4029 lines
99 KiB
C
4029 lines
99 KiB
C
/* $NetBSD: jemalloc.c,v 1.55 2022/11/30 04:35:53 skrll Exp $ */
|
|
|
|
/*-
|
|
* Copyright (C) 2006,2007 Jason Evans <jasone@FreeBSD.org>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer as
|
|
* the first lines of this file unmodified other than the possible
|
|
* addition of one or more copyright notices.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*******************************************************************************
|
|
*
|
|
* This allocator implementation is designed to provide scalable performance
|
|
* for multi-threaded programs on multi-processor systems. The following
|
|
* features are included for this purpose:
|
|
*
|
|
* + Multiple arenas are used if there are multiple CPUs, which reduces lock
|
|
* contention and cache sloshing.
|
|
*
|
|
* + Cache line sharing between arenas is avoided for internal data
|
|
* structures.
|
|
*
|
|
* + Memory is managed in chunks and runs (chunks can be split into runs),
|
|
* rather than as individual pages. This provides a constant-time
|
|
* mechanism for associating allocations with particular arenas.
|
|
*
|
|
* Allocation requests are rounded up to the nearest size class, and no record
|
|
* of the original request size is maintained. Allocations are broken into
|
|
* categories according to size class. Assuming runtime defaults, 4 kB pages
|
|
* and a 16 byte quantum, the size classes in each category are as follows:
|
|
*
|
|
* |=====================================|
|
|
* | Category | Subcategory | Size |
|
|
* |=====================================|
|
|
* | Small | Tiny | 2 |
|
|
* | | | 4 |
|
|
* | | | 8 |
|
|
* | |----------------+---------|
|
|
* | | Quantum-spaced | 16 |
|
|
* | | | 32 |
|
|
* | | | 48 |
|
|
* | | | ... |
|
|
* | | | 480 |
|
|
* | | | 496 |
|
|
* | | | 512 |
|
|
* | |----------------+---------|
|
|
* | | Sub-page | 1 kB |
|
|
* | | | 2 kB |
|
|
* |=====================================|
|
|
* | Large | 4 kB |
|
|
* | | 8 kB |
|
|
* | | 12 kB |
|
|
* | | ... |
|
|
* | | 1012 kB |
|
|
* | | 1016 kB |
|
|
* | | 1020 kB |
|
|
* |=====================================|
|
|
* | Huge | 1 MB |
|
|
* | | 2 MB |
|
|
* | | 3 MB |
|
|
* | | ... |
|
|
* |=====================================|
|
|
*
|
|
* A different mechanism is used for each category:
|
|
*
|
|
* Small : Each size class is segregated into its own set of runs. Each run
|
|
* maintains a bitmap of which regions are free/allocated.
|
|
*
|
|
* Large : Each allocation is backed by a dedicated run. Metadata are stored
|
|
* in the associated arena chunk header maps.
|
|
*
|
|
* Huge : Each allocation is backed by a dedicated contiguous set of chunks.
|
|
* Metadata are stored in a separate red-black tree.
|
|
*
|
|
*******************************************************************************
|
|
*/
|
|
|
|
/* LINTLIBRARY */
|
|
|
|
#ifdef __NetBSD__
|
|
# define xutrace(a, b) utrace("malloc", (a), (b))
|
|
# define __DECONST(x, y) ((x)__UNCONST(y))
|
|
#else
|
|
# define xutrace(a, b) utrace((a), (b))
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* MALLOC_PRODUCTION disables assertions and statistics gathering. It also
|
|
* defaults the A and J runtime options to off. These settings are appropriate
|
|
* for production systems.
|
|
*/
|
|
#define MALLOC_PRODUCTION
|
|
|
|
#ifndef MALLOC_PRODUCTION
|
|
# define MALLOC_DEBUG
|
|
#endif
|
|
|
|
#include <sys/cdefs.h>
|
|
/* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
|
|
__RCSID("$NetBSD: jemalloc.c,v 1.55 2022/11/30 04:35:53 skrll Exp $");
|
|
|
|
#ifdef __FreeBSD__
|
|
#include "libc_private.h"
|
|
#ifdef MALLOC_DEBUG
|
|
# define _LOCK_DEBUG
|
|
#endif
|
|
#include "spinlock.h"
|
|
#endif
|
|
#include "namespace.h"
|
|
#include <sys/mman.h>
|
|
#include <sys/param.h>
|
|
#ifdef __FreeBSD__
|
|
#include <sys/stddef.h>
|
|
#endif
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/tree.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
|
|
|
|
#ifdef __FreeBSD__
|
|
#include <machine/atomic.h>
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/vmparam.h>
|
|
#endif
|
|
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
#include <stdarg.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <strings.h>
|
|
#include <unistd.h>
|
|
|
|
#ifdef __NetBSD__
|
|
# include <reentrant.h>
|
|
# include "extern.h"
|
|
|
|
#define STRERROR_R(a, b, c) strerror_r_ss(a, b, c);
|
|
#endif
|
|
|
|
#ifdef __FreeBSD__
|
|
#define STRERROR_R(a, b, c) strerror_r(a, b, c);
|
|
#include "un-namespace.h"
|
|
#endif
|
|
|
|
/* MALLOC_STATS enables statistics calculation. */
|
|
#ifndef MALLOC_PRODUCTION
|
|
# define MALLOC_STATS
|
|
#endif
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
# ifdef NDEBUG
|
|
# undef NDEBUG
|
|
# endif
|
|
#else
|
|
# ifndef NDEBUG
|
|
# define NDEBUG
|
|
# endif
|
|
#endif
|
|
#include <assert.h>
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
/* Disable inlining to make debugging easier. */
|
|
# define inline
|
|
#endif
|
|
|
|
/* Size of stack-allocated buffer passed to strerror_r(). */
|
|
#define STRERROR_BUF 64
|
|
|
|
/* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
|
|
|
|
/*
|
|
* If you touch the TINY_MIN_2POW definition for any architecture, please
|
|
* make sure to adjust the corresponding definition for JEMALLOC_TINY_MIN_2POW
|
|
* in the gcc 4.8 tree in dist/gcc/tree-ssa-ccp.c and verify that a native
|
|
* gcc is still buildable!
|
|
*/
|
|
|
|
#ifdef __i386__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define USE_BRK
|
|
#endif
|
|
#ifdef __ia64__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 3
|
|
#endif
|
|
#ifdef __aarch64__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 3
|
|
# define TINY_MIN_2POW 3
|
|
#endif
|
|
#ifdef __alpha__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 3
|
|
# define TINY_MIN_2POW 3
|
|
#endif
|
|
#ifdef __sparc64__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 3
|
|
# define TINY_MIN_2POW 3
|
|
#endif
|
|
#ifdef __amd64__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 3
|
|
# define TINY_MIN_2POW 3
|
|
#endif
|
|
#ifdef __arm__
|
|
# define QUANTUM_2POW_MIN 3
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define USE_BRK
|
|
# ifdef __ARM_EABI__
|
|
# define TINY_MIN_2POW 3
|
|
# endif
|
|
#endif
|
|
#ifdef __powerpc__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define USE_BRK
|
|
# define TINY_MIN_2POW 3
|
|
#endif
|
|
#if defined(__sparc__) && !defined(__sparc64__)
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define USE_BRK
|
|
#endif
|
|
#ifdef __or1k__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define USE_BRK
|
|
#endif
|
|
#ifdef __vax__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define USE_BRK
|
|
# define NO_TLS
|
|
#endif
|
|
#ifdef __sh__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define USE_BRK
|
|
#endif
|
|
#ifdef __m68k__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define USE_BRK
|
|
# ifdef __mc68010__
|
|
# define NO_TLS
|
|
# endif
|
|
#endif
|
|
#if defined(__mips__) || defined(__riscv__)
|
|
# ifdef _LP64
|
|
# define SIZEOF_PTR_2POW 3
|
|
# define TINY_MIN_2POW 3
|
|
# else
|
|
# define SIZEOF_PTR_2POW 2
|
|
# endif
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define USE_BRK
|
|
# if defined(__mips__)
|
|
# define NO_TLS
|
|
# endif
|
|
#endif
|
|
#ifdef __hppa__
|
|
# define QUANTUM_2POW_MIN 4
|
|
# define TINY_MIN_2POW 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define USE_BRK
|
|
#endif
|
|
|
|
#define SIZEOF_PTR (1 << SIZEOF_PTR_2POW)
|
|
|
|
/* sizeof(int) == (1 << SIZEOF_INT_2POW). */
|
|
#ifndef SIZEOF_INT_2POW
|
|
# define SIZEOF_INT_2POW 2
|
|
#endif
|
|
|
|
/*
|
|
* Size and alignment of memory chunks that are allocated by the OS's virtual
|
|
* memory system.
|
|
*/
|
|
#define CHUNK_2POW_DEFAULT 20
|
|
|
|
/*
|
|
* Maximum size of L1 cache line. This is used to avoid cache line aliasing,
|
|
* so over-estimates are okay (up to a point), but under-estimates will
|
|
* negatively affect performance.
|
|
*/
|
|
#define CACHELINE_2POW 6
|
|
#define CACHELINE ((size_t)(1 << CACHELINE_2POW))
|
|
|
|
/* Smallest size class to support. */
|
|
#ifndef TINY_MIN_2POW
|
|
#define TINY_MIN_2POW 2
|
|
#endif
|
|
|
|
/*
|
|
* Maximum size class that is a multiple of the quantum, but not (necessarily)
|
|
* a power of 2. Above this size, allocations are rounded up to the nearest
|
|
* power of 2.
|
|
*/
|
|
#define SMALL_MAX_2POW_DEFAULT 9
|
|
#define SMALL_MAX_DEFAULT (1 << SMALL_MAX_2POW_DEFAULT)
|
|
|
|
/*
|
|
* RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
|
|
* as small as possible such that this setting is still honored, without
|
|
* violating other constraints. The goal is to make runs as small as possible
|
|
* without exceeding a per run external fragmentation threshold.
|
|
*
|
|
* We use binary fixed point math for overhead computations, where the binary
|
|
* point is implicitly RUN_BFP bits to the left.
|
|
*
|
|
* Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
|
|
* honored for some/all object sizes, since there is one bit of header overhead
|
|
* per object (plus a constant). This constraint is relaxed (ignored) for runs
|
|
* that are so small that the per-region overhead is greater than:
|
|
*
|
|
* (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
|
|
*/
|
|
#define RUN_BFP 12
|
|
/* \/ Implicit binary fixed point. */
|
|
#define RUN_MAX_OVRHD 0x0000003dU
|
|
#define RUN_MAX_OVRHD_RELAX 0x00001800U
|
|
|
|
/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
|
|
#define RUN_MAX_SMALL_2POW 15
|
|
#define RUN_MAX_SMALL (1 << RUN_MAX_SMALL_2POW)
|
|
|
|
/******************************************************************************/
|
|
|
|
#ifdef __FreeBSD__
|
|
/*
|
|
* Mutexes based on spinlocks. We can't use normal pthread mutexes, because
|
|
* they require malloc()ed memory.
|
|
*/
|
|
typedef struct {
|
|
spinlock_t lock;
|
|
} malloc_mutex_t;
|
|
|
|
/* Set to true once the allocator has been initialized. */
|
|
static bool malloc_initialized = false;
|
|
|
|
/* Used to avoid initialization races. */
|
|
static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
|
|
#else
|
|
#define malloc_mutex_t mutex_t
|
|
|
|
/* Set to true once the allocator has been initialized. */
|
|
static bool malloc_initialized = false;
|
|
|
|
#ifdef _REENTRANT
|
|
/* Used to avoid initialization races. */
|
|
static mutex_t init_lock = MUTEX_INITIALIZER;
|
|
#endif
|
|
#endif
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Statistics data structures.
