern u_long timer_timereset;
extern u_long timer_overflows;
extern u_long timer_xmtcalls;
ts = (struct info_timer_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_timer_stats));
ts->timereset = htonl((u_int32)(current_time - timer_timereset));
ts->alarms = htonl((u_int32)alarm_overflow);
ts->overflows = htonl((u_int32)timer_overflows);
ts->xmtcalls = htonl((u_int32)timer_xmtcalls);
(void) more_pkt();
flush_pkt();
}
/*
* loop_info - return the current state of the loop filter
*/
static void
loop_info(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_loop *li;
l_fp ltmp;
/*
* Importations from the loop filter module
*/
extern double last_offset;
extern double drift_comp;
extern int tc_counter;
extern u_long last_time;
li = (struct info_loop *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_loop));
DTOLFP(last_offset, &ltmp);
HTONL_FP(&ltmp, &li->last_offset);
DTOLFP(drift_comp * 1e6, &ltmp);
HTONL_FP(&ltmp, &li->drift_comp);
li->compliance = htonl((u_int32)(tc_counter));
li->watchdog_timer = htonl((u_int32)(current_time - last_time));
(void) more_pkt();
flush_pkt();
}
/*
* do_conf - add a peer to the configuration list
*/
static void
do_conf(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct conf_peer *cp;
register int items;
struct sockaddr_in peeraddr;
int fl;
/*
* Do a check of everything to see that it looks
* okay. If not, complain about it. Note we are
* very picky here.
*/
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_peer *)inpkt->data;
fl = 0;
while (items-- > 0 && !fl) {
if (((cp->version) > NTP_VERSION)
|| ((cp->version) < NTP_OLDVERSION))
fl = 1;
if (cp->hmode != MODE_ACTIVE
&& cp->hmode != MODE_CLIENT
&& cp->hmode != MODE_BROADCAST)
fl = 1;
if (cp->flags & ~(CONF_FLAG_AUTHENABLE | CONF_FLAG_PREFER
| CONF_FLAG_NOSELECT | CONF_FLAG_BURST | CONF_FLAG_SKEY))
fl = 1;
cp++;
}
if (fl) {
msyslog(LOG_ERR, "do_conf: fl is nonzero!");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/*
* Looks okay, try it out
*/
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_peer *)inpkt->data;
memset((char *)&peeraddr, 0, sizeof(struct sockaddr_in));
peeraddr.sin_family = AF_INET;
peeraddr.sin_port = htons(NTP_PORT);
/*
* Make sure the address is valid
*/
if (
#ifdef REFCLOCK
!ISREFCLOCKADR(&peeraddr) &&
#endif
ISBADADR(&peeraddr)) {
#ifdef REFCLOCK
msyslog(LOG_ERR, "do_conf: !ISREFCLOCK && ISBADADR");
#else
msyslog(LOG_ERR, "do_conf: ISBADADR");
#endif
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
while (items-- > 0) {
fl = 0;
if (cp->flags & CONF_FLAG_AUTHENABLE)
fl |= FLAG_AUTHENABLE;
if (cp->flags & CONF_FLAG_PREFER)
fl |= FLAG_PREFER;
if (cp->flags & CONF_FLAG_NOSELECT)
fl |= FLAG_NOSELECT;
if (cp->flags & CONF_FLAG_BURST)
fl |= FLAG_BURST;
if (cp->flags & CONF_FLAG_SKEY)
fl |= FLAG_SKEY;
peeraddr.sin_addr.s_addr = cp->peeraddr;
/* XXX W2DO? minpoll/maxpoll arguments ??? */
if (peer_config(&peeraddr, (struct interface *)0,
cp->hmode, cp->version, cp->minpoll, cp->maxpoll,
fl, cp->ttl, cp->keyid, cp->keystr) == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
cp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* dns_a - Snarf DNS info for an association ID
*/
static void
dns_a(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_dns_assoc *dp;
register int items;
struct sockaddr_in peeraddr;
/*
* Do a check of everything to see that it looks
* okay. If not, complain about it. Note we are
* very picky here.
