NetBSD/sys/kern/vfs_cache.c

1544 lines
44 KiB
C

/* $NetBSD: vfs_cache.c,v 1.147 2020/06/04 03:08:33 riastradh Exp $ */
/*-
* Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
*/
/*
* Name caching:
*
* Names found by directory scans are retained in a cache for future
* reference. It is managed LRU, so frequently used names will hang
* around. The cache is indexed by hash value obtained from the name.
*
* The name cache is the brainchild of Robert Elz and was introduced in
* 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
* McKusick, May 21 1984.
*
* Data structures:
*
* Most Unix namecaches very sensibly use a global hash table to index
* names. The global hash table works well, but can cause concurrency
* headaches for the kernel hacker. In the NetBSD 10.0 implementation
* we are not sensible, and use a per-directory data structure to index
* names, but the cache otherwise functions the same.
*
* The index is a red-black tree. There are no special concurrency
* requirements placed on it, because it's per-directory and protected
* by the namecache's per-directory locks. It should therefore not be
* difficult to experiment with other types of index.
*
* Each cached name is stored in a struct namecache, along with a
* pointer to the associated vnode (nc_vp). Names longer than a
* maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
* occur infrequently, and names shorter than this are stored directly
* in struct namecache. If it is a "negative" entry, (i.e. for a name
* that is known NOT to exist) the vnode pointer will be NULL.
*
* For a directory with 3 cached names for 3 distinct vnodes, the
* various vnodes and namecache structs would be connected like this
* (the root is at the bottom of the diagram):
*
* ...
* ^
* |- vi_nc_tree
* |
* +----o----+ +---------+ +---------+
* | VDIR | | VCHR | | VREG |
* | vnode o-----+ | vnode o-----+ | vnode o------+
* +---------+ | +---------+ | +---------+ |
* ^ | ^ | ^ |
* |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp |
* | | | | | |
* +----o----+ | +----o----+ | +----o----+ |
* +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+
* | +---------+ | +---------+ | +---------+
* | ^ | ^ | ^
* | | | | | |
* | | +----------------------+ | |
* |-nc_dvp | +-------------------------------------------------+
* | |/- vi_nc_tree | |
* | | |- nc_dvp |- nc_dvp
* | +----o----+ | |
* +-->| VDIR |<----------+ |
* | vnode |<------------------------------------+
* +---------+
*
* START HERE
*
* Replacement:
*
* As the cache becomes full, old and unused entries are purged as new
* entries are added. The synchronization overhead in maintaining a
* strict ordering would be prohibitive, so the VM system's "clock" or
* "second chance" page replacement algorithm is aped here. New
* entries go to the tail of the active list. After they age out and
* reach the head of the list, they are moved to the tail of the
* inactive list. Any use of the deactivated cache entry reactivates
* it, saving it from impending doom; if not reactivated, the entry
* eventually reaches the head of the inactive list and is purged.
*
* Concurrency:
*
* From a performance perspective, cache_lookup(nameiop == LOOKUP) is
* what really matters; insertion of new entries with cache_enter() is
* comparatively infrequent, and overshadowed by the cost of expensive
* file system metadata operations (which may involve disk I/O). We
* therefore want to make everything simplest in the lookup path.
*
* struct namecache is mostly stable except for list and tree related
* entries, changes to which don't affect the cached name or vnode.
* For changes to name+vnode, entries are purged in preference to
* modifying them.
*
* Read access to namecache entries is made via tree, list, or LRU
* list. A lock corresponding to the direction of access should be
* held. See definition of "struct namecache" in src/sys/namei.src,
* and the definition of "struct vnode" for the particulars.
*
* Per-CPU statistics, and LRU list totals are read unlocked, since
* an approximate value is OK. We maintain 32-bit sized per-CPU
* counters and 64-bit global counters under the theory that 32-bit
* sized counters are less likely to be hosed by nonatomic increment
* (on 32-bit platforms).
*
* The lock order is:
*
* 1) vi->vi_nc_lock (tree or parent -> child direction,
* used during forward lookup)
*
* 2) vi->vi_nc_listlock (list or child -> parent direction,
* used during reverse lookup)
*
* 3) cache_lru_lock (LRU list direction, used during reclaim)
*
* 4) vp->v_interlock (what the cache entry points to)
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.147 2020/06/04 03:08:33 riastradh Exp $");
#define __NAMECACHE_PRIVATE
#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#include "opt_dtrace.h"
#endif
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/callout.h>
#include <sys/cpu.h>
#include <sys/errno.h>
#include <sys/evcnt.h>
#include <sys/hash.h>
#include <sys/kernel.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/param.h>
#include <sys/pool.h>
#include <sys/sdt.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/vnode_impl.h>
#include <miscfs/genfs/genfs.h>
static void cache_activate(struct namecache *);
static void cache_update_stats(void *);
static int cache_compare_nodes(void *, const void *, const void *);
static void cache_deactivate(void);
static void cache_reclaim(void);
static int cache_stat_sysctl(SYSCTLFN_ARGS);
/*
* Global pool cache.