|
|
*/
|
|
|
|
#ifdef MALLOC_STATS
|
|
|
|
typedef struct malloc_bin_stats_s malloc_bin_stats_t;
|
|
struct malloc_bin_stats_s {
|
|
/*
|
|
* Number of allocation requests that corresponded to the size of this
|
|
* bin.
|
|
*/
|
|
uint64_t nrequests;
|
|
|
|
/* Total number of runs created for this bin's size class. */
|
|
uint64_t nruns;
|
|
|
|
/*
|
|
* Total number of runs reused by extracting them from the runs tree for
|
|
* this bin's size class.
|
|
*/
|
|
uint64_t reruns;
|
|
|
|
/* High-water mark for this bin. */
|
|
unsigned long highruns;
|
|
|
|
/* Current number of runs in this bin. */
|
|
unsigned long curruns;
|
|
};
|
|
|
|
typedef struct arena_stats_s arena_stats_t;
|
|
struct arena_stats_s {
|
|
/* Number of bytes currently mapped. */
|
|
size_t mapped;
|
|
|
|
/* Per-size-category statistics. */
|
|
size_t allocated_small;
|
|
uint64_t nmalloc_small;
|
|
uint64_t ndalloc_small;
|
|
|
|
size_t allocated_large;
|
|
uint64_t nmalloc_large;
|
|
uint64_t ndalloc_large;
|
|
};
|
|
|
|
typedef struct chunk_stats_s chunk_stats_t;
|
|
struct chunk_stats_s {
|
|
/* Number of chunks that were allocated. */
|
|
uint64_t nchunks;
|
|
|
|
/* High-water mark for number of chunks allocated. */
|
|
unsigned long highchunks;
|
|
|
|
/*
|
|
* Current number of chunks allocated. This value isn't maintained for
|
|
* any other purpose, so keep track of it in order to be able to set
|
|
* highchunks.
|
|
*/
|
|
unsigned long curchunks;
|
|
};
|
|
|
|
#endif /* #ifdef MALLOC_STATS */
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Chunk data structures.
|
|
*/
|
|
|
|
/* Tree of chunks. */
|
|
typedef struct chunk_node_s chunk_node_t;
|
|
struct chunk_node_s {
|
|
/* Linkage for the chunk tree. */
|
|
RB_ENTRY(chunk_node_s) link;
|
|
|
|
/*
|
|
* Pointer to the chunk that this tree node is responsible for. In some
|
|
* (but certainly not all) cases, this data structure is placed at the
|
|
* beginning of the corresponding chunk, so this field may point to this
|
|
* node.
|
|
*/
|
|
void *chunk;
|
|
|
|
/* Total chunk size. */
|
|
size_t size;
|
|
};
|
|
typedef struct chunk_tree_s chunk_tree_t;
|
|
RB_HEAD(chunk_tree_s, chunk_node_s);
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Arena data structures.
|
|
*/
|
|
|
|
typedef struct arena_s arena_t;
|
|
typedef struct arena_bin_s arena_bin_t;
|
|
|
|
typedef struct arena_chunk_map_s arena_chunk_map_t;
|
|
struct arena_chunk_map_s {
|
|
/* Number of pages in run. */
|
|
uint32_t npages;
|
|
/*
|
|
* Position within run. For a free run, this is POS_FREE for the first
|
|
* and last pages. The POS_FREE special value makes it possible to
|
|
* quickly coalesce free runs.
|
|
*
|
|
* This is the limiting factor for chunksize; there can be at most 2^31
|
|
* pages in a run.
|
|
*/
|
|
#define POS_FREE ((uint32_t)0xffffffffU)
|
|
uint32_t pos;
|
|
};
|
|
|
|
/* Arena chunk header. */
|
|
typedef struct arena_chunk_s arena_chunk_t;
|
|
struct arena_chunk_s {
|
|
/* Arena that owns the chunk. */
|
|
arena_t *arena;
|
|
|
|
/* Linkage for the arena's chunk tree. */
|
|
RB_ENTRY(arena_chunk_s) link;
|
|
|
|
/*
|
|
* Number of pages in use. This is maintained in order to make
|
|
* detection of empty chunks fast.
|
|
*/
|
|
uint32_t pages_used;
|
|
|
|
/*
|
|
* Every time a free run larger than this value is created/coalesced,
|
|
* this value is increased. The only way that the value decreases is if
|
|
* arena_run_alloc() fails to find a free run as large as advertised by
|
|
* this value.
|
|
*/
|
|
uint32_t max_frun_npages;
|
|
|
|
/*
|
|
* Every time a free run that starts at an earlier page than this value
|
|
* is created/coalesced, this value is decreased. It is reset in a
|
|
* similar fashion to max_frun_npages.
|
|
*/
|
|
uint32_t min_frun_ind;
|
|
|
|
/*
|
|
* Map of pages within chunk that keeps track of free/large/small. For
|
|
* free runs, only the map entries for the first and last pages are
|
|
* kept up to date, so that free runs can be quickly coalesced.
|
|
*/
|
|
arena_chunk_map_t map[1]; /* Dynamically sized. */
|
|
};
|
|
typedef struct arena_chunk_tree_s arena_chunk_tree_t;
|
|
RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
|
|
|
|
typedef struct arena_run_s arena_run_t;
|
|
struct arena_run_s {
|
|
/* Linkage for run trees. */
|
|
RB_ENTRY(arena_run_s) link;
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
uint32_t magic;
|
|
# define ARENA_RUN_MAGIC 0x384adf93
|
|
#endif
|
|
|
|
/* Bin this run is associated with. */
|
|
arena_bin_t *bin;
|
|
|
|
/* Index of first element that might have a free region. */
|
|
unsigned regs_minelm;
|
|
|
|
/* Number of free regions in run. */
|
|
unsigned nfree;
|
|
|
|
/* Bitmask of in-use regions (0: in use, 1: free). */
|
|
unsigned regs_mask[1]; /* Dynamically sized. */
|
|
};
|
|
typedef struct arena_run_tree_s arena_run_tree_t;
|
|
RB_HEAD(arena_run_tree_s, arena_run_s);
|
|
|
|
struct arena_bin_s {
|
|
/*
|
|
* Current run being used to service allocations of this bin's size
|
|
* class.
|
|
*/
|
|
arena_run_t *runcur;
|
|
|
|
/*
|
|
* Tree of non-full runs. This tree is used when looking for an
|
|
* existing run when runcur is no longer usable. We choose the
|
|
* non-full run that is lowest in memory; this policy tends to keep
|
|
* objects packed well, and it can also help reduce the number of
|
|
* almost-empty chunks.
|
|
*/
|
|
arena_run_tree_t runs;
|
|
|
|
/* Size of regions in a run for this bin's size class. */
|
|
size_t reg_size;
|
|
|
|
/* Total size of a run for this bin's size class. */
|
|
size_t run_size;
|
|
|
|
/* Total number of regions in a run for this bin's size class. */
|
|
uint32_t nregs;
|
|
|
|
/* Number of elements in a run's regs_mask for this bin's size class. */
|
|
uint32_t regs_mask_nelms;
|
|
|
|
/* Offset of first region in a run for this bin's size class. */
|
|
uint32_t reg0_offset;
|
|
|
|
#ifdef MALLOC_STATS
|
|
/* Bin statistics. */
|
|
malloc_bin_stats_t stats;
|
|
#endif
|
|
};
|
|
|
|
struct arena_s {
|
|
#ifdef MALLOC_DEBUG
|
|
uint32_t magic;
|
|
# define ARENA_MAGIC 0x947d3d24
|
|
#endif
|
|
|
|
/* All operations on this arena require that mtx be locked. */
|
|
malloc_mutex_t mtx;
|
|
|
|
#ifdef MALLOC_STATS
|
|
arena_stats_t stats;
|
|
#endif
|
|
|
|
/*
|
|
* Tree of chunks this arena manages.
|
|
*/
|
|
arena_chunk_tree_t chunks;
|
|
|
|
/*
|
|
* In order to avoid rapid chunk allocation/deallocation when an arena
|
|
* oscillates right on the cusp of needing a new chunk, cache the most
|
|
* recently freed chunk. This caching is disabled by opt_hint.
|
|
*
|
|
* There is one spare chunk per arena, rather than one spare total, in
|
|
* order to avoid interactions between multiple threads that could make
|
|
* a single spare inadequate.
|
|
*/
|
|
arena_chunk_t *spare;
|
|
|
|
/*
|
|
* bins is used to store rings of free regions of the following sizes,
|
|
* assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
|
|
*
|
|
* bins[i] | size |
|
|
* --------+------+
|
|
* 0 | 2 |
|
|
* 1 | 4 |
|
|
* 2 | 8 |
|
|
* --------+------+
|
|
* 3 | 16 |
|
|
* 4 | 32 |
|
|
* 5 | 48 |
|
|
* 6 | 64 |
|
|
* : :
|
|
* : :
|
|
* 33 | 496 |
|
|
* 34 | 512 |
|
|
* --------+------+
|
|
* 35 | 1024 |
|
|
* 36 | 2048 |
|
|
* --------+------+
|
|
*/
|
|
arena_bin_t bins[1]; /* Dynamically sized. */
|
|
};
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Data.
|
|
*/
|
|
|
|
/* Number of CPUs. */
|
|
static unsigned ncpus;
|
|
|
|
/* VM page size. */
|
|
static size_t pagesize;
|
|
static size_t pagesize_mask;
|
|
static int pagesize_2pow;
|
|
|
|
/* Various bin-related settings. */
|
|
static size_t bin_maxclass; /* Max size class for bins. */
|
|
static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
|
|
static unsigned nqbins; /* Number of quantum-spaced bins. */
|
|
static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
|
|
static size_t small_min;
|
|
static size_t small_max;
|
|
|
|
/* Various quantum-related settings. */
|
|
static size_t quantum;
|
|
static size_t quantum_mask; /* (quantum - 1). */
|
|
|
|
/* Various chunk-related settings. */
|
|
static size_t chunksize;
|
|
static size_t chunksize_mask; /* (chunksize - 1). */
|
|
static int chunksize_2pow;
|
|
static unsigned chunk_npages;
|
|
static unsigned arena_chunk_header_npages;
|
|
static size_t arena_maxclass; /* Max size class for arenas. */
|
|
|
|
/********/
|
|
/*
|
|
* Chunks.
|
|
*/
|
|
|
|
#ifdef _REENTRANT
|
|
/* Protects chunk-related data structures. */
|
|
static malloc_mutex_t chunks_mtx;
|
|
#endif
|
|
|
|
/* Tree of chunks that are stand-alone huge allocations. */
|
|
static chunk_tree_t huge;
|
|
|
|
#ifdef USE_BRK
|
|
/*
|
|
* Try to use brk for chunk-size allocations, due to address space constraints.
|
|
*/
|
|
/*
|
|
* Protects sbrk() calls. This must be separate from chunks_mtx, since
|
|
* base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
|
|
* could cause recursive lock acquisition).