*/
items = INFO_NITEMS(inpkt->err_nitems);
dp = (struct info_dns_assoc *)inpkt->data;
/*
* Looks okay, try it out
*/
items = INFO_NITEMS(inpkt->err_nitems);
dp = (struct info_dns_assoc *)inpkt->data;
memset((char *)&peeraddr, 0, sizeof(struct sockaddr_in));
peeraddr.sin_family = AF_INET;
peeraddr.sin_port = htons(NTP_PORT);
/*
* Make sure the address is valid
*/
if (
#ifdef REFCLOCK
!ISREFCLOCKADR(&peeraddr) &&
#endif
ISBADADR(&peeraddr)) {
#ifdef REFCLOCK
msyslog(LOG_ERR, "dns_a: !ISREFCLOCK && ISBADADR");
#else
msyslog(LOG_ERR, "dns_a: ISBADADR");
#endif
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
while (items-- > 0) {
u_short associd;
size_t hnl;
struct peer *peer;
int bogon = 0;
associd = dp->associd;
peer = findpeerbyassoc((int)associd);
if (peer == 0 || peer->flags & FLAG_REFCLOCK) {
msyslog(LOG_ERR, "dns_a: %s",
(peer == 0)
? "peer == 0"
: "peer->flags & FLAG_REFCLOCK");
++bogon;
}
peeraddr.sin_addr.s_addr = dp->peeraddr;
for (hnl = 0; dp->hostname[hnl] && hnl < sizeof dp->hostname; ++hnl) ;
if (hnl >= sizeof dp->hostname) {
msyslog(LOG_ERR, "dns_a: hnl (%ld) >= %ld",
(long)hnl, (long)sizeof dp->hostname);
++bogon;
}
msyslog(LOG_INFO, "dns_a: <%s> for %s, AssocID %d, bogon %d",
dp->hostname, inet_ntoa(peeraddr.sin_addr), associd,
bogon);
if (bogon) {
/* If it didn't work */
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
} else {
#ifdef PUBKEY
crypto_public(peer, dp->hostname);
#endif /* PUBKEY */
}
dp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* do_unconf - remove a peer from the configuration list
*/
static void
do_unconf(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct conf_unpeer *cp;
register int items;
register struct peer *peer;
struct sockaddr_in peeraddr;
int bad, found;
/*
* This is a bit unstructured, but I like to be careful.
* We check to see that every peer exists and is actually
* configured. If so, we remove them. If not, we return
* an error.
*/
peeraddr.sin_family = AF_INET;
peeraddr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_unpeer *)inpkt->data;
bad = 0;
while (items-- > 0 && !bad) {
peeraddr.sin_addr.s_addr = cp->peeraddr;
found = 0;
peer = (struct peer *)0;
while (!found) {
peer = findexistingpeer(&peeraddr, peer, -1);
if (peer == (struct peer *)0)
break;
if (peer->flags & FLAG_CONFIG)
found = 1;
}
if (!found)
bad = 1;
cp++;
}
if (bad) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
/*
* Now do it in earnest.