*/
static pool_cache_t cache_pool __read_mostly;
/*
* LRU replacement.
*/
enum cache_lru_id {
LRU_ACTIVE,
LRU_INACTIVE,
LRU_COUNT
};
static struct {
TAILQ_HEAD(, namecache) list[LRU_COUNT];
u_int count[LRU_COUNT];
} cache_lru __cacheline_aligned;
static kmutex_t cache_lru_lock __cacheline_aligned;
/*
* Cache effectiveness statistics. nchstats holds system-wide total.
*/
struct nchstats nchstats;
struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
struct nchcpu {
struct nchstats_percpu cur;
struct nchstats_percpu last;
};
static callout_t cache_stat_callout;
static kmutex_t cache_stat_lock __cacheline_aligned;
#define COUNT(f) do { \
lwp_t *l = curlwp; \
KPREEMPT_DISABLE(l); \
((struct nchstats_percpu *)curcpu()->ci_data.cpu_nch)->f++; \
KPREEMPT_ENABLE(l); \
} while (/* CONSTCOND */ 0);
#define UPDATE(nchcpu, f) do { \
uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
nchcpu->last.f = cur; \
} while (/* CONSTCOND */ 0)
/*
* Tunables. cache_maxlen replaces the historical doingcache:
* set it zero to disable caching for debugging purposes.
*/
int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */
int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */
int cache_maxlen __read_mostly = USHRT_MAX; /* max name length to cache */
int cache_stat_interval __read_mostly = 300; /* in seconds */
/*
* sysctl stuff.
*/
static struct sysctllog *cache_sysctllog;
/*
* This is a dummy name that cannot usually occur anywhere in the cache nor
* file system. It's used when caching the root vnode of mounted file
* systems. The name is attached to the directory that the file system is
* mounted on.
*/
static const char cache_mp_name[] = "";
static const int cache_mp_nlen = sizeof(cache_mp_name) - 1;
/*
* Red-black tree stuff.
*/
static const rb_tree_ops_t cache_rbtree_ops = {
.rbto_compare_nodes = cache_compare_nodes,
.rbto_compare_key = cache_compare_nodes,
.rbto_node_offset = offsetof(struct namecache, nc_tree),
.rbto_context = NULL
};
/*
* dtrace probes.
*/
SDT_PROVIDER_DEFINE(vfs);
SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
"char *", "size_t");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
"char *", "size_t");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
"char *", "size_t");
SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
"struct vnode *");
SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
"int");
SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
"char *", "size_t");
SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
"char *", "size_t");
/*
* rbtree: compare two nodes.
*/
static int
cache_compare_nodes(void *context, const void *n1, const void *n2)
{
const struct namecache *nc1 = n1;
const struct namecache *nc2 = n2;
if (nc1->nc_key < nc2->nc_key) {
return -1;
}
if (nc1->nc_key > nc2->nc_key) {
return 1;
}
KASSERT(nc1->nc_nlen == nc2->nc_nlen);
return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen);
}
/*
* Compute a key value for the given name. The name length is encoded in
* the key value to try and improve uniqueness, and so that length doesn't
* need to be compared separately for string comparisons.
*/
static inline uint64_t
cache_key(const char *name, size_t nlen)
{
uint64_t key;
KASSERT(nlen <= USHRT_MAX);
key = hash32_buf(name, nlen, HASH32_STR_INIT);
return (key << 32) | nlen;
}
/*
* Remove an entry from the cache. vi_nc_lock must be held, and if dir2node
* is true, then we're locking in the conventional direction and the list
* lock will be acquired when removing the entry from the vnode list.
*/
static void
cache_remove(struct namecache *ncp, const bool dir2node)
{
struct vnode *vp, *dvp = ncp->nc_dvp;
vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
KASSERT(rw_write_held(&dvi->vi_nc_lock));
KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key);
KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
SDT_PROBE(vfs, namecache, invalidate, done, ncp,
0, 0, 0, 0);
/*
* Remove from the vnode's list. This excludes cache_revlookup(),
* and then it's safe to remove from the LRU lists.
*/
if ((vp = ncp->nc_vp) != NULL) {
vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
if (__predict_true(dir2node)) {
rw_enter(&vi->vi_nc_listlock, RW_WRITER);
TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
rw_exit(&vi->vi_nc_listlock);
} else {
TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
}
}
/* Remove from the directory's rbtree. */
rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
/* Remove from the LRU lists. */
mutex_enter(&cache_lru_lock);
TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
cache_lru.count[ncp->nc_lrulist]--;
mutex_exit(&cache_lru_lock);
/* Finally, free it. */
if (ncp->nc_nlen > NCHNAMLEN) {
size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]);
kmem_free(ncp, sz);
} else {
pool_cache_put(cache_pool, ncp);
}
}
/*
* Find a single cache entry and return it. vi_nc_lock must be held.