|
|
*/
|
|
#ifdef _REENTRANT
|
|
static malloc_mutex_t brk_mtx;
|
|
#endif
|
|
/* Result of first sbrk(0) call. */
|
|
static void *brk_base;
|
|
/* Current end of brk, or ((void *)-1) if brk is exhausted. */
|
|
static void *brk_prev;
|
|
/* Current upper limit on brk addresses. */
|
|
static void *brk_max;
|
|
#endif
|
|
|
|
#ifdef MALLOC_STATS
|
|
/* Huge allocation statistics. */
|
|
static uint64_t huge_nmalloc;
|
|
static uint64_t huge_ndalloc;
|
|
static uint64_t huge_nralloc;
|
|
static size_t huge_allocated;
|
|
#endif
|
|
|
|
/*
|
|
* Tree of chunks that were previously allocated. This is used when allocating
|
|
* chunks, in an attempt to re-use address space.
|
|
*/
|
|
static chunk_tree_t old_chunks;
|
|
|
|
/****************************/
|
|
/*
|
|
* base (internal allocation).
|
|
*/
|
|
|
|
/*
|
|
* Current pages that are being used for internal memory allocations. These
|
|
* pages are carved up in cacheline-size quanta, so that there is no chance of
|
|
* false cache line sharing.
|
|
*/
|
|
static void *base_pages;
|
|
static void *base_next_addr;
|
|
static void *base_past_addr; /* Addr immediately past base_pages. */
|
|
static chunk_node_t *base_chunk_nodes; /* LIFO cache of chunk nodes. */
|
|
#ifdef _REENTRANT
|
|
static malloc_mutex_t base_mtx;
|
|
#endif
|
|
#ifdef MALLOC_STATS
|
|
static size_t base_mapped;
|
|
#endif
|
|
|
|
/********/
|
|
/*
|
|
* Arenas.
|
|
*/
|
|
|
|
/*
|
|
* Arenas that are used to service external requests. Not all elements of the
|
|
* arenas array are necessarily used; arenas are created lazily as needed.
|
|
*/
|
|
static arena_t **arenas;
|
|
static unsigned narenas;
|
|
static unsigned next_arena;
|
|
#ifdef _REENTRANT
|
|
static malloc_mutex_t arenas_mtx; /* Protects arenas initialization. */
|
|
#endif
|
|
|
|
/*
|
|
* Map of pthread_self() --> arenas[???], used for selecting an arena to use
|
|
* for allocations.
|
|
*/
|
|
#ifndef NO_TLS
|
|
static __attribute__((tls_model("initial-exec")))
|
|
__thread arena_t **arenas_map;
|
|
#else
|
|
static arena_t **arenas_map;
|
|
#endif
|
|
|
|
#if !defined(NO_TLS) || !defined(_REENTRANT)
|
|
# define get_arenas_map() (arenas_map)
|
|
# define set_arenas_map(x) (arenas_map = x)
|
|
#else /* NO_TLS && _REENTRANT */
|
|
|
|
static thread_key_t arenas_map_key = -1;
|
|
|
|
static inline arena_t **
|
|
get_arenas_map(void)
|
|
{
|
|
if (!__isthreaded)
|
|
return arenas_map;
|
|
|
|
if (arenas_map_key == -1) {
|
|
(void)thr_keycreate(&arenas_map_key, NULL);
|
|
if (arenas_map != NULL) {
|
|
thr_setspecific(arenas_map_key, arenas_map);
|
|
arenas_map = NULL;
|
|
}
|
|
}
|
|
|
|
return thr_getspecific(arenas_map_key);
|
|
}
|
|
|
|
static __inline void
|
|
set_arenas_map(arena_t **a)
|
|
{
|
|
if (!__isthreaded) {
|
|
arenas_map = a;
|
|
return;
|
|
}
|
|
|
|
if (arenas_map_key == -1) {
|
|
#ifndef NO_TLS
|
|
(void)thr_keycreate(&arenas_map_key, NULL);
|
|
#endif
|
|
if (arenas_map != NULL) {
|
|
_DIAGASSERT(arenas_map == a);
|
|
arenas_map = NULL;
|
|
}
|
|
}
|
|
|
|
#ifndef NO_TLS
|
|
thr_setspecific(arenas_map_key, a);
|
|
#endif
|
|
}
|
|
#endif /* NO_TLS && _REENTRANT */
|
|
|
|
#ifdef MALLOC_STATS
|
|
/* Chunk statistics. */
|
|
static chunk_stats_t stats_chunks;
|
|
#endif
|
|
|
|
/*******************************/
|
|
/*
|
|
* Runtime configuration options.
|
|
*/
|
|
const char *_malloc_options;
|
|
|
|
#ifndef MALLOC_PRODUCTION
|
|
static bool opt_abort = true;
|
|
static bool opt_junk = true;
|
|
#else
|
|
static bool opt_abort = false;
|
|
static bool opt_junk = false;
|
|
#endif
|
|
static bool opt_hint = false;
|
|
static bool opt_print_stats = false;
|
|
static int opt_quantum_2pow = QUANTUM_2POW_MIN;
|
|
static int opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
|
|
static int opt_chunk_2pow = CHUNK_2POW_DEFAULT;
|
|
static bool opt_utrace = false;
|
|
static bool opt_sysv = false;
|
|
static bool opt_xmalloc = false;
|
|
static bool opt_zero = false;
|
|
static int32_t opt_narenas_lshift = 0;
|
|
|
|
typedef struct {
|
|
void *p;
|
|
size_t s;
|
|
void *r;
|
|
} malloc_utrace_t;
|
|
|
|
#define UTRACE(a, b, c) \
|
|
if (opt_utrace) { \
|
|
malloc_utrace_t ut; \
|
|
ut.p = a; \
|
|
ut.s = b; \
|
|
ut.r = c; \
|
|
xutrace(&ut, sizeof(ut)); \
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin function prototypes for non-inline static functions.
|
|
*/
|
|
|
|
static void wrtmessage(const char *p1, const char *p2, const char *p3,
|
|
const char *p4);
|
|
#ifdef MALLOC_STATS
|
|
static void malloc_printf(const char *format, ...);
|
|
#endif
|
|
static char *size_t2s(size_t x, char *s);
|
|
static bool base_pages_alloc(size_t minsize);
|
|
static void *base_alloc(size_t size);
|
|
static chunk_node_t *base_chunk_node_alloc(void);
|
|
static void base_chunk_node_dealloc(chunk_node_t *node);
|
|
#ifdef MALLOC_STATS
|
|
static void stats_print(arena_t *arena);
|
|
#endif
|
|
static void *pages_map(void *addr, size_t size);
|
|
static void *pages_map_align(void *addr, size_t size, int align);
|
|
static void pages_unmap(void *addr, size_t size);
|
|
static void *chunk_alloc(size_t size);
|
|
static void chunk_dealloc(void *chunk, size_t size);
|
|
static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
|
|
static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
|
|
static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
|
|
static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
|
|
static void arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
|
|
static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
|
|
static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
|
|
static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
|
|
static void *arena_malloc(arena_t *arena, size_t size);
|
|
static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
|
|
size_t alloc_size);
|
|
static size_t arena_salloc(const void *ptr);
|
|
static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
|
|
static void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
|
|
static bool arena_new(arena_t *arena);
|
|
static arena_t *arenas_extend(unsigned ind);
|
|
static void *huge_malloc(size_t size);
|
|
static void *huge_palloc(size_t alignment, size_t size);
|
|
static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
|
|
static void huge_dalloc(void *ptr);
|
|
static void *imalloc(size_t size);
|
|
static void *ipalloc(size_t alignment, size_t size);
|
|
static void *icalloc(size_t size);
|
|
static size_t isalloc(const void *ptr);
|
|
static void *iralloc(void *ptr, size_t size);
|
|
static void idalloc(void *ptr);
|
|
static void malloc_print_stats(void);
|
|
static bool malloc_init_hard(void);
|
|
|
|
/*
|
|
* End function prototypes.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin mutex.
|
|
*/
|
|
|
|
#ifdef __NetBSD__
|
|
#define malloc_mutex_init(m) mutex_init(m, NULL)
|
|
#define malloc_mutex_lock(m) mutex_lock(m)
|
|
#define malloc_mutex_unlock(m) mutex_unlock(m)
|
|
#else /* __NetBSD__ */
|
|
static inline void
|
|
malloc_mutex_init(malloc_mutex_t *a_mutex)
|
|
{
|
|
static const spinlock_t lock = _SPINLOCK_INITIALIZER;
|
|
|
|
a_mutex->lock = lock;
|
|
}
|
|
|
|
static inline void
|
|
malloc_mutex_lock(malloc_mutex_t *a_mutex)
|
|
{
|
|
|
|
if (__isthreaded)
|
|
_SPINLOCK(&a_mutex->lock);
|
|
}
|
|
|
|
static inline void
|
|
malloc_mutex_unlock(malloc_mutex_t *a_mutex)
|
|
{
|
|
|
|
if (__isthreaded)
|
|
_SPINUNLOCK(&a_mutex->lock);
|
|
}
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* End mutex.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin Utility functions/macros.
|
|
*/
|
|
|
|
/* Return the chunk address for allocation address a. */
|
|
#define CHUNK_ADDR2BASE(a) \
|
|
((void *)((uintptr_t)(a) & ~chunksize_mask))
|
|
|
|
/* Return the chunk offset of address a. */
|
|
#define CHUNK_ADDR2OFFSET(a) \
|
|
((size_t)((uintptr_t)(a) & chunksize_mask))
|
|
|
|
/* Return the smallest chunk multiple that is >= s. */
|
|
#define CHUNK_CEILING(s) \
|
|
(((s) + chunksize_mask) & ~chunksize_mask)
|
|
|
|
/* Return the smallest cacheline multiple that is >= s. */
|
|
#define CACHELINE_CEILING(s) \
|
|
(((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
|
|
|
|
/* Return the smallest quantum multiple that is >= a. */
|
|
#define QUANTUM_CEILING(a) \
|
|
(((a) + quantum_mask) & ~quantum_mask)
|
|
|
|
/* Return the smallest pagesize multiple that is >= s. */
|
|
#define PAGE_CEILING(s) \
|
|
(((s) + pagesize_mask) & ~pagesize_mask)
|
|
|
|
/* Compute the smallest power of 2 that is >= x. */
|
|
static inline size_t
|
|
pow2_ceil(size_t x)
|
|
{
|
|
|
|
x--;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
#if (SIZEOF_PTR == 8)
|
|
x |= x >> 32;
|
|
#endif
|
|
x++;
|
|
return (x);
|
|
}
|
|
|
|
static void
|
|
wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
|
|
{
|
|
|
|
write(STDERR_FILENO, p1, strlen(p1));
|
|
write(STDERR_FILENO, p2, strlen(p2));
|
|
write(STDERR_FILENO, p3, strlen(p3));
|
|
write(STDERR_FILENO, p4, strlen(p4));
|
|
}
|
|
|
|
void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
|
|
const char *p4) = wrtmessage;
|
|
|
|
#ifdef MALLOC_STATS
|
|
/*
|
|
* Print to stderr in such a way as to (hopefully) avoid memory allocation.
|
|
*/
|
|
static void
|
|
malloc_printf(const char *format, ...)
|
|
{
|
|
char buf[4096];
|
|
va_list ap;
|
|
|
|
va_start(ap, format);
|
|
vsnprintf(buf, sizeof(buf), format, ap);
|
|
va_end(ap);
|
|
_malloc_message(buf, "", "", "");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We don't want to depend on vsnprintf() for production builds, since that can
|
|
* cause unnecessary bloat for static binaries. size_t2s() provides minimal
|
|
* integer printing functionality, so that malloc_printf() use can be limited to
|
|
* MALLOC_STATS code.