*/
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_unpeer *)inpkt->data;
while (items-- > 0) {
peeraddr.sin_addr.s_addr = cp->peeraddr;
peer_unconfig(&peeraddr, (struct interface *)0, -1);
cp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* set_sys_flag - set system flags
*/
static void
set_sys_flag(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
setclr_flags(srcadr, inter, inpkt, 1);
}
/*
* clr_sys_flag - clear system flags
*/
static void
clr_sys_flag(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
setclr_flags(srcadr, inter, inpkt, 0);
}
/*
* setclr_flags - do the grunge work of flag setting/clearing
*/
static void
setclr_flags(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt,
u_long set
)
{
register u_long flags;
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
msyslog(LOG_ERR, "setclr_flags: err_nitems > 1");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
flags = ((struct conf_sys_flags *)inpkt->data)->flags;
if (flags & ~(SYS_FLAG_BCLIENT | SYS_FLAG_AUTHENTICATE |
SYS_FLAG_NTP | SYS_FLAG_KERNEL | SYS_FLAG_MONITOR |
SYS_FLAG_FILEGEN)) {
msyslog(LOG_ERR, "setclr_flags: extra flags: %#lx",
flags & ~(SYS_FLAG_BCLIENT | SYS_FLAG_AUTHENTICATE |
SYS_FLAG_NTP | SYS_FLAG_KERNEL |
SYS_FLAG_MONITOR | SYS_FLAG_FILEGEN));
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
if (flags & SYS_FLAG_BCLIENT)
proto_config(PROTO_BROADCLIENT, set, 0.);
if (flags & SYS_FLAG_AUTHENTICATE)
proto_config(PROTO_AUTHENTICATE, set, 0.);
if (flags & SYS_FLAG_NTP)
proto_config(PROTO_NTP, set, 0.);
if (flags & SYS_FLAG_KERNEL)
proto_config(PROTO_KERNEL, set, 0.);
if (flags & SYS_FLAG_MONITOR)
proto_config(PROTO_MONITOR, set, 0.);
if (flags & SYS_FLAG_FILEGEN)
proto_config(PROTO_FILEGEN, set, 0.);
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* list_restrict - return the restrict list
*/
static void
list_restrict(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_restrict *ir;
register struct restrictlist *rl;
extern struct restrictlist *restrictlist;
#ifdef DEBUG
if (debug > 2)
printf("wants peer list summary\n");
#endif
ir = (struct info_restrict *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_restrict));
for (rl = restrictlist; rl != 0 && ir != 0; rl = rl->next) {
ir->addr = htonl(rl->addr);
ir->mask = htonl(rl->mask);
ir->count = htonl((u_int32)rl->count);
ir->flags = htons(rl->flags);
ir->mflags = htons(rl->mflags);
ir = (struct info_restrict *)more_pkt();
}
flush_pkt();
}
/*
* do_resaddflags - add flags to a restrict entry (or create one)
*/
static void
do_resaddflags(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
do_restrict(srcadr, inter, inpkt, RESTRICT_FLAGS);
}
/*
* do_ressubflags - remove flags from a restrict entry
*/
static void
do_ressubflags(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
do_restrict(srcadr, inter, inpkt, RESTRICT_UNFLAG);
}
/*
* do_unrestrict - remove a restrict entry from the list
*/
static void
do_unrestrict(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
do_restrict(srcadr, inter, inpkt, RESTRICT_REMOVE);
}
/*
* do_restrict - do the dirty stuff of dealing with restrictions
*/
static void
do_restrict(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt,
int op
)
{
register struct conf_restrict *cr;
register int items;
struct sockaddr_in matchaddr;
struct sockaddr_in matchmask;
int bad;
/*
* Do a check of the flags to make sure that only
* the NTPPORT flag is set, if any. If not, complain
* about it. Note we are very picky here.