*/
static struct namecache * __noinline
cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
uint64_t key)
{
vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
struct rb_node *node = dvi->vi_nc_tree.rbt_root;
struct namecache *ncp;
int lrulist, diff;
KASSERT(rw_lock_held(&dvi->vi_nc_lock));
/*
* Search the RB tree for the key. This is an inlined lookup
* tailored for exactly what's needed here (64-bit key and so on)
* that is quite a bit faster than using rb_tree_find_node().
*
* For a matching key memcmp() needs to be called once to confirm
* that the correct name has been found. Very rarely there will be
* a key value collision and the search will continue.
*/
for (;;) {
if (__predict_false(RB_SENTINEL_P(node))) {
return NULL;
}
ncp = (struct namecache *)node;
KASSERT((void *)&ncp->nc_tree == (void *)ncp);
KASSERT(ncp->nc_dvp == dvp);
if (ncp->nc_key == key) {
KASSERT(ncp->nc_nlen == namelen);
diff = memcmp(ncp->nc_name, name, namelen);
if (__predict_true(diff == 0)) {
break;
}
node = node->rb_nodes[diff < 0];
} else {
node = node->rb_nodes[ncp->nc_key < key];
}
}
/*
* If the entry is on the wrong LRU list, requeue it. This is an
* unlocked check, but it will rarely be wrong and even then there
* will be no harm caused.
*/
lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
if (__predict_false(lrulist != LRU_ACTIVE)) {
cache_activate(ncp);
}
return ncp;
}
/*
* Look for a the name in the cache. We don't do this
* if the segment name is long, simply so the cache can avoid
* holding long names (which would either waste space, or
* add greatly to the complexity).
*
* Lookup is called with DVP pointing to the directory to search,
* and CNP providing the name of the entry being sought: cn_nameptr
* is the name, cn_namelen is its length, and cn_flags is the flags
* word from the namei operation.
*
* DVP must be locked.
*
* There are three possible non-error return states:
* 1. Nothing was found in the cache. Nothing is known about
* the requested name.
* 2. A negative entry was found in the cache, meaning that the
* requested name definitely does not exist.
* 3. A positive entry was found in the cache, meaning that the
* requested name does exist and that we are providing the
* vnode.
* In these cases the results are:
* 1. 0 returned; VN is set to NULL.
* 2. 1 returned; VN is set to NULL.
* 3. 1 returned; VN is set to the vnode found.
*
* The additional result argument ISWHT is set to zero, unless a
* negative entry is found that was entered as a whiteout, in which
* case ISWHT is set to one.
*
* The ISWHT_RET argument pointer may be null. In this case an
* assertion is made that the whiteout flag is not set. File systems
* that do not support whiteouts can/should do this.
*
* Filesystems that do support whiteouts should add ISWHITEOUT to
* cnp->cn_flags if ISWHT comes back nonzero.
*
* When a vnode is returned, it is locked, as per the vnode lookup
* locking protocol.
*
* There is no way for this function to fail, in the sense of
* generating an error that requires aborting the namei operation.
*
* (Prior to October 2012, this function returned an integer status,
* and a vnode, and mucked with the flags word in CNP for whiteouts.
* The integer status was -1 for "nothing found", ENOENT for "a
* negative entry found", 0 for "a positive entry found", and possibly
* other errors, and the value of VN might or might not have been set
* depending on what error occurred.)
*/
bool
cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
uint32_t nameiop, uint32_t cnflags,
int *iswht_ret, struct vnode **vn_ret)
{
vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
struct namecache *ncp;
struct vnode *vp;
uint64_t key;
int error;
bool hit;
krw_t op;
KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
/* Establish default result values */
if (iswht_ret != NULL) {
*iswht_ret = 0;
}
*vn_ret = NULL;
if (__predict_false(namelen > cache_maxlen)) {
SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
name, namelen, 0, 0);
COUNT(ncs_long);
return false;
}
/* Compute the key up front - don't need the lock. */
key = cache_key(name, namelen);
/* Could the entry be purged below? */
if ((cnflags & ISLASTCN) != 0 &&
((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
op = RW_WRITER;
} else {
op = RW_READER;
}
/* Now look for the name. */
rw_enter(&dvi->vi_nc_lock, op);
ncp = cache_lookup_entry(dvp, name, namelen, key);
if (__predict_false(ncp == NULL)) {
rw_exit(&dvi->vi_nc_lock);
COUNT(ncs_miss);
SDT_PROBE(vfs, namecache, lookup, miss, dvp,
name, namelen, 0, 0);
return false;
}
if (__predict_false((cnflags & MAKEENTRY) == 0)) {
/*
* Last component and we are renaming or deleting,
* the cache entry is invalid, or otherwise don't
* want cache entry to exist.