|
|
*/
|
|
#define UMAX2S_BUFSIZE 21
|
|
static char *
|
|
size_t2s(size_t x, char *s)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Make sure UMAX2S_BUFSIZE is large enough. */
|
|
/* LINTED */
|
|
assert(sizeof(size_t) <= 8);
|
|
|
|
i = UMAX2S_BUFSIZE - 1;
|
|
s[i] = '\0';
|
|
do {
|
|
i--;
|
|
s[i] = "0123456789"[(int)x % 10];
|
|
x /= (uintmax_t)10LL;
|
|
} while (x > 0);
|
|
|
|
return (&s[i]);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
|
|
static bool
|
|
base_pages_alloc(size_t minsize)
|
|
{
|
|
size_t csize = 0;
|
|
|
|
#ifdef USE_BRK
|
|
/*
|
|
* Do special brk allocation here, since base allocations don't need to
|
|
* be chunk-aligned.
|
|
*/
|
|
if (brk_prev != (void *)-1) {
|
|
void *brk_cur;
|
|
intptr_t incr;
|
|
|
|
if (minsize != 0)
|
|
csize = CHUNK_CEILING(minsize);
|
|
|
|
malloc_mutex_lock(&brk_mtx);
|
|
do {
|
|
/* Get the current end of brk. */
|
|
brk_cur = sbrk(0);
|
|
|
|
/*
|
|
* Calculate how much padding is necessary to
|
|
* chunk-align the end of brk. Don't worry about
|
|
* brk_cur not being chunk-aligned though.
|
|
*/
|
|
incr = (intptr_t)chunksize
|
|
- (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
|
|
assert(incr >= 0);
|
|
if ((size_t)incr < minsize)
|
|
incr += csize;
|
|
|
|
brk_prev = sbrk(incr);
|
|
if (brk_prev == brk_cur) {
|
|
/* Success. */
|
|
malloc_mutex_unlock(&brk_mtx);
|
|
base_pages = brk_cur;
|
|
base_next_addr = base_pages;
|
|
base_past_addr = (void *)((uintptr_t)base_pages
|
|
+ incr);
|
|
#ifdef MALLOC_STATS
|
|
base_mapped += incr;
|
|
#endif
|
|
return (false);
|
|
}
|
|
} while (brk_prev != (void *)-1);
|
|
malloc_mutex_unlock(&brk_mtx);
|
|
}
|
|
if (minsize == 0) {
|
|
/*
|
|
* Failure during initialization doesn't matter, so avoid
|
|
* falling through to the mmap-based page mapping code.
|
|
*/
|
|
return (true);
|
|
}
|
|
#endif
|
|
assert(minsize != 0);
|
|
csize = PAGE_CEILING(minsize);
|
|
base_pages = pages_map(NULL, csize);
|
|
if (base_pages == NULL)
|
|
return (true);
|
|
base_next_addr = base_pages;
|
|
base_past_addr = (void *)((uintptr_t)base_pages + csize);
|
|
#ifdef MALLOC_STATS
|
|
base_mapped += csize;
|
|
#endif
|
|
return (false);
|
|
}
|
|
|
|
static void *
|
|
base_alloc(size_t size)
|
|
{
|
|
void *ret;
|
|
size_t csize;
|
|
|
|
/* Round size up to nearest multiple of the cacheline size. */
|
|
csize = CACHELINE_CEILING(size);
|
|
|
|
malloc_mutex_lock(&base_mtx);
|
|
|
|
/* Make sure there's enough space for the allocation. */
|
|
if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
|
|
if (base_pages_alloc(csize)) {
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
}
|
|
|
|
/* Allocate. */
|
|
ret = base_next_addr;
|
|
base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
|
|
|
|
RETURN:
|
|
malloc_mutex_unlock(&base_mtx);
|
|
return (ret);
|
|
}
|
|
|
|
static chunk_node_t *
|
|
base_chunk_node_alloc(void)
|
|
{
|
|
chunk_node_t *ret;
|
|
|
|
malloc_mutex_lock(&base_mtx);
|
|
if (base_chunk_nodes != NULL) {
|
|
ret = base_chunk_nodes;
|
|
/* LINTED */
|
|
base_chunk_nodes = *(chunk_node_t **)ret;
|
|
malloc_mutex_unlock(&base_mtx);
|
|
} else {
|
|
malloc_mutex_unlock(&base_mtx);
|
|
ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
base_chunk_node_dealloc(chunk_node_t *node)
|
|
{
|
|
|
|
malloc_mutex_lock(&base_mtx);
|
|
/* LINTED */
|
|
*(chunk_node_t **)node = base_chunk_nodes;
|
|
base_chunk_nodes = node;
|
|
malloc_mutex_unlock(&base_mtx);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
|
|
#ifdef MALLOC_STATS
|
|
static void
|
|
stats_print(arena_t *arena)
|
|
{
|
|
unsigned i;
|
|
int gap_start;
|
|
|
|
malloc_printf(
|
|
" allocated/mapped nmalloc ndalloc\n");
|
|
|
|
malloc_printf("small: %12zu %-12s %12llu %12llu\n",
|
|
arena->stats.allocated_small, "", arena->stats.nmalloc_small,
|
|
arena->stats.ndalloc_small);
|
|
malloc_printf("large: %12zu %-12s %12llu %12llu\n",
|
|
arena->stats.allocated_large, "", arena->stats.nmalloc_large,
|
|
arena->stats.ndalloc_large);
|
|
malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
|
|
arena->stats.allocated_small + arena->stats.allocated_large,
|
|
arena->stats.mapped,
|
|
arena->stats.nmalloc_small + arena->stats.nmalloc_large,
|
|
arena->stats.ndalloc_small + arena->stats.ndalloc_large);
|
|
|
|
malloc_printf("bins: bin size regs pgs requests newruns"
|
|
" reruns maxruns curruns\n");
|
|
for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
|
|
if (arena->bins[i].stats.nrequests == 0) {
|
|
if (gap_start == -1)
|
|
gap_start = i;
|
|
} else {
|
|
if (gap_start != -1) {
|
|
if (i > gap_start + 1) {
|
|
/* Gap of more than one size class. */
|
|
malloc_printf("[%u..%u]\n",
|
|
gap_start, i - 1);
|
|
} else {
|
|
/* Gap of one size class. */
|
|
malloc_printf("[%u]\n", gap_start);
|
|
}
|
|
gap_start = -1;
|
|
}
|
|
malloc_printf(
|
|
"%13u %1s %4u %4u %3u %9llu %9llu"
|
|
" %9llu %7lu %7lu\n",
|
|
i,
|
|
i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
|
|
arena->bins[i].reg_size,
|
|
arena->bins[i].nregs,
|
|
arena->bins[i].run_size >> pagesize_2pow,
|
|
arena->bins[i].stats.nrequests,
|
|
arena->bins[i].stats.nruns,
|
|
arena->bins[i].stats.reruns,
|
|
arena->bins[i].stats.highruns,
|
|
arena->bins[i].stats.curruns);
|
|
}
|
|
}
|
|
if (gap_start != -1) {
|
|
if (i > gap_start + 1) {
|
|
/* Gap of more than one size class. */
|
|
malloc_printf("[%u..%u]\n", gap_start, i - 1);
|
|
} else {
|
|
/* Gap of one size class. */
|
|
malloc_printf("[%u]\n", gap_start);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* End Utility functions/macros.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin chunk management functions.
|
|
*/
|
|
|
|
static inline int
|
|
chunk_comp(chunk_node_t *a, chunk_node_t *b)
|
|
{
|
|
|
|
assert(a != NULL);
|
|
assert(b != NULL);
|
|
|
|
if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
|
|
return (-1);
|
|
else if (a->chunk == b->chunk)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
}
|
|
|
|
/* Generate red-black tree code for chunks. */
|
|
RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp)
|
|
|
|
static void *
|
|
pages_map_align(void *addr, size_t size, int align)
|
|
{
|
|
void *ret;
|
|
|
|
/*
|
|
* We don't use MAP_FIXED here, because it can cause the *replacement*
|
|
* of existing mappings, and we only want to create new mappings.
|
|
*/
|
|
ret = mmap(addr, size, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
|
|
assert(ret != NULL);
|
|
|
|
if (ret == MAP_FAILED)
|
|
ret = NULL;
|
|
else if (addr != NULL && ret != addr) {
|
|
/*
|
|
* We succeeded in mapping memory, but not in the right place.
|
|
*/
|
|
if (munmap(ret, size) == -1) {
|
|
char buf[STRERROR_BUF];
|
|
|
|
STRERROR_R(errno, buf, sizeof(buf));
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Error in munmap(): ", buf, "\n");
|
|
if (opt_abort)
|
|
abort();
|
|
}
|
|
ret = NULL;
|
|
}
|
|
|
|
assert(ret == NULL || (addr == NULL && ret != addr)
|
|
|| (addr != NULL && ret == addr));
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
pages_map(void *addr, size_t size)
|
|
{
|
|
|
|
return pages_map_align(addr, size, 0);
|
|
}
|
|
|
|
static void
|
|
pages_unmap(void *addr, size_t size)
|
|
{
|
|
|
|
if (munmap(addr, size) == -1) {
|
|
char buf[STRERROR_BUF];
|
|
|
|
STRERROR_R(errno, buf, sizeof(buf));
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Error in munmap(): ", buf, "\n");
|
|
if (opt_abort)
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void *
|
|
chunk_alloc(size_t size)
|
|
{
|
|
void *ret, *chunk;
|
|
chunk_node_t *tchunk, *delchunk;
|
|
|
|
assert(size != 0);
|
|
assert((size & chunksize_mask) == 0);
|
|
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
|
|
if (size == chunksize) {
|
|
/*
|
|
* Check for address ranges that were previously chunks and try
|
|
* to use them.
|
|
*/
|
|
|
|
tchunk = RB_MIN(chunk_tree_s, &old_chunks);
|
|
while (tchunk != NULL) {
|
|
/* Found an address range. Try to recycle it. */
|
|
|
|
chunk = tchunk->chunk;
|
|
delchunk = tchunk;
|
|
tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
|
|
|
|
/* Remove delchunk from the tree. */
|
|
RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
|
|
base_chunk_node_dealloc(delchunk);
|
|
|
|
#ifdef USE_BRK
|
|
if ((uintptr_t)chunk >= (uintptr_t)brk_base
|
|
&& (uintptr_t)chunk < (uintptr_t)brk_max) {
|
|
/* Re-use a previously freed brk chunk. */
|
|
ret = chunk;
|
|
goto RETURN;
|
|
}
|
|
#endif
|
|
if ((ret = pages_map(chunk, size)) != NULL) {
|
|
/* Success. */
|
|
goto RETURN;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to over-allocate, but allow the OS to place the allocation
|
|
* anywhere. Beware of size_t wrap-around.
|
|
*/
|
|
if (size + chunksize > size) {
|
|
if ((ret = pages_map_align(NULL, size, chunksize_2pow))
|
|
!= NULL) {
|
|
goto RETURN;
|
|
}
|
|
}
|
|
|
|
#ifdef USE_BRK
|
|
/*
|
|
* Try to create allocations in brk, in order to make full use of
|
|
* limited address space.
|
|
*/
|
|
if (brk_prev != (void *)-1) {
|
|
void *brk_cur;
|
|
intptr_t incr;
|
|
|
|
/*
|
|
* The loop is necessary to recover from races with other
|
|
* threads that are using brk for something other than malloc.