*/
items = INFO_NITEMS(inpkt->err_nitems);
cr = (struct conf_restrict *)inpkt->data;
bad = 0;
while (items-- > 0 && !bad) {
if (cr->mflags & ~(RESM_NTPONLY))
bad |= 1;
if (cr->flags & ~(RES_ALLFLAGS))
bad |= 2;
if (cr->addr == htonl(INADDR_ANY) && cr->mask != htonl(INADDR_ANY))
bad |= 4;
cr++;
}
if (bad) {
msyslog(LOG_ERR, "do_restrict: bad = %#x", bad);
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/*
* Looks okay, try it out
*/
items = INFO_NITEMS(inpkt->err_nitems);
cr = (struct conf_restrict *)inpkt->data;
memset((char *)&matchaddr, 0, sizeof(struct sockaddr_in));
memset((char *)&matchmask, 0, sizeof(struct sockaddr_in));
matchaddr.sin_family = AF_INET;
matchmask.sin_family = AF_INET;
while (items-- > 0) {
matchaddr.sin_addr.s_addr = cr->addr;
matchmask.sin_addr.s_addr = cr->mask;
hack_restrict(op, &matchaddr, &matchmask, cr->mflags,
cr->flags);
cr++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* mon_getlist - return monitor data
*/
static void
mon_getlist_0(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_monitor *im;
register struct mon_data *md;
extern struct mon_data mon_mru_list;
extern int mon_enabled;
#ifdef DEBUG
if (debug > 2)
printf("wants monitor 0 list\n");
#endif
if (!mon_enabled) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
im = (struct info_monitor *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_monitor));
for (md = mon_mru_list.mru_next; md != &mon_mru_list && im != 0;
md = md->mru_next) {
im->lasttime = htonl((u_int32)(current_time - md->lasttime));
im->firsttime = htonl((u_int32)(current_time - md->firsttime));
if (md->lastdrop)
im->lastdrop = htonl((u_int32)(current_time - md->lastdrop));
else
im->lastdrop = 0;
im->count = htonl((u_int32)(md->count));
im->addr = md->rmtadr;
im->port = md->rmtport;
im->mode = md->mode;
im->version = md->version;
im = (struct info_monitor *)more_pkt();
}
flush_pkt();
}
/*
* mon_getlist - return monitor data
*/
static void
mon_getlist_1(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_monitor_1 *im;
register struct mon_data *md;
extern struct mon_data mon_mru_list;
extern int mon_enabled;
#ifdef DEBUG
if (debug > 2)
printf("wants monitor 1 list\n");
#endif
if (!mon_enabled) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
im = (struct info_monitor_1 *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_monitor_1));
for (md = mon_mru_list.mru_next; md != &mon_mru_list && im != 0;
md = md->mru_next) {
im->lasttime = htonl((u_int32)(current_time - md->lasttime));
im->firsttime = htonl((u_int32)(current_time - md->firsttime));
if (md->lastdrop)
im->lastdrop = htonl((u_int32)(current_time - md->lastdrop));
else
im->lastdrop = 0;
im->count = htonl((u_int32)md->count);
im->addr = md->rmtadr;
im->daddr =
(md->cast_flags == MDF_BCAST)
? md->interface->bcast.sin_addr.s_addr
: (md->cast_flags
? (md->interface->sin.sin_addr.s_addr
? md->interface->sin.sin_addr.s_addr
: md->interface->bcast.sin_addr.s_addr
)
: 4);
im->flags = md->cast_flags;
im->port = md->rmtport;
im->mode = md->mode;
im->version = md->version;
im = (struct info_monitor_1 *)more_pkt();
}
flush_pkt();
}
/*
* Module entry points and the flags they correspond with
*/
struct reset_entry {
int flag; /* flag this corresponds to */
void (*handler) P((void)); /* routine to handle request */
};
struct reset_entry reset_entries[] = {
{ RESET_FLAG_ALLPEERS, peer_all_reset },
{ RESET_FLAG_IO, io_clr_stats },
{ RESET_FLAG_SYS, proto_clr_stats },
{ RESET_FLAG_MEM, peer_clr_stats },
{ RESET_FLAG_TIMER, timer_clr_stats },
{ RESET_FLAG_AUTH, reset_auth_stats },
{ RESET_FLAG_CTL, ctl_clr_stats },
{ 0, 0 }
};
/*
* reset_stats - reset statistic counters here and there
*/
static void
reset_stats(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
u_long flags;
struct reset_entry *rent;
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
msyslog(LOG_ERR, "reset_stats: err_nitems > 1");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
flags = ((struct reset_flags *)inpkt->data)->flags;
if (flags & ~RESET_ALLFLAGS) {
msyslog(LOG_ERR, "reset_stats: reset leaves %#lx",
flags & ~RESET_ALLFLAGS);
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
for (rent = reset_entries; rent->flag != 0; rent++) {
if (flags & rent->flag)
(rent->handler)();
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* reset_peer - clear a peer's statistics
*/
static void
reset_peer(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct conf_unpeer *cp;
register int items;
register struct peer *peer;
struct sockaddr_in peeraddr;
int bad;
/*
* We check first to see that every peer exists. If not,
* we return an error.