*/
KASSERT((cnflags & ISLASTCN) != 0);
cache_remove(ncp, true);
rw_exit(&dvi->vi_nc_lock);
COUNT(ncs_badhits);
return false;
}
if (ncp->nc_vp == NULL) {
if (iswht_ret != NULL) {
/*
* Restore the ISWHITEOUT flag saved earlier.
*/
*iswht_ret = ncp->nc_whiteout;
} else {
KASSERT(!ncp->nc_whiteout);
}
if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
/*
* Last component and we are preparing to create
* the named object, so flush the negative cache
* entry.
*/
COUNT(ncs_badhits);
cache_remove(ncp, true);
hit = false;
} else {
COUNT(ncs_neghits);
SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
namelen, 0, 0);
/* found neg entry; vn is already null from above */
hit = true;
}
rw_exit(&dvi->vi_nc_lock);
return hit;
}
vp = ncp->nc_vp;
error = vcache_tryvget(vp);
rw_exit(&dvi->vi_nc_lock);
if (error) {
KASSERT(error == EBUSY);
/*
* This vnode is being cleaned out.
* XXX badhits?
*/
COUNT(ncs_falsehits);
return false;
}
COUNT(ncs_goodhits);
SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
/* found it */
*vn_ret = vp;
return true;
}
/*
* Version of the above without the nameiop argument, for NFS.
*/
bool
cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
uint32_t cnflags,
int *iswht_ret, struct vnode **vn_ret)
{
return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
iswht_ret, vn_ret);
}
/*
* Used by namei() to walk down a path, component by component by looking up
* names in the cache. The node locks are chained along the way: a parent's
* lock is not dropped until the child's is acquired.
*/
bool
cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
struct vnode **vn_ret, krwlock_t **plock,
kauth_cred_t cred)
{
vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
struct namecache *ncp;
krwlock_t *oldlock, *newlock;
uint64_t key;
int error;
KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
/* If disabled, or file system doesn't support this, bail out. */
if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
return false;
}
if (__predict_false(namelen > cache_maxlen)) {
COUNT(ncs_long);
return false;
}
/* Compute the key up front - don't need the lock. */
key = cache_key(name, namelen);
/*
* Acquire the directory lock. Once we have that, we can drop the
* previous one (if any).
*
* The two lock holds mean that the directory can't go away while
* here: the directory must be purged with cache_purge() before
* being freed, and both parent & child's vi_nc_lock must be taken
* before that point is passed.
*
* However if there's no previous lock, like at the root of the
* chain, then "dvp" must be referenced to prevent dvp going away
* before we get its lock.
*
* Note that the two locks can be the same if looking up a dot, for
* example: /usr/bin/. If looking up the parent (..) we can't wait
* on the lock as child -> parent is the wrong direction.
*/
if (*plock != &dvi->vi_nc_lock) {
oldlock = *plock;
newlock = &dvi->vi_nc_lock;
if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
return false;
}
} else {
oldlock = NULL;
newlock = NULL;
if (*plock == NULL) {
KASSERT(vrefcnt(dvp) > 0);
}
}
/*
* First up check if the user is allowed to look up files in this
* directory.
*/
if (cred != FSCRED) {
if (dvi->vi_nc_mode == VNOVAL) {
if (newlock != NULL) {
rw_exit(newlock);
}
return false;
}
KASSERT(dvi->vi_nc_uid != VNOVAL && dvi->vi_nc_gid != VNOVAL);
error = kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(VEXEC,
dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL,
genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
if (error != 0) {
if (newlock != NULL) {
rw_exit(newlock);
}
COUNT(ncs_denied);
return false;
}
}
/*
* Now look for a matching cache entry.
*/
ncp = cache_lookup_entry(dvp, name, namelen, key);
if (__predict_false(ncp == NULL)) {
if (newlock != NULL) {
rw_exit(newlock);
}
COUNT(ncs_miss);
SDT_PROBE(vfs, namecache, lookup, miss, dvp,
name, namelen, 0, 0);
return false;
}
if (ncp->nc_vp == NULL) {
/* found negative entry; vn is already null from above */
KASSERT(namelen != cache_mp_nlen && name != cache_mp_name);
COUNT(ncs_neghits);
} else {
COUNT(ncs_goodhits); /* XXX can be "badhits" */
}
SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
/*
* Return with the directory lock still held. It will either be
* returned to us with another call to cache_lookup_linked() when
* looking up the next component, or the caller will release it
* manually when finished.
*/
if (oldlock) {
rw_exit(oldlock);
}
if (newlock) {
*plock = newlock;
}
*vn_ret = ncp->nc_vp;
return true;
}
/*
* Scan cache looking for name of directory entry pointing at vp.
* Will not search for "." or "..".
*
* If the lookup succeeds the vnode is referenced and stored in dvpp.