|
|
*/
|
|
malloc_mutex_lock(&brk_mtx);
|
|
do {
|
|
/* Get the current end of brk. */
|
|
brk_cur = sbrk(0);
|
|
|
|
/*
|
|
* Calculate how much padding is necessary to
|
|
* chunk-align the end of brk.
|
|
*/
|
|
incr = (intptr_t)size
|
|
- (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
|
|
if (incr == (intptr_t)size) {
|
|
ret = brk_cur;
|
|
} else {
|
|
ret = (void *)((intptr_t)brk_cur + incr);
|
|
incr += size;
|
|
}
|
|
|
|
brk_prev = sbrk(incr);
|
|
if (brk_prev == brk_cur) {
|
|
/* Success. */
|
|
malloc_mutex_unlock(&brk_mtx);
|
|
brk_max = (void *)((intptr_t)ret + size);
|
|
goto RETURN;
|
|
}
|
|
} while (brk_prev != (void *)-1);
|
|
malloc_mutex_unlock(&brk_mtx);
|
|
}
|
|
#endif
|
|
|
|
/* All strategies for allocation failed. */
|
|
ret = NULL;
|
|
RETURN:
|
|
if (ret != NULL) {
|
|
chunk_node_t key;
|
|
/*
|
|
* Clean out any entries in old_chunks that overlap with the
|
|
* memory we just allocated.
|
|
*/
|
|
key.chunk = ret;
|
|
tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
|
|
while (tchunk != NULL
|
|
&& (uintptr_t)tchunk->chunk >= (uintptr_t)ret
|
|
&& (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
|
|
delchunk = tchunk;
|
|
tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
|
|
RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
|
|
base_chunk_node_dealloc(delchunk);
|
|
}
|
|
|
|
}
|
|
#ifdef MALLOC_STATS
|
|
if (ret != NULL) {
|
|
stats_chunks.nchunks += (size / chunksize);
|
|
stats_chunks.curchunks += (size / chunksize);
|
|
}
|
|
if (stats_chunks.curchunks > stats_chunks.highchunks)
|
|
stats_chunks.highchunks = stats_chunks.curchunks;
|
|
#endif
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
|
|
assert(CHUNK_ADDR2BASE(ret) == ret);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
chunk_dealloc(void *chunk, size_t size)
|
|
{
|
|
chunk_node_t *node;
|
|
|
|
assert(chunk != NULL);
|
|
assert(CHUNK_ADDR2BASE(chunk) == chunk);
|
|
assert(size != 0);
|
|
assert((size & chunksize_mask) == 0);
|
|
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
|
|
#ifdef USE_BRK
|
|
if ((uintptr_t)chunk >= (uintptr_t)brk_base
|
|
&& (uintptr_t)chunk < (uintptr_t)brk_max) {
|
|
void *brk_cur;
|
|
|
|
malloc_mutex_lock(&brk_mtx);
|
|
/* Get the current end of brk. */
|
|
brk_cur = sbrk(0);
|
|
|
|
/*
|
|
* Try to shrink the data segment if this chunk is at the end
|
|
* of the data segment. The sbrk() call here is subject to a
|
|
* race condition with threads that use brk(2) or sbrk(2)
|
|
* directly, but the alternative would be to leak memory for
|
|
* the sake of poorly designed multi-threaded programs.
|
|
*/
|
|
if (brk_cur == brk_max
|
|
&& (void *)((uintptr_t)chunk + size) == brk_max
|
|
&& sbrk(-(intptr_t)size) == brk_max) {
|
|
malloc_mutex_unlock(&brk_mtx);
|
|
if (brk_prev == brk_max) {
|
|
/* Success. */
|
|
brk_prev = (void *)((intptr_t)brk_max
|
|
- (intptr_t)size);
|
|
brk_max = brk_prev;
|
|
}
|
|
} else {
|
|
size_t offset;
|
|
|
|
malloc_mutex_unlock(&brk_mtx);
|
|
madvise(chunk, size, MADV_FREE);
|
|
|
|
/*
|
|
* Iteratively create records of each chunk-sized
|
|
* memory region that 'chunk' is comprised of, so that
|
|
* the address range can be recycled if memory usage
|
|
* increases later on.
|
|
*/
|
|
for (offset = 0; offset < size; offset += chunksize) {
|
|
node = base_chunk_node_alloc();
|
|
if (node == NULL)
|
|
break;
|
|
|
|
node->chunk = (void *)((uintptr_t)chunk
|
|
+ (uintptr_t)offset);
|
|
node->size = chunksize;
|
|
RB_INSERT(chunk_tree_s, &old_chunks, node);
|
|
}
|
|
}
|
|
} else {
|
|
#endif
|
|
pages_unmap(chunk, size);
|
|
|
|
/*
|
|
* Make a record of the chunk's address, so that the address
|
|
* range can be recycled if memory usage increases later on.
|
|
* Don't bother to create entries if (size > chunksize), since
|
|
* doing so could cause scalability issues for truly gargantuan
|
|
* objects (many gigabytes or larger).
|
|
*/
|
|
if (size == chunksize) {
|
|
node = base_chunk_node_alloc();
|
|
if (node != NULL) {
|
|
node->chunk = (void *)(uintptr_t)chunk;
|
|
node->size = chunksize;
|
|
RB_INSERT(chunk_tree_s, &old_chunks, node);
|
|
}
|
|
}
|
|
#ifdef USE_BRK
|
|
}
|
|
#endif
|
|
|
|
#ifdef MALLOC_STATS
|
|
stats_chunks.curchunks -= (size / chunksize);
|
|
#endif
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
}
|
|
|
|
/*
|
|
* End chunk management functions.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin arena.
|
|
*/
|
|
|
|
/*
|
|
* Choose an arena based on a per-thread and (optimistically) per-CPU value.
|
|
*
|
|
* We maintain at least one block of arenas. Usually there are more.
|
|
* The blocks are $ncpu arenas in size. Whole blocks are 'hashed'
|
|
* amongst threads. To accomplish this, next_arena advances only in
|
|
* ncpu steps.
|
|
*/
|
|
static __noinline arena_t *
|
|
choose_arena_hard(void)
|
|
{
|
|
unsigned i, curcpu;
|
|
arena_t **map;
|
|
|
|
/* Initialize the current block of arenas and advance to next. */
|
|
malloc_mutex_lock(&arenas_mtx);
|
|
assert(next_arena % ncpus == 0);
|
|
assert(narenas % ncpus == 0);
|
|
map = &arenas[next_arena];
|
|
set_arenas_map(map);
|
|
for (i = 0; i < ncpus; i++) {
|
|
if (arenas[next_arena] == NULL)
|
|
arenas_extend(next_arena);
|
|
next_arena = (next_arena + 1) % narenas;
|
|
}
|
|
malloc_mutex_unlock(&arenas_mtx);
|
|
|
|
/*
|
|
* If we were unable to allocate an arena above, then default to
|
|
* the first arena, which is always present.
|
|
*/
|
|
curcpu = thr_curcpu();
|
|
if (map[curcpu] != NULL)
|
|
return map[curcpu];
|
|
return arenas[0];
|
|
}
|
|
|
|
static inline arena_t *
|
|
choose_arena(void)
|
|
{
|
|
unsigned curcpu;
|
|
arena_t **map;
|
|
|
|
map = get_arenas_map();
|
|
curcpu = thr_curcpu();
|
|
if (__predict_true(map != NULL && map[curcpu] != NULL))
|
|
return map[curcpu];
|
|
|
|
return choose_arena_hard();
|
|
}
|
|
|
|
static inline int
|
|
arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
|
|
{
|
|
|
|
assert(a != NULL);
|
|
assert(b != NULL);
|
|
|
|
if (a->max_frun_npages < b->max_frun_npages)
|
|
return -1;
|
|
if (a->max_frun_npages > b->max_frun_npages)
|
|
return 1;
|
|
|
|
if ((uintptr_t)a < (uintptr_t)b)
|
|
return (-1);
|
|
else if (a == b)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
}
|
|
|
|
/* Generate red-black tree code for arena chunks. */
|
|
RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp)
|
|
|
|
static inline int
|
|
arena_run_comp(arena_run_t *a, arena_run_t *b)
|
|
{
|
|
|
|
assert(a != NULL);
|
|
assert(b != NULL);
|
|
|
|
if ((uintptr_t)a < (uintptr_t)b)
|
|
return (-1);
|
|
else if (a == b)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
}
|
|
|
|
/* Generate red-black tree code for arena runs. */
|
|
RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp)
|
|
|
|
static inline void *
|
|
arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
|
|
{
|
|
void *ret;
|
|
unsigned i, mask, bit, regind;
|
|
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
assert(run->regs_minelm < bin->regs_mask_nelms);
|
|
|
|
/*
|
|
* Move the first check outside the loop, so that run->regs_minelm can
|
|
* be updated unconditionally, without the possibility of updating it
|
|
* multiple times.
|
|
*/
|
|
i = run->regs_minelm;
|
|
mask = run->regs_mask[i];
|
|
if (mask != 0) {
|
|
/* Usable allocation found. */
|
|
bit = ffs((int)mask) - 1;
|
|
|
|
regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
|
|
ret = (void *)(((uintptr_t)run) + bin->reg0_offset
|
|
+ (bin->reg_size * regind));
|
|
|
|
/* Clear bit. */
|
|
mask ^= (1U << bit);
|
|
run->regs_mask[i] = mask;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
for (i++; i < bin->regs_mask_nelms; i++) {
|
|
mask = run->regs_mask[i];
|
|
if (mask != 0) {
|
|
/* Usable allocation found. */
|
|
bit = ffs((int)mask) - 1;
|
|
|
|
regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
|
|
ret = (void *)(((uintptr_t)run) + bin->reg0_offset
|
|
+ (bin->reg_size * regind));
|
|
|
|
/* Clear bit. */
|
|
mask ^= (1U << bit);
|
|
run->regs_mask[i] = mask;
|
|
|
|
/*
|
|
* Make a note that nothing before this element
|
|
* contains a free region.
|
|
*/
|
|
run->regs_minelm = i; /* Low payoff: + (mask == 0); */
|
|
|
|
return (ret);
|
|
}
|
|
}
|
|
/* Not reached. */
|
|
/* LINTED */
|
|
assert(0);
|
|
return (NULL);
|
|
}
|
|
|
|
static inline void
|
|
arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
|
|
{
|
|
/*
|
|
* To divide by a number D that is not a power of two we multiply
|
|
* by (2^21 / D) and then right shift by 21 positions.
|
|
*
|
|
* X / D
|
|
*
|
|
* becomes
|
|
*
|
|
* (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
|
|
*/
|
|
#define SIZE_INV_SHIFT 21
|
|
#define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
|
|
static const unsigned size_invs[] = {
|
|
SIZE_INV(3),
|
|
SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
|
|
SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
|
|
SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
|
|
SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
|
|
SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
|
|
SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
|
|
SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
|
|
#if (QUANTUM_2POW_MIN < 4)
|
|
,
|
|
SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
|
|
SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
|
|
SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
|
|
SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
|
|
SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
|
|
SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
|
|
SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
|
|
SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
|
|
#endif
|
|
};
|
|
unsigned diff, regind, elm, bit;
|
|
|
|
/* LINTED */
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
|
|
>= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
|
|
|
|
/*
|
|
* Avoid doing division with a variable divisor if possible. Using
|
|
* actual division here can reduce allocator throughput by over 20%!
|
|
*/
|
|
diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
|
|
if ((size & (size - 1)) == 0) {
|
|
/*
|
|
* log2_table allows fast division of a power of two in the
|
|
* [1..128] range.