*/
peeraddr.sin_family = AF_INET;
peeraddr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_unpeer *)inpkt->data;
bad = 0;
while (items-- > 0 && !bad) {
peeraddr.sin_addr.s_addr = cp->peeraddr;
peer = findexistingpeer(&peeraddr, (struct peer *)0, -1);
if (peer == (struct peer *)0)
bad++;
cp++;
}
if (bad) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
/*
* Now do it in earnest.
*/
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_unpeer *)inpkt->data;
while (items-- > 0) {
peeraddr.sin_addr.s_addr = cp->peeraddr;
peer = findexistingpeer(&peeraddr, (struct peer *)0, -1);
while (peer != 0) {
peer_reset(peer);
peer = findexistingpeer(&peeraddr, (struct peer *)peer, -1);
}
cp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* do_key_reread - reread the encryption key file
*/
static void
do_key_reread(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
rereadkeys();
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* trust_key - make one or more keys trusted
*/
static void
trust_key(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
do_trustkey(srcadr, inter, inpkt, 1);
}
/*
* untrust_key - make one or more keys untrusted
*/
static void
untrust_key(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
do_trustkey(srcadr, inter, inpkt, 0);
}
/*
* do_trustkey - make keys either trustable or untrustable
*/
static void
do_trustkey(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt,
u_long trust
)
{
register u_long *kp;
register int items;
items = INFO_NITEMS(inpkt->err_nitems);
kp = (u_long *)inpkt->data;
while (items-- > 0) {
authtrust(*kp, trust);
kp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* get_auth_info - return some stats concerning the authentication module
*/
static void
get_auth_info(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_auth *ia;
/*
* Importations from the authentication module
*/
extern u_long authnumkeys;
extern int authnumfreekeys;
extern u_long authkeylookups;
extern u_long authkeynotfound;
extern u_long authencryptions;
extern u_long authdecryptions;
extern u_long authkeyuncached;
extern u_long authkeyexpired;
ia = (struct info_auth *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_auth));
ia->numkeys = htonl((u_int32)authnumkeys);
ia->numfreekeys = htonl((u_int32)authnumfreekeys);
ia->keylookups = htonl((u_int32)authkeylookups);
ia->keynotfound = htonl((u_int32)authkeynotfound);
ia->encryptions = htonl((u_int32)authencryptions);
ia->decryptions = htonl((u_int32)authdecryptions);
ia->keyuncached = htonl((u_int32)authkeyuncached);
ia->expired = htonl((u_int32)authkeyexpired);
ia->timereset = htonl((u_int32)(current_time - auth_timereset));
(void) more_pkt();
flush_pkt();
}
/*
* reset_auth_stats - reset the authentication stat counters. Done here
* to keep ntp-isms out of the authentication module
*/
static void
reset_auth_stats(void)
{
/*
* Importations from the authentication module
*/
extern u_long authkeylookups;
extern u_long authkeynotfound;
extern u_long authencryptions;
extern u_long authdecryptions;
extern u_long authkeyuncached;
authkeylookups = 0;
authkeynotfound = 0;
authencryptions = 0;
authdecryptions = 0;
authkeyuncached = 0;
auth_timereset = current_time;
}
/*
* req_get_traps - return information about current trap holders
*/
static void
req_get_traps(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_trap *it;
register struct ctl_trap *tr;
register int i;
/*
* Imported from the control module
*/
extern struct ctl_trap ctl_trap[];
extern int num_ctl_traps;
if (num_ctl_traps == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