*
* If bufp is non-NULL, also place the name in the buffer which starts
* at bufp, immediately before *bpp, and move bpp backwards to point
* at the start of it. (Yes, this is a little baroque, but it's done
* this way to cater to the whims of getcwd).
*
* Returns 0 on success, -1 on cache miss, positive errno on failure.
*/
int
cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
bool checkaccess, accmode_t accmode)
{
vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
struct namecache *ncp;
struct vnode *dvp;
int error, nlen, lrulist;
char *bp;
KASSERT(vp != NULL);
if (cache_maxlen == 0)
goto out;
rw_enter(&vi->vi_nc_listlock, RW_READER);
if (checkaccess) {
/*
* Check if the user is allowed to see. NOTE: this is
* checking for access on the "wrong" directory. getcwd()
* wants to see that there is access on every component
* along the way, not that there is access to any individual
* component. Don't use this to check you can look in vp.
*
* I don't like it, I didn't come up with it, don't blame me!
*/
if (vi->vi_nc_mode == VNOVAL) {
rw_exit(&vi->vi_nc_listlock);
return -1;
}
KASSERT(vi->vi_nc_uid != VNOVAL && vi->vi_nc_gid != VNOVAL);
error = kauth_authorize_vnode(curlwp->l_cred,
KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred,
vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS,
NULL, accmode));
if (error != 0) {
rw_exit(&vi->vi_nc_listlock);
COUNT(ncs_denied);
return EACCES;
}
}
TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
KASSERT(ncp->nc_vp == vp);
KASSERT(ncp->nc_dvp != NULL);
nlen = ncp->nc_nlen;
/*
* Ignore mountpoint entries.
*/
if (ncp->nc_nlen == cache_mp_nlen) {
continue;
}
/*
* The queue is partially sorted. Once we hit dots, nothing
* else remains but dots and dotdots, so bail out.
*/
if (ncp->nc_name[0] == '.') {
if (nlen == 1 ||
(nlen == 2 && ncp->nc_name[1] == '.')) {
break;
}
}
/*
* Record a hit on the entry. This is an unlocked read but
* even if wrong it doesn't matter too much.
*/
lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
if (lrulist != LRU_ACTIVE) {
cache_activate(ncp);
}
if (bufp) {
bp = *bpp;
bp -= nlen;
if (bp <= bufp) {
*dvpp = NULL;
rw_exit(&vi->vi_nc_listlock);
SDT_PROBE(vfs, namecache, revlookup,
fail, vp, ERANGE, 0, 0, 0);
return (ERANGE);
}
memcpy(bp, ncp->nc_name, nlen);
*bpp = bp;
}
dvp = ncp->nc_dvp;
error = vcache_tryvget(dvp);
rw_exit(&vi->vi_nc_listlock);
if (error) {
KASSERT(error == EBUSY);
if (bufp)
(*bpp) += nlen;
*dvpp = NULL;
SDT_PROBE(vfs, namecache, revlookup, fail, vp,
error, 0, 0, 0);
return -1;
}
*dvpp = dvp;
SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
0, 0, 0);
COUNT(ncs_revhits);
return (0);
}
rw_exit(&vi->vi_nc_listlock);
COUNT(ncs_revmiss);
out:
*dvpp = NULL;
return (-1);
}
/*
* Add an entry to the cache.
*/
void
cache_enter(struct vnode *dvp, struct vnode *vp,
const char *name, size_t namelen, uint32_t cnflags)
{
vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
struct namecache *ncp, *oncp;
int total;
KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
/* First, check whether we can/should add a cache entry. */
if ((cnflags & MAKEENTRY) == 0 ||
__predict_false(namelen > cache_maxlen)) {
SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
0, 0);
return;
}
SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
/*
* Reclaim some entries if over budget. This is an unlocked check,
* but it doesn't matter. Just need to catch up with things
* eventually: it doesn't matter if we go over temporarily.
*/
total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
if (__predict_false(total > desiredvnodes)) {
cache_reclaim();
}
/* Now allocate a fresh entry. */
if (__predict_true(namelen <= NCHNAMLEN)) {
ncp = pool_cache_get(cache_pool, PR_WAITOK);
} else {
size_t sz = offsetof(struct namecache, nc_name[namelen]);
ncp = kmem_alloc(sz, KM_SLEEP);
}
/*
* Fill in cache info. For negative hits, save the ISWHITEOUT flag
* so we can restore it later when the cache entry is used again.
*/
ncp->nc_vp = vp;
ncp->nc_dvp = dvp;
ncp->nc_key = cache_key(name, namelen);
ncp->nc_nlen = namelen;
ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
memcpy(ncp->nc_name, name, namelen);
/*
* Insert to the directory. Concurrent lookups may race for a cache
* entry. If there's a entry there already, purge it.