|
|
*
|
|
* (x / divisor) becomes (x >> log2_table[divisor - 1]).
|
|
*/
|
|
static const unsigned char log2_table[] = {
|
|
0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
|
|
};
|
|
|
|
if (size <= 128)
|
|
regind = (diff >> log2_table[size - 1]);
|
|
else if (size <= 32768)
|
|
regind = diff >> (8 + log2_table[(size >> 8) - 1]);
|
|
else {
|
|
/*
|
|
* The page size is too large for us to use the lookup
|
|
* table. Use real division.
|
|
*/
|
|
regind = (unsigned)(diff / size);
|
|
}
|
|
} else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
|
|
<< QUANTUM_2POW_MIN) + 2) {
|
|
regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
|
|
regind >>= SIZE_INV_SHIFT;
|
|
} else {
|
|
/*
|
|
* size_invs isn't large enough to handle this size class, so
|
|
* calculate regind using actual division. This only happens
|
|
* if the user increases small_max via the 'S' runtime
|
|
* configuration option.
|
|
*/
|
|
regind = (unsigned)(diff / size);
|
|
};
|
|
assert(diff == regind * size);
|
|
assert(regind < bin->nregs);
|
|
|
|
elm = regind >> (SIZEOF_INT_2POW + 3);
|
|
if (elm < run->regs_minelm)
|
|
run->regs_minelm = elm;
|
|
bit = regind - (elm << (SIZEOF_INT_2POW + 3));
|
|
assert((run->regs_mask[elm] & (1U << bit)) == 0);
|
|
run->regs_mask[elm] |= (1U << bit);
|
|
#undef SIZE_INV
|
|
#undef SIZE_INV_SHIFT
|
|
}
|
|
|
|
static void
|
|
arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
|
|
unsigned i;
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
|
|
run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
|
|
>> pagesize_2pow);
|
|
total_pages = chunk->map[run_ind].npages;
|
|
need_pages = (unsigned)(size >> pagesize_2pow);
|
|
assert(need_pages <= total_pages);
|
|
rem_pages = total_pages - need_pages;
|
|
|
|
/* Split enough pages from the front of run to fit allocation size. */
|
|
map_offset = run_ind;
|
|
for (i = 0; i < need_pages; i++) {
|
|
chunk->map[map_offset + i].npages = need_pages;
|
|
chunk->map[map_offset + i].pos = i;
|
|
}
|
|
|
|
/* Keep track of trailing unused pages for later use. */
|
|
if (rem_pages > 0) {
|
|
/* Update map for trailing pages. */
|
|
map_offset += need_pages;
|
|
chunk->map[map_offset].npages = rem_pages;
|
|
chunk->map[map_offset].pos = POS_FREE;
|
|
chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
|
|
chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
|
|
}
|
|
|
|
chunk->pages_used += need_pages;
|
|
}
|
|
|
|
static arena_chunk_t *
|
|
arena_chunk_alloc(arena_t *arena)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
|
|
if (arena->spare != NULL) {
|
|
chunk = arena->spare;
|
|
arena->spare = NULL;
|
|
|
|
RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
|
|
} else {
|
|
chunk = (arena_chunk_t *)chunk_alloc(chunksize);
|
|
if (chunk == NULL)
|
|
return (NULL);
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.mapped += chunksize;
|
|
#endif
|
|
|
|
chunk->arena = arena;
|
|
|
|
/*
|
|
* Claim that no pages are in use, since the header is merely
|
|
* overhead.
|
|
*/
|
|
chunk->pages_used = 0;
|
|
|
|
chunk->max_frun_npages = chunk_npages -
|
|
arena_chunk_header_npages;
|
|
chunk->min_frun_ind = arena_chunk_header_npages;
|
|
|
|
/*
|
|
* Initialize enough of the map to support one maximal free run.
|
|
*/
|
|
chunk->map[arena_chunk_header_npages].npages = chunk_npages -
|
|
arena_chunk_header_npages;
|
|
chunk->map[arena_chunk_header_npages].pos = POS_FREE;
|
|
chunk->map[chunk_npages - 1].npages = chunk_npages -
|
|
arena_chunk_header_npages;
|
|
chunk->map[chunk_npages - 1].pos = POS_FREE;
|
|
|
|
RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
|
|
}
|
|
|
|
return (chunk);
|
|
}
|
|
|
|
static void
|
|
arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
|
|
{
|
|
|
|
/*
|
|
* Remove chunk from the chunk tree, regardless of whether this chunk
|
|
* will be cached, so that the arena does not use it.
|
|
*/
|
|
RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
|
|
|
|
if (opt_hint == false) {
|
|
if (arena->spare != NULL) {
|
|
chunk_dealloc((void *)arena->spare, chunksize);
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.mapped -= chunksize;
|
|
#endif
|
|
}
|
|
arena->spare = chunk;
|
|
} else {
|
|
assert(arena->spare == NULL);
|
|
chunk_dealloc((void *)chunk, chunksize);
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.mapped -= chunksize;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static arena_run_t *
|
|
arena_run_alloc(arena_t *arena, size_t size)
|
|
{
|
|
arena_chunk_t *chunk, *chunk_tmp;
|
|
arena_run_t *run;
|
|
unsigned need_npages;
|
|
|
|
assert(size <= (chunksize - (arena_chunk_header_npages <<
|
|
pagesize_2pow)));
|
|
assert((size & pagesize_mask) == 0);
|
|
|
|
/*
|
|
* Search through the arena chunk tree for a large enough free run.
|
|
* Tree order ensures that any exact fit is picked immediately or
|
|
* otherwise the lowest address of the next size.
|
|
*/
|
|
need_npages = (unsigned)(size >> pagesize_2pow);
|
|
/* LINTED */
|
|
for (;;) {
|
|
chunk_tmp = RB_ROOT(&arena->chunks);
|
|
chunk = NULL;
|
|
while (chunk_tmp) {
|
|
if (chunk_tmp->max_frun_npages == need_npages) {
|
|
chunk = chunk_tmp;
|
|
break;
|
|
}
|
|
if (chunk_tmp->max_frun_npages < need_npages) {
|
|
chunk_tmp = RB_RIGHT(chunk_tmp, link);
|
|
continue;
|
|
}
|
|
chunk = chunk_tmp;
|
|
chunk_tmp = RB_LEFT(chunk, link);
|
|
}
|
|
if (chunk == NULL)
|
|
break;
|
|
/*
|
|
* At this point, the chunk must have a cached run size large
|
|
* enough to fit the allocation.
|
|
*/
|
|
assert(need_npages <= chunk->max_frun_npages);
|
|
{
|
|
arena_chunk_map_t *mapelm;
|
|
unsigned i;
|
|
unsigned max_frun_npages = 0;
|
|
unsigned min_frun_ind = chunk_npages;
|
|
|
|
assert(chunk->min_frun_ind >=
|
|
arena_chunk_header_npages);
|
|
for (i = chunk->min_frun_ind; i < chunk_npages;) {
|
|
mapelm = &chunk->map[i];
|
|
if (mapelm->pos == POS_FREE) {
|
|
if (mapelm->npages >= need_npages) {
|
|
run = (arena_run_t *)
|
|
((uintptr_t)chunk + (i <<
|
|
pagesize_2pow));
|
|
/* Update page map. */
|
|
arena_run_split(arena, run,
|
|
size);
|
|
return (run);
|
|
}
|
|
if (mapelm->npages >
|
|
max_frun_npages) {
|
|
max_frun_npages =
|
|
mapelm->npages;
|
|
}
|
|
if (i < min_frun_ind) {
|
|
min_frun_ind = i;
|
|
if (i < chunk->min_frun_ind)
|
|
chunk->min_frun_ind = i;
|
|
}
|
|
}
|
|
i += mapelm->npages;
|
|
}
|
|
/*
|
|
* Search failure. Reset cached chunk->max_frun_npages.
|
|
* chunk->min_frun_ind was already reset above (if
|
|
* necessary).
|
|
*/
|
|
RB_REMOVE(arena_chunk_tree_s, &arena->chunks, chunk);
|
|
chunk->max_frun_npages = max_frun_npages;
|
|
RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No usable runs. Create a new chunk from which to allocate the run.
|
|
*/
|
|
chunk = arena_chunk_alloc(arena);
|
|
if (chunk == NULL)
|
|
return (NULL);
|
|
run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
|
|
pagesize_2pow));
|
|
/* Update page map. */
|
|
arena_run_split(arena, run, size);
|
|
return (run);
|
|
}
|
|
|
|
static void
|
|
arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
unsigned run_ind, run_pages;
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
|
|
|
|
run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
|
|
>> pagesize_2pow);
|
|
assert(run_ind >= arena_chunk_header_npages);
|
|
assert(run_ind < (chunksize >> pagesize_2pow));
|
|
run_pages = (unsigned)(size >> pagesize_2pow);
|
|
assert(run_pages == chunk->map[run_ind].npages);
|
|
|
|
/* Subtract pages from count of pages used in chunk. */
|
|
chunk->pages_used -= run_pages;
|
|
|
|
/* Mark run as deallocated. */
|
|
assert(chunk->map[run_ind].npages == run_pages);
|
|
chunk->map[run_ind].pos = POS_FREE;
|
|
assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
|
|
chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
|
|
|
|
/*
|
|
* Tell the kernel that we don't need the data in this run, but only if
|
|
* requested via runtime configuration.