it = (struct info_trap *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_trap));
for (i = 0, tr = ctl_trap; i < CTL_MAXTRAPS; i++, tr++) {
if (tr->tr_flags & TRAP_INUSE) {
if (tr->tr_localaddr == any_interface)
it->local_address = 0;
else
it->local_address
= NSRCADR(&tr->tr_localaddr->sin);
it->trap_address = NSRCADR(&tr->tr_addr);
it->trap_port = NSRCPORT(&tr->tr_addr);
it->sequence = htons(tr->tr_sequence);
it->settime = htonl((u_int32)(current_time - tr->tr_settime));
it->origtime = htonl((u_int32)(current_time - tr->tr_origtime));
it->resets = htonl((u_int32)tr->tr_resets);
it->flags = htonl((u_int32)tr->tr_flags);
it = (struct info_trap *)more_pkt();
}
}
flush_pkt();
}
/*
* req_set_trap - configure a trap
*/
static void
req_set_trap(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
do_setclr_trap(srcadr, inter, inpkt, 1);
}
/*
* req_clr_trap - unconfigure a trap
*/
static void
req_clr_trap(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
do_setclr_trap(srcadr, inter, inpkt, 0);
}
/*
* do_setclr_trap - do the grunge work of (un)configuring a trap
*/
static void
do_setclr_trap(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt,
int set
)
{
register struct conf_trap *ct;
register struct interface *linter;
int res;
struct sockaddr_in laddr;
/*
* Prepare sockaddr_in structure
*/
memset((char *)&laddr, 0, sizeof laddr);
laddr.sin_family = AF_INET;
laddr.sin_port = ntohs(NTP_PORT);
/*
* Restrict ourselves to one item only. This eliminates
* the error reporting problem.
*/
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
msyslog(LOG_ERR, "do_setclr_trap: err_nitems > 1");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
ct = (struct conf_trap *)inpkt->data;
/*
* Look for the local interface. If none, use the default.
*/
if (ct->local_address == 0) {
linter = any_interface;
} else {
laddr.sin_addr.s_addr = ct->local_address;
linter = findinterface(&laddr);
if (linter == NULL) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
}
laddr.sin_addr.s_addr = ct->trap_address;
if (ct->trap_port != 0)
laddr.sin_port = ct->trap_port;
else
laddr.sin_port = htons(TRAPPORT);
if (set) {
res = ctlsettrap(&laddr, linter, 0,
INFO_VERSION(inpkt->rm_vn_mode));
} else {
res = ctlclrtrap(&laddr, linter, 0);
}
if (!res) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
} else {
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
return;
}
/*
* set_request_keyid - set the keyid used to authenticate requests
*/
static void
set_request_keyid(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
keyid_t keyid;
/*
* Restrict ourselves to one item only.
*/
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
msyslog(LOG_ERR, "set_request_keyid: err_nitems > 1");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
keyid = ntohl(*((u_int32 *)(inpkt->data)));
info_auth_keyid = keyid;
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* set_control_keyid - set the keyid used to authenticate requests
*/
static void
set_control_keyid(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
keyid_t keyid;
extern keyid_t ctl_auth_keyid;
/*
* Restrict ourselves to one item only.
*/
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
msyslog(LOG_ERR, "set_control_keyid: err_nitems > 1");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
keyid = ntohl(*((u_int32 *)(inpkt->data)));
ctl_auth_keyid = keyid;
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* get_ctl_stats - return some stats concerning the control message module
*/
static void
get_ctl_stats(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_control *ic;