*/
rw_enter(&dvi->vi_nc_lock, RW_WRITER);
oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
if (oncp != ncp) {
KASSERT(oncp->nc_key == ncp->nc_key);
KASSERT(oncp->nc_nlen == ncp->nc_nlen);
KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
cache_remove(oncp, true);
oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
KASSERT(oncp == ncp);
}
/*
* With the directory lock still held, insert to the tail of the
* ACTIVE LRU list (new) and take the opportunity to incrementally
* balance the lists.
*/
mutex_enter(&cache_lru_lock);
ncp->nc_lrulist = LRU_ACTIVE;
cache_lru.count[LRU_ACTIVE]++;
TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
cache_deactivate();
mutex_exit(&cache_lru_lock);
/*
* Finally, insert to the vnode and unlock. With everything set up
* it's safe to let cache_revlookup() see the entry. Partially sort
* the per-vnode list: dots go to back so cache_revlookup() doesn't
* have to consider them.
*/
if (vp != NULL) {
vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
rw_enter(&vi->vi_nc_listlock, RW_WRITER);
if ((namelen == 1 && name[0] == '.') ||
(namelen == 2 && name[0] == '.' && name[1] == '.')) {
TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
} else {
TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
}
rw_exit(&vi->vi_nc_listlock);
}
rw_exit(&dvi->vi_nc_lock);
}
/*
* Set identity info in cache for a vnode. We only care about directories
* so ignore other updates. The cached info may be marked invalid if the
* inode has an ACL.
*/
void
cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
{
vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
if (vp->v_type == VDIR) {
/* Grab both locks, for forward & reverse lookup. */
rw_enter(&vi->vi_nc_lock, RW_WRITER);
rw_enter(&vi->vi_nc_listlock, RW_WRITER);
if (valid) {
vi->vi_nc_mode = mode;
vi->vi_nc_uid = uid;
vi->vi_nc_gid = gid;
} else {
vi->vi_nc_mode = VNOVAL;
vi->vi_nc_uid = VNOVAL;
vi->vi_nc_gid = VNOVAL;
}
rw_exit(&vi->vi_nc_listlock);
rw_exit(&vi->vi_nc_lock);
}
}
/*
* Return true if we have identity for the given vnode, and use as an
* opportunity to confirm that everything squares up.
*
* Because of shared code, some file systems could provide partial
* information, missing some updates, so check the mount flag too.
*/
bool
cache_have_id(struct vnode *vp)
{
if (vp->v_type == VDIR &&
(vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
return true;
} else {
return false;
}
}
/*
* Enter a mount point. cvp is the covered vnode, and rvp is the root of
* the mounted file system.
*/
void
cache_enter_mount(struct vnode *cvp, struct vnode *rvp)
{
KASSERT(vrefcnt(cvp) > 0);
KASSERT(vrefcnt(rvp) > 0);
KASSERT(cvp->v_type == VDIR);
KASSERT((rvp->v_vflag & VV_ROOT) != 0);
if (rvp->v_type == VDIR) {
cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY);
}
}
/*
* Look up a cached mount point. Used in the strongly locked path.
*/
bool
cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret)
{
bool ret;
ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP,
MAKEENTRY, NULL, vn_ret);
KASSERT((*vn_ret != NULL) == ret);
return ret;
}
/*
* Try to cross a mount point. For use with cache_lookup_linked().
*/
bool
cache_cross_mount(struct vnode **dvp, krwlock_t **plock)
{
return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen,
dvp, plock, FSCRED);
}
/*
* Name cache initialization, from vfs_init() when the system is booting.
*/
void
nchinit(void)
{
cache_pool = pool_cache_init(sizeof(struct namecache),
coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
NULL, NULL);
KASSERT(cache_pool != NULL);
mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
KASSERT(cache_sysctllog == NULL);
sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "namecache_stats",
SYSCTL_DESCR("namecache statistics"),
cache_stat_sysctl, 0, NULL, 0,
CTL_VFS, CTL_CREATE, CTL_EOL);
}
/*
* Called once for each CPU in the system as attached.
*/
void
cache_cpu_init(struct cpu_info *ci)
{
void *p;
size_t sz;
sz = roundup2(sizeof(struct nchstats_percpu), coherency_unit) +
coherency_unit;
p = kmem_zalloc(sz, KM_SLEEP);
ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit);
}
/*
* A vnode is being allocated: set up cache structures.
*/
void
cache_vnode_init(struct vnode *vp)
{
vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
rw_init(&vi->vi_nc_lock);
rw_init(&vi->vi_nc_listlock);
rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
TAILQ_INIT(&vi->vi_nc_list);
vi->vi_nc_mode = VNOVAL;
vi->vi_nc_uid = VNOVAL;
vi->vi_nc_gid = VNOVAL;
}
/*
* A vnode is being freed: finish cache structures.