|
|
*/
|
|
if (opt_hint)
|
|
madvise(run, size, MADV_FREE);
|
|
|
|
/* Try to coalesce with neighboring runs. */
|
|
if (run_ind > arena_chunk_header_npages &&
|
|
chunk->map[run_ind - 1].pos == POS_FREE) {
|
|
unsigned prev_npages;
|
|
|
|
/* Coalesce with previous run. */
|
|
prev_npages = chunk->map[run_ind - 1].npages;
|
|
run_ind -= prev_npages;
|
|
assert(chunk->map[run_ind].npages == prev_npages);
|
|
assert(chunk->map[run_ind].pos == POS_FREE);
|
|
run_pages += prev_npages;
|
|
|
|
chunk->map[run_ind].npages = run_pages;
|
|
assert(chunk->map[run_ind].pos == POS_FREE);
|
|
chunk->map[run_ind + run_pages - 1].npages = run_pages;
|
|
assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
|
|
}
|
|
|
|
if (run_ind + run_pages < chunk_npages &&
|
|
chunk->map[run_ind + run_pages].pos == POS_FREE) {
|
|
unsigned next_npages;
|
|
|
|
/* Coalesce with next run. */
|
|
next_npages = chunk->map[run_ind + run_pages].npages;
|
|
run_pages += next_npages;
|
|
assert(chunk->map[run_ind + run_pages - 1].npages ==
|
|
next_npages);
|
|
assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
|
|
|
|
chunk->map[run_ind].npages = run_pages;
|
|
chunk->map[run_ind].pos = POS_FREE;
|
|
chunk->map[run_ind + run_pages - 1].npages = run_pages;
|
|
assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
|
|
}
|
|
|
|
if (chunk->map[run_ind].npages > chunk->max_frun_npages) {
|
|
RB_REMOVE(arena_chunk_tree_s, &arena->chunks, chunk);
|
|
chunk->max_frun_npages = chunk->map[run_ind].npages;
|
|
RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
|
|
}
|
|
if (run_ind < chunk->min_frun_ind)
|
|
chunk->min_frun_ind = run_ind;
|
|
|
|
/* Deallocate chunk if it is now completely unused. */
|
|
if (chunk->pages_used == 0)
|
|
arena_chunk_dealloc(arena, chunk);
|
|
}
|
|
|
|
static arena_run_t *
|
|
arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
|
|
{
|
|
arena_run_t *run;
|
|
unsigned i, remainder;
|
|
|
|
/* Look for a usable run. */
|
|
if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
|
|
/* run is guaranteed to have available space. */
|
|
RB_REMOVE(arena_run_tree_s, &bin->runs, run);
|
|
#ifdef MALLOC_STATS
|
|
bin->stats.reruns++;
|
|
#endif
|
|
return (run);
|
|
}
|
|
/* No existing runs have any space available. */
|
|
|
|
/* Allocate a new run. */
|
|
run = arena_run_alloc(arena, bin->run_size);
|
|
if (run == NULL)
|
|
return (NULL);
|
|
|
|
/* Initialize run internals. */
|
|
run->bin = bin;
|
|
|
|
for (i = 0; i < bin->regs_mask_nelms; i++)
|
|
run->regs_mask[i] = UINT_MAX;
|
|
remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
|
|
if (remainder != 0) {
|
|
/* The last element has spare bits that need to be unset. */
|
|
run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
|
|
- remainder));
|
|
}
|
|
|
|
run->regs_minelm = 0;
|
|
|
|
run->nfree = bin->nregs;
|
|
#ifdef MALLOC_DEBUG
|
|
run->magic = ARENA_RUN_MAGIC;
|
|
#endif
|
|
|
|
#ifdef MALLOC_STATS
|
|
bin->stats.nruns++;
|
|
bin->stats.curruns++;
|
|
if (bin->stats.curruns > bin->stats.highruns)
|
|
bin->stats.highruns = bin->stats.curruns;
|
|
#endif
|
|
return (run);
|
|
}
|
|
|
|
/* bin->runcur must have space available before this function is called. */
|
|
static inline void *
|
|
arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
|
|
{
|
|
void *ret;
|
|
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
assert(run->nfree > 0);
|
|
|
|
ret = arena_run_reg_alloc(run, bin);
|
|
assert(ret != NULL);
|
|
run->nfree--;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
|
|
static void *
|
|
arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
|
|
{
|
|
|
|
bin->runcur = arena_bin_nonfull_run_get(arena, bin);
|
|
if (bin->runcur == NULL)
|
|
return (NULL);
|
|
assert(bin->runcur->magic == ARENA_RUN_MAGIC);
|
|
assert(bin->runcur->nfree > 0);
|
|
|
|
return (arena_bin_malloc_easy(arena, bin, bin->runcur));
|
|
}
|
|
|
|
/*
|
|
* Calculate bin->run_size such that it meets the following constraints:
|
|
*
|
|
* *) bin->run_size >= min_run_size
|
|
* *) bin->run_size <= arena_maxclass
|
|
* *) bin->run_size <= RUN_MAX_SMALL
|
|
* *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
|
|
*
|
|
* bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
|
|
* also calculated here, since these settings are all interdependent.
|
|
*/
|
|
static size_t
|
|
arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
|
|
{
|
|
size_t try_run_size, good_run_size;
|
|
unsigned good_nregs, good_mask_nelms, good_reg0_offset;
|
|
unsigned try_nregs, try_mask_nelms, try_reg0_offset;
|
|
|
|
assert(min_run_size >= pagesize);
|
|
assert(min_run_size <= arena_maxclass);
|
|
assert(min_run_size <= RUN_MAX_SMALL);
|
|
|
|
/*
|
|
* Calculate known-valid settings before entering the run_size
|
|
* expansion loop, so that the first part of the loop always copies
|
|
* valid settings.
|
|
*
|
|
* The do..while loop iteratively reduces the number of regions until
|
|
* the run header and the regions no longer overlap. A closed formula
|
|
* would be quite messy, since there is an interdependency between the
|
|
* header's mask length and the number of regions.
|
|
*/
|
|
try_run_size = min_run_size;
|
|
try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
|
|
bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
|
|
do {
|
|
try_nregs--;
|
|
try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
|
|
((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
|
|
try_reg0_offset = (unsigned)(try_run_size -
|
|
(try_nregs * bin->reg_size));
|
|
} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
|
|
> try_reg0_offset);
|
|
|
|
/* run_size expansion loop. */
|
|
do {
|
|
/*
|
|
* Copy valid settings before trying more aggressive settings.
|
|
*/
|
|
good_run_size = try_run_size;
|
|
good_nregs = try_nregs;
|
|
good_mask_nelms = try_mask_nelms;
|
|
good_reg0_offset = try_reg0_offset;
|
|
|
|
/* Try more aggressive settings. */
|
|
try_run_size += pagesize;
|
|
try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
|
|
bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
|
|
do {
|
|
try_nregs--;
|
|
try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
|
|
((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
|
|
1 : 0);
|
|
try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
|
|
bin->reg_size));
|
|
} while (sizeof(arena_run_t) + (sizeof(unsigned) *
|
|
(try_mask_nelms - 1)) > try_reg0_offset);
|
|
} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
|
|
&& RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
|
|
&& (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
|
|
|
|
assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
|
|
<= good_reg0_offset);
|
|
assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
|
|
|
|
/* Copy final settings. */
|
|
bin->run_size = good_run_size;
|
|
bin->nregs = good_nregs;
|
|
bin->regs_mask_nelms = good_mask_nelms;
|
|
bin->reg0_offset = good_reg0_offset;
|
|
|
|
return (good_run_size);
|
|
}
|
|
|
|
static void *
|
|
arena_malloc(arena_t *arena, size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
assert(arena != NULL);
|
|
assert(arena->magic == ARENA_MAGIC);
|
|
assert(size != 0);
|
|
assert(QUANTUM_CEILING(size) <= arena_maxclass);
|
|
|
|
if (size <= bin_maxclass) {
|
|
arena_bin_t *bin;
|
|
arena_run_t *run;
|
|
|
|
/* Small allocation. */
|
|
|
|
if (size < small_min) {
|
|
/* Tiny. */
|
|
size = pow2_ceil(size);
|
|
bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
|
|
1)))];
|
|
#if (!defined(NDEBUG) || defined(MALLOC_STATS))
|
|
/*
|
|
* Bin calculation is always correct, but we may need
|
|
* to fix size for the purposes of assertions and/or
|
|
* stats accuracy.
|
|
*/
|
|
if (size < (1 << TINY_MIN_2POW))
|
|
size = (1 << TINY_MIN_2POW);
|
|
#endif
|
|
} else if (size <= small_max) {
|
|
/* Quantum-spaced. */
|
|
size = QUANTUM_CEILING(size);
|
|
bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
|
|
- 1];
|
|
} else {
|
|
/* Sub-page. */
|
|
size = pow2_ceil(size);
|
|
bin = &arena->bins[ntbins + nqbins
|
|
+ (ffs((int)(size >> opt_small_max_2pow)) - 2)];
|
|
}
|
|
assert(size == bin->reg_size);
|
|
|
|
malloc_mutex_lock(&arena->mtx);
|
|
if ((run = bin->runcur) != NULL && run->nfree > 0)
|
|
ret = arena_bin_malloc_easy(arena, bin, run);
|
|
else
|
|
ret = arena_bin_malloc_hard(arena, bin);
|
|
|
|
if (ret == NULL) {
|
|
malloc_mutex_unlock(&arena->mtx);
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef MALLOC_STATS
|
|
bin->stats.nrequests++;
|
|
arena->stats.nmalloc_small++;
|
|
arena->stats.allocated_small += size;
|
|
#endif
|
|
} else {
|
|
/* Large allocation. */
|
|
size = PAGE_CEILING(size);
|
|
malloc_mutex_lock(&arena->mtx);
|
|
ret = (void *)arena_run_alloc(arena, size);
|
|
if (ret == NULL) {
|
|
malloc_mutex_unlock(&arena->mtx);
|
|
return (NULL);
|
|
}
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.nmalloc_large++;
|
|
arena->stats.allocated_large += size;
|
|
#endif
|
|
}
|
|
|
|
malloc_mutex_unlock(&arena->mtx);
|
|
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, size);
|
|
else if (opt_zero)
|
|
memset(ret, 0, size);
|
|
return (ret);
|
|
}
|
|
|
|
static inline void
|
|
arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
|
|
unsigned npages)
|
|
{
|
|
unsigned i;
|
|
|
|
assert(npages > 0);
|
|
|
|
/*
|
|
* Modifiy the map such that arena_run_dalloc() sees the run as
|
|
* separately allocated.
|
|
*/
|
|
for (i = 0; i < npages; i++) {
|
|
chunk->map[pageind + i].npages = npages;
|
|
chunk->map[pageind + i].pos = i;
|
|
}
|
|
arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
|
|
pagesize_2pow)), npages << pagesize_2pow);
|
|
}
|
|
|
|
/* Only handles large allocations that require more than page alignment. */
|
|
static void *
|
|
arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
|
|
{
|
|
void *ret;
|
|
size_t offset;
|
|
arena_chunk_t *chunk;
|
|
unsigned pageind, i, npages;
|
|
|
|
assert((size & pagesize_mask) == 0);
|
|
assert((alignment & pagesize_mask) == 0);
|
|
|
|
npages = (unsigned)(size >> pagesize_2pow);
|
|
|
|
malloc_mutex_lock(&arena->mtx);
|
|
ret = (void *)arena_run_alloc(arena, alloc_size);
|
|
if (ret == NULL) {
|
|
malloc_mutex_unlock(&arena->mtx);
|
|
return (NULL);
|
|
}
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
|
|
|
|
offset = (uintptr_t)ret & (alignment - 1);
|
|
assert((offset & pagesize_mask) == 0);
|
|
assert(offset < alloc_size);
|
|
if (offset == 0) {
|
|
pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
|
|
pagesize_2pow);
|
|
|
|
/* Update the map for the run to be kept. */
|
|
for (i = 0; i < npages; i++) {
|
|
chunk->map[pageind + i].npages = npages;
|
|
assert(chunk->map[pageind + i].pos == i);
|
|
}
|
|
|
|
/* Trim trailing space. */
|
|
arena_palloc_trim(arena, chunk, pageind + npages,
|
|
(unsigned)((alloc_size - size) >> pagesize_2pow));
|
|
} else {
|
|
size_t leadsize, trailsize;
|
|
|
|
leadsize = alignment - offset;
|
|
ret = (void *)((uintptr_t)ret + leadsize);
|
|
pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
|
|
pagesize_2pow);
|
|
|
|
/* Update the map for the run to be kept. */
|
|
for (i = 0; i < npages; i++) {
|
|
chunk->map[pageind + i].npages = npages;
|
|
chunk->map[pageind + i].pos = i;
|
|
}
|
|
|
|
/* Trim leading space. */
|
|
arena_palloc_trim(arena, chunk,
|
|
(unsigned)(pageind - (leadsize >> pagesize_2pow)),
|
|
(unsigned)(leadsize >> pagesize_2pow));
|
|
|
|
trailsize = alloc_size - leadsize - size;
|
|
if (trailsize != 0) {
|
|
/* Trim trailing space. */
|
|
assert(trailsize < alloc_size);
|
|
arena_palloc_trim(arena, chunk, pageind + npages,
|
|
(unsigned)(trailsize >> pagesize_2pow));
|
|
}
|
|
}
|
|
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.nmalloc_large++;
|
|
arena->stats.allocated_large += size;
|
|
#endif
|
|
malloc_mutex_unlock(&arena->mtx);
|
|
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, size);
|
|
else if (opt_zero)
|
|
memset(ret, 0, size);
|
|
return (ret);
|
|
}
|
|
|
|
/* Return the size of the allocation pointed to by ptr. */
|
|
static size_t
|
|
arena_salloc(const void *ptr)
|
|
{
|
|
size_t ret;
|
|
arena_chunk_t *chunk;
|
|
arena_chunk_map_t *mapelm;
|
|
unsigned pageind;
|
|
|
|
assert(ptr != NULL);
|
|
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
|
|
|
/*
|
|
* No arena data structures that we query here can change in a way that
|
|
* affects this function, so we don't need to lock.