/*
* Importations from the control module
*/
extern u_long ctltimereset;
extern u_long numctlreq;
extern u_long numctlbadpkts;
extern u_long numctlresponses;
extern u_long numctlfrags;
extern u_long numctlerrors;
extern u_long numctltooshort;
extern u_long numctlinputresp;
extern u_long numctlinputfrag;
extern u_long numctlinputerr;
extern u_long numctlbadoffset;
extern u_long numctlbadversion;
extern u_long numctldatatooshort;
extern u_long numctlbadop;
extern u_long numasyncmsgs;
ic = (struct info_control *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_control));
ic->ctltimereset = htonl((u_int32)(current_time - ctltimereset));
ic->numctlreq = htonl((u_int32)numctlreq);
ic->numctlbadpkts = htonl((u_int32)numctlbadpkts);
ic->numctlresponses = htonl((u_int32)numctlresponses);
ic->numctlfrags = htonl((u_int32)numctlfrags);
ic->numctlerrors = htonl((u_int32)numctlerrors);
ic->numctltooshort = htonl((u_int32)numctltooshort);
ic->numctlinputresp = htonl((u_int32)numctlinputresp);
ic->numctlinputfrag = htonl((u_int32)numctlinputfrag);
ic->numctlinputerr = htonl((u_int32)numctlinputerr);
ic->numctlbadoffset = htonl((u_int32)numctlbadoffset);
ic->numctlbadversion = htonl((u_int32)numctlbadversion);
ic->numctldatatooshort = htonl((u_int32)numctldatatooshort);
ic->numctlbadop = htonl((u_int32)numctlbadop);
ic->numasyncmsgs = htonl((u_int32)numasyncmsgs);
(void) more_pkt();
flush_pkt();
}
#ifdef KERNEL_PLL
/*
* get_kernel_info - get kernel pll/pps information
*/
static void
get_kernel_info(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_kernel *ik;
struct timex ntx;
if (!pll_control) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
memset((char *)&ntx, 0, sizeof(ntx));
if (ntp_adjtime(&ntx) < 0)
msyslog(LOG_ERR, "get_kernel_info: ntp_adjtime() failed: %m");
ik = (struct info_kernel *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_kernel));
/*
* pll variables
*/
ik->offset = htonl((u_int32)ntx.offset);
ik->freq = htonl((u_int32)ntx.freq);
ik->maxerror = htonl((u_int32)ntx.maxerror);
ik->esterror = htonl((u_int32)ntx.esterror);
ik->status = htons(ntx.status);
ik->constant = htonl((u_int32)ntx.constant);
ik->precision = htonl((u_int32)ntx.precision);
ik->tolerance = htonl((u_int32)ntx.tolerance);
/*
* pps variables
*/
ik->ppsfreq = htonl((u_int32)ntx.ppsfreq);
ik->jitter = htonl((u_int32)ntx.jitter);
ik->shift = htons(ntx.shift);
ik->stabil = htonl((u_int32)ntx.stabil);
ik->jitcnt = htonl((u_int32)ntx.jitcnt);
ik->calcnt = htonl((u_int32)ntx.calcnt);
ik->errcnt = htonl((u_int32)ntx.errcnt);
ik->stbcnt = htonl((u_int32)ntx.stbcnt);
(void) more_pkt();
flush_pkt();
}
#endif /* KERNEL_PLL */
#ifdef REFCLOCK
/*
* get_clock_info - get info about a clock
*/
static void
get_clock_info(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct info_clock *ic;
register u_int32 *clkaddr;
register int items;
struct refclockstat clock_stat;
struct sockaddr_in addr;
l_fp ltmp;
memset((char *)&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
clkaddr = (u_int32 *) inpkt->data;
ic = (struct info_clock *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_clock));
while (items-- > 0) {
addr.sin_addr.s_addr = *clkaddr++;
if (!ISREFCLOCKADR(&addr) ||
findexistingpeer(&addr, (struct peer *)0, -1) == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
clock_stat.kv_list = (struct ctl_var *)0;
refclock_control(&addr, (struct refclockstat *)0, &clock_stat);
ic->clockadr = addr.sin_addr.s_addr;
ic->type = clock_stat.type;
ic->flags = clock_stat.flags;
ic->lastevent = clock_stat.lastevent;