*/
void
cache_vnode_fini(struct vnode *vp)
{
vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
rw_destroy(&vi->vi_nc_lock);
rw_destroy(&vi->vi_nc_listlock);
}
/*
* Helper for cache_purge1(): purge cache entries for the given vnode from
* all directories that the vnode is cached in.
*/
static void
cache_purge_parents(struct vnode *vp)
{
vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
struct vnode *dvp, *blocked;
struct namecache *ncp;
SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
blocked = NULL;
rw_enter(&vi->vi_nc_listlock, RW_WRITER);
while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
/*
* Locking in the wrong direction. Try for a hold on the
* directory node's lock, and if we get it then all good,
* nuke the entry and move on to the next.
*/
dvp = ncp->nc_dvp;
dvi = VNODE_TO_VIMPL(dvp);
if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
cache_remove(ncp, false);
rw_exit(&dvi->vi_nc_lock);
blocked = NULL;
continue;
}
/*
* We can't wait on the directory node's lock with our list
* lock held or the system could deadlock.
*
* Take a hold on the directory vnode to prevent it from
* being freed (taking the vnode & lock with it). Then
* wait for the lock to become available with no other locks
* held, and retry.
*
* If this happens twice in a row, give the other side a
* breather; we can do nothing until it lets go.
*/
vhold(dvp);
rw_exit(&vi->vi_nc_listlock);
rw_enter(&dvi->vi_nc_lock, RW_WRITER);
/* Do nothing. */
rw_exit(&dvi->vi_nc_lock);
holdrele(dvp);
if (blocked == dvp) {
kpause("ncpurge", false, 1, NULL);
}
rw_enter(&vi->vi_nc_listlock, RW_WRITER);
blocked = dvp;
}
rw_exit(&vi->vi_nc_listlock);
}
/*
* Helper for cache_purge1(): purge all cache entries hanging off the given
* directory vnode.
*/
static void
cache_purge_children(struct vnode *dvp)
{
vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
struct namecache *ncp;
SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
rw_enter(&dvi->vi_nc_lock, RW_WRITER);
while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
cache_remove(ncp, true);
}
rw_exit(&dvi->vi_nc_lock);
}
/*
* Helper for cache_purge1(): purge cache entry from the given vnode,
* finding it by name.
*/
static void
cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
{
vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
struct namecache *ncp;
uint64_t key;
SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
key = cache_key(name, namelen);
rw_enter(&dvi->vi_nc_lock, RW_WRITER);
ncp = cache_lookup_entry(dvp, name, namelen, key);
if (ncp) {
cache_remove(ncp, true);
}
rw_exit(&dvi->vi_nc_lock);
}
/*
* Cache flush, a particular vnode; called when a vnode is renamed to
* hide entries that would now be invalid.
*/
void
cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
{
if (flags & PURGE_PARENTS) {
cache_purge_parents(vp);
}
if (flags & PURGE_CHILDREN) {
cache_purge_children(vp);
}
if (name != NULL) {
cache_purge_name(vp, name, namelen);
}
}
/*
* vnode filter for cache_purgevfs().
*/
static bool
cache_vdir_filter(void *cookie, vnode_t *vp)
{
return vp->v_type == VDIR;
}
/*
* Cache flush, a whole filesystem; called when filesys is umounted to
* remove entries that would now be invalid.
*/
void
cache_purgevfs(struct mount *mp)
{
struct vnode_iterator *iter;
vnode_t *dvp;
vfs_vnode_iterator_init(mp, &iter);
for (;;) {
dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
if (dvp == NULL) {
break;
}
cache_purge_children(dvp);
vrele(dvp);
}
vfs_vnode_iterator_destroy(iter);
}
/*
* Re-queue an entry onto the tail of the active LRU list, after it has
* scored a hit.
*/
static void
cache_activate(struct namecache *ncp)
{
mutex_enter(&cache_lru_lock);
TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
cache_lru.count[ncp->nc_lrulist]--;
cache_lru.count[LRU_ACTIVE]++;
ncp->nc_lrulist = LRU_ACTIVE;
mutex_exit(&cache_lru_lock);
}
/*
* Try to balance the LRU lists. Pick some victim entries, and re-queue
* them from the head of the active list to the tail of the inactive list.
*/
static void
cache_deactivate(void)
{
struct namecache *ncp;
int total, i;
KASSERT(mutex_owned(&cache_lru_lock));
/* If we're nowhere near budget yet, don't bother. */
total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
if (total < (desiredvnodes >> 1)) {
return;
}
/*
* Aim for a 1:1 ratio of active to inactive. This is to allow each
* potential victim a reasonable amount of time to cycle through the
* inactive list in order to score a hit and be reactivated, while
* trying not to cause reactivations too frequently.
*/
if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
return;
}
/* Move only a few at a time; will catch up eventually. */
for (i = 0; i < cache_lru_maxdeact; i++) {
ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
if (ncp == NULL) {
break;
}
KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
ncp->nc_lrulist = LRU_INACTIVE;
TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
cache_lru.count[LRU_ACTIVE]--;
cache_lru.count[LRU_INACTIVE]++;
}
}
/*
* Free some entries from the cache, when we have gone over budget.
*
* We don't want to cause too much work for any individual caller, and it
* doesn't matter if we temporarily go over budget. This is also "just a
* cache" so it's not a big deal if we screw up and throw out something we
* shouldn't. So we take a relaxed attitude to this process to reduce its
* impact.
*/
static void
cache_reclaim(void)
{
struct namecache *ncp;
vnode_impl_t *dvi;
int toscan;
/*
* Scan up to a preset maxium number of entries, but no more than
* 0.8% of the total at once (to allow for very small systems).
*
* On bigger systems, do a larger chunk of work to reduce the number
* of times that cache_lru_lock is held for any length of time.
*/
mutex_enter(&cache_lru_lock);
toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
toscan = MAX(toscan, 1);
SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
while (toscan-- != 0) {
/* First try to balance the lists. */
cache_deactivate();
/* Now look for a victim on head of inactive list (old). */
ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
if (ncp == NULL) {
break;
}
dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
KASSERT(dvi != NULL);
/*
* Locking in the wrong direction. If we can't get the
* lock, the directory is actively busy, and it could also
* cause problems for the next guy in here, so send the
* entry to the back of the list.
*/
if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
ncp, nc_lru);
TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
ncp, nc_lru);
continue;
}
/*
* Now have the victim entry locked. Drop the LRU list
* lock, purge the entry, and start over. The hold on
* vi_nc_lock will prevent the vnode from vanishing until
* finished (cache_purge() will be called on dvp before it
* disappears, and that will wait on vi_nc_lock).
*/
mutex_exit(&cache_lru_lock);
cache_remove(ncp, true);
rw_exit(&dvi->vi_nc_lock);
mutex_enter(&cache_lru_lock);
}
mutex_exit(&cache_lru_lock);
}
/*
* For file system code: count a lookup that required a full re-scan of
* directory metadata.
*/
void
namecache_count_pass2(void)
{
COUNT(ncs_pass2);
}
/*
* For file system code: count a lookup that scored a hit in the directory
* metadata near the location of the last lookup.
*/
void
namecache_count_2passes(void)
{
COUNT(ncs_2passes);
}
/*
* Sum the stats from all CPUs into nchstats. This needs to run at least
* once within every window where a 32-bit counter could roll over. It's
* called regularly by timer to ensure this.
*/
static void
cache_update_stats(void *cookie)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
mutex_enter(&cache_stat_lock);
for (CPU_INFO_FOREACH(cii, ci)) {
struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
UPDATE(nchcpu, ncs_goodhits);
UPDATE(nchcpu, ncs_neghits);
UPDATE(nchcpu, ncs_badhits);
UPDATE(nchcpu, ncs_falsehits);
UPDATE(nchcpu, ncs_miss);
UPDATE(nchcpu, ncs_long);
UPDATE(nchcpu, ncs_pass2);
UPDATE(nchcpu, ncs_2passes);
UPDATE(nchcpu, ncs_revhits);
UPDATE(nchcpu, ncs_revmiss);
UPDATE(nchcpu, ncs_denied);
}
if (cookie != NULL) {
memcpy(cookie, &nchstats, sizeof(nchstats));
}
/* Reset the timer; arrive back here in N minutes at latest. */
callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
mutex_exit(&cache_stat_lock);
}
/*
* Fetch the current values of the stats for sysctl.
*/
static int
cache_stat_sysctl(SYSCTLFN_ARGS)
{
struct nchstats stats;
if (oldp == NULL) {
*oldlenp = sizeof(nchstats);
return 0;
}
if (*oldlenp <= 0) {
*oldlenp = 0;
return 0;
}
/* Refresh the global stats. */
sysctl_unlock();
cache_update_stats(&stats);
sysctl_relock();
*oldlenp = MIN(sizeof(stats), *oldlenp);
return sysctl_copyout(l, &stats, oldp, *oldlenp);
}
/*
* For the debugger, given the address of a vnode, print all associated
* names in the cache.
*/
#ifdef DDB
void
namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
{
struct vnode *dvp = NULL;
struct namecache *ncp;
enum cache_lru_id id;
for (id = 0; id < LRU_COUNT; id++) {
TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
if (ncp->nc_vp == vp) {
(*pr)("name %.*s\n", ncp->nc_nlen,
ncp->nc_name);
dvp = ncp->nc_dvp;
}
}
}
if (dvp == NULL) {
(*pr)("name not found\n");
return;
}
for (id = 0; id < LRU_COUNT; id++) {
TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
if (ncp->nc_vp == dvp) {
(*pr)("parent %.*s\n", ncp->nc_nlen,
ncp->nc_name);
}
}
}
}
#endif