ic->currentstatus = clock_stat.currentstatus;
ic->polls = htonl((u_int32)clock_stat.polls);
ic->noresponse = htonl((u_int32)clock_stat.noresponse);
ic->badformat = htonl((u_int32)clock_stat.badformat);
ic->baddata = htonl((u_int32)clock_stat.baddata);
ic->timestarted = htonl((u_int32)clock_stat.timereset);
DTOLFP(clock_stat.fudgetime1, &ltmp);
HTONL_FP(&ltmp, &ic->fudgetime1);
DTOLFP(clock_stat.fudgetime1, &ltmp);
HTONL_FP(&ltmp, &ic->fudgetime2);
ic->fudgeval1 = htonl((u_int32)clock_stat.fudgeval1);
ic->fudgeval2 = htonl((u_int32)clock_stat.fudgeval2);
free_varlist(clock_stat.kv_list);
ic = (struct info_clock *)more_pkt();
}
flush_pkt();
}
/*
* set_clock_fudge - get a clock's fudge factors
*/
static void
set_clock_fudge(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register struct conf_fudge *cf;
register int items;
struct refclockstat clock_stat;
struct sockaddr_in addr;
l_fp ltmp;
memset((char *)&addr, 0, sizeof addr);
memset((char *)&clock_stat, 0, sizeof clock_stat);
addr.sin_family = AF_INET;
addr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
cf = (struct conf_fudge *) inpkt->data;
while (items-- > 0) {
addr.sin_addr.s_addr = cf->clockadr;
if (!ISREFCLOCKADR(&addr) ||
findexistingpeer(&addr, (struct peer *)0, -1) == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
switch(ntohl(cf->which)) {
case FUDGE_TIME1:
NTOHL_FP(&cf->fudgetime, &ltmp);
LFPTOD(&ltmp, clock_stat.fudgetime1);
clock_stat.haveflags = CLK_HAVETIME1;
break;
case FUDGE_TIME2:
NTOHL_FP(&cf->fudgetime, &ltmp);
LFPTOD(&ltmp, clock_stat.fudgetime2);
clock_stat.haveflags = CLK_HAVETIME2;
break;
case FUDGE_VAL1:
clock_stat.fudgeval1 = ntohl(cf->fudgeval_flags);
clock_stat.haveflags = CLK_HAVEVAL1;
break;
case FUDGE_VAL2:
clock_stat.fudgeval2 = ntohl(cf->fudgeval_flags);
clock_stat.haveflags = CLK_HAVEVAL2;
break;
case FUDGE_FLAGS:
clock_stat.flags = (u_char) ntohl(cf->fudgeval_flags) & 0xf;
clock_stat.haveflags =
(CLK_HAVEFLAG1|CLK_HAVEFLAG2|CLK_HAVEFLAG3|CLK_HAVEFLAG4);
break;
default:
msyslog(LOG_ERR, "set_clock_fudge: default!");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
refclock_control(&addr, &clock_stat, (struct refclockstat *)0);
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
#endif
#ifdef REFCLOCK
/*
* get_clkbug_info - get debugging info about a clock
*/
static void
get_clkbug_info(
struct sockaddr_in *srcadr,
struct interface *inter,
struct req_pkt *inpkt
)
{
register int i;
register struct info_clkbug *ic;
register u_int32 *clkaddr;
register int items;
struct refclockbug bug;
struct sockaddr_in addr;
memset((char *)&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
clkaddr = (u_int32 *) inpkt->data;
ic = (struct info_clkbug *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_clkbug));
while (items-- > 0) {
addr.sin_addr.s_addr = *clkaddr++;
if (!ISREFCLOCKADR(&addr) ||
findexistingpeer(&addr, (struct peer *)0, -1) == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
memset((char *)&bug, 0, sizeof bug);
refclock_buginfo(&addr, &bug);
if (bug.nvalues == 0 && bug.ntimes == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
ic->clockadr = addr.sin_addr.s_addr;
i = bug.nvalues;
if (i > NUMCBUGVALUES)
i = NUMCBUGVALUES;
ic->nvalues = (u_char)i;
ic->svalues = htons((u_short) (bug.svalues & ((1<<i)-1)));
while (--i >= 0)
ic->values[i] = htonl(bug.values[i]);
i = bug.ntimes;
if (i > NUMCBUGTIMES)
i = NUMCBUGTIMES;
ic->ntimes = (u_char)i;
ic->stimes = htonl(bug.stimes);
while (--i >= 0) {
HTONL_FP(&bug.times[i], &ic->times[i]);
}
ic = (struct info_clkbug *)more_pkt();
}
flush_pkt();
}
#endif