|
|
*/
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
|
|
pagesize_2pow);
|
|
mapelm = &chunk->map[pageind];
|
|
if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
|
|
pagesize_2pow)) {
|
|
arena_run_t *run;
|
|
|
|
pageind -= mapelm->pos;
|
|
|
|
run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
|
|
pagesize_2pow));
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
ret = run->bin->reg_size;
|
|
} else
|
|
ret = mapelm->npages << pagesize_2pow;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
arena_ralloc(void *ptr, size_t size, size_t oldsize)
|
|
{
|
|
void *ret;
|
|
|
|
/* Avoid moving the allocation if the size class would not change. */
|
|
if (size < small_min) {
|
|
if (oldsize < small_min &&
|
|
ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
|
|
== ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
|
|
goto IN_PLACE;
|
|
} else if (size <= small_max) {
|
|
if (oldsize >= small_min && oldsize <= small_max &&
|
|
(QUANTUM_CEILING(size) >> opt_quantum_2pow)
|
|
== (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
|
|
goto IN_PLACE;
|
|
} else {
|
|
/*
|
|
* We make no attempt to resize runs here, though it would be
|
|
* possible to do so.
|
|
*/
|
|
if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
|
|
goto IN_PLACE;
|
|
}
|
|
|
|
/*
|
|
* If we get here, then size and oldsize are different enough that we
|
|
* need to use a different size class. In that case, fall back to
|
|
* allocating new space and copying.
|
|
*/
|
|
ret = arena_malloc(choose_arena(), size);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
|
|
/* Junk/zero-filling were already done by arena_malloc(). */
|
|
if (size < oldsize)
|
|
memcpy(ret, ptr, size);
|
|
else
|
|
memcpy(ret, ptr, oldsize);
|
|
idalloc(ptr);
|
|
return (ret);
|
|
IN_PLACE:
|
|
if (opt_junk && size < oldsize)
|
|
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
|
|
else if (opt_zero && size > oldsize)
|
|
memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
|
|
return (ptr);
|
|
}
|
|
|
|
static void
|
|
arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
|
|
{
|
|
unsigned pageind;
|
|
arena_chunk_map_t *mapelm;
|
|
size_t size;
|
|
|
|
assert(arena != NULL);
|
|
assert(arena->magic == ARENA_MAGIC);
|
|
assert(chunk->arena == arena);
|
|
assert(ptr != NULL);
|
|
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
|
|
|
pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
|
|
pagesize_2pow);
|
|
mapelm = &chunk->map[pageind];
|
|
if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
|
|
pagesize_2pow)) {
|
|
arena_run_t *run;
|
|
arena_bin_t *bin;
|
|
|
|
/* Small allocation. */
|
|
|
|
pageind -= mapelm->pos;
|
|
|
|
run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
|
|
pagesize_2pow));
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
bin = run->bin;
|
|
size = bin->reg_size;
|
|
|
|
if (opt_junk)
|
|
memset(ptr, 0x5a, size);
|
|
|
|
malloc_mutex_lock(&arena->mtx);
|
|
arena_run_reg_dalloc(run, bin, ptr, size);
|
|
run->nfree++;
|
|
|
|
if (run->nfree == bin->nregs) {
|
|
/* Deallocate run. */
|
|
if (run == bin->runcur)
|
|
bin->runcur = NULL;
|
|
else if (bin->nregs != 1) {
|
|
/*
|
|
* This block's conditional is necessary because
|
|
* if the run only contains one region, then it
|
|
* never gets inserted into the non-full runs
|
|
* tree.
|
|
*/
|
|
RB_REMOVE(arena_run_tree_s, &bin->runs, run);
|
|
}
|
|
#ifdef MALLOC_DEBUG
|
|
run->magic = 0;
|
|
#endif
|
|
arena_run_dalloc(arena, run, bin->run_size);
|
|
#ifdef MALLOC_STATS
|
|
bin->stats.curruns--;
|
|
#endif
|
|
} else if (run->nfree == 1 && run != bin->runcur) {
|
|
/*
|
|
* Make sure that bin->runcur always refers to the
|
|
* lowest non-full run, if one exists.
|
|
*/
|
|
if (bin->runcur == NULL)
|
|
bin->runcur = run;
|
|
else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
|
|
/* Switch runcur. */
|
|
if (bin->runcur->nfree > 0) {
|
|
/* Insert runcur. */
|
|
RB_INSERT(arena_run_tree_s, &bin->runs,
|
|
bin->runcur);
|
|
}
|
|
bin->runcur = run;
|
|
} else {
|
|
RB_INSERT(arena_run_tree_s, &bin->runs, run);
|
|
}
|
|
}
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.allocated_small -= size;
|
|
arena->stats.ndalloc_small++;
|
|
#endif
|
|
} else {
|
|
/* Large allocation. */
|
|
|
|
size = mapelm->npages << pagesize_2pow;
|
|
assert((((uintptr_t)ptr) & pagesize_mask) == 0);
|
|
|
|
if (opt_junk)
|
|
memset(ptr, 0x5a, size);
|
|
|
|
malloc_mutex_lock(&arena->mtx);
|
|
arena_run_dalloc(arena, (arena_run_t *)ptr, size);
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.allocated_large -= size;
|
|
arena->stats.ndalloc_large++;
|
|
#endif
|
|
}
|
|
|
|
malloc_mutex_unlock(&arena->mtx);
|
|
}
|
|
|
|
static bool
|
|
arena_new(arena_t *arena)
|
|
{
|
|
unsigned i;
|
|
arena_bin_t *bin;
|
|
size_t prev_run_size;
|
|
|
|
malloc_mutex_init(&arena->mtx);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&arena->stats, 0, sizeof(arena_stats_t));
|
|
#endif
|
|
|
|
/* Initialize chunks. */
|
|
RB_INIT(&arena->chunks);
|
|
arena->spare = NULL;
|
|
|
|
/* Initialize bins. */
|
|
prev_run_size = pagesize;
|
|
|
|
/* (2^n)-spaced tiny bins. */
|
|
for (i = 0; i < ntbins; i++) {
|
|
bin = &arena->bins[i];
|
|
bin->runcur = NULL;
|
|
RB_INIT(&bin->runs);
|
|
|
|
bin->reg_size = (1 << (TINY_MIN_2POW + i));
|
|
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
|
|
#endif
|
|
}
|
|
|
|
/* Quantum-spaced bins. */
|
|
for (; i < ntbins + nqbins; i++) {
|
|
bin = &arena->bins[i];
|
|
bin->runcur = NULL;
|
|
RB_INIT(&bin->runs);
|
|
|
|
bin->reg_size = quantum * (i - ntbins + 1);
|
|
/*
|
|
pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
|
|
*/
|
|
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
|
|
#endif
|
|
}
|
|
|
|
/* (2^n)-spaced sub-page bins. */
|
|
for (; i < ntbins + nqbins + nsbins; i++) {
|
|
bin = &arena->bins[i];
|
|
bin->runcur = NULL;
|
|
RB_INIT(&bin->runs);
|
|
|
|
bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
|
|
|
|
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
|
|
#endif
|
|
}
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
arena->magic = ARENA_MAGIC;
|
|
#endif
|
|
|
|
return (false);
|
|
}
|
|
|
|
/* Create a new arena and insert it into the arenas array at index ind. */
|
|
static arena_t *
|
|
arenas_extend(unsigned ind)
|
|
{
|
|
arena_t *ret;
|
|
|
|
/* Allocate enough space for trailing bins. */
|
|
ret = (arena_t *)base_alloc(sizeof(arena_t)
|
|
+ (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
|
|
if (ret != NULL && arena_new(ret) == false) {
|
|
arenas[ind] = ret;
|
|
return (ret);
|
|
}
|
|
/* Only reached if there is an OOM error. */
|
|
|
|
/*
|
|
* OOM here is quite inconvenient to propagate, since dealing with it
|
|
* would require a check for failure in the fast path. Instead, punt
|
|
* by using arenas[0]. In practice, this is an extremely unlikely
|
|
* failure.
|
|
*/
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Error initializing arena\n", "", "");
|
|
if (opt_abort)
|
|
abort();
|
|
|
|
return (arenas[0]);
|
|
}
|
|
|
|
/*
|
|
* End arena.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin general internal functions.
|
|
*/
|
|
|
|
static void *
|
|
huge_malloc(size_t size)
|
|
{
|
|
void *ret;
|
|
size_t csize;
|
|
chunk_node_t *node;
|
|
|
|
/* Allocate one or more contiguous chunks for this request. */
|
|
|
|
csize = CHUNK_CEILING(size);
|
|
if (csize == 0) {
|
|
/* size is large enough to cause size_t wrap-around. */
|
|
return (NULL);
|
|
}
|
|
|
|
/* Allocate a chunk node with which to track the chunk. */
|
|
node = base_chunk_node_alloc();
|
|
if (node == NULL)
|
|
return (NULL);
|
|
|
|
ret = chunk_alloc(csize);
|
|
if (ret == NULL) {
|
|
base_chunk_node_dealloc(node);
|
|
return (NULL);
|
|
}
|
|
|
|
/* Insert node into huge. */
|
|
node->chunk = ret;
|
|
node->size = csize;
|
|
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
RB_INSERT(chunk_tree_s, &huge, node);
|
|
#ifdef MALLOC_STATS
|
|
huge_nmalloc++;
|
|
huge_allocated += csize;
|
|
#endif
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, csize);
|
|
else if (opt_zero)
|
|
memset(ret, 0, csize);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* Only handles large allocations that require more than chunk alignment. */
|
|
static void *
|
|
huge_palloc(size_t alignment, size_t size)
|
|
{
|
|
void *ret;
|
|
size_t alloc_size, chunk_size, offset;
|
|
chunk_node_t *node;
|
|
|
|
/*
|
|
* This allocation requires alignment that is even larger than chunk
|
|
* alignment. This means that huge_malloc() isn't good enough.
|
|
*
|
|
* Allocate almost twice as many chunks as are demanded by the size or
|
|
* alignment, in order to assure the alignment can be achieved, then
|
|
* unmap leading and trailing chunks.
|
|
*/
|
|
assert(alignment >= chunksize);
|
|
|
|
chunk_size = CHUNK_CEILING(size);
|
|
|
|
if (size >= alignment)
|
|
alloc_size = chunk_size + alignment - chunksize;
|
|
else
|
|
alloc_size = (alignment << 1) - chunksize;
|
|
|
|
/* Allocate a chunk node with which to track the chunk. */
|
|
node = base_chunk_node_alloc();
|
|
if (node == NULL)
|
|
return (NULL);
|
|
|
|
ret = chunk_alloc(alloc_size);
|
|
if (ret == NULL) {
|
|
base_chunk_node_dealloc(node);
|
|
return (NULL);
|
|
}
|
|
|
|
offset = (uintptr_t)ret & (alignment - 1);
|
|
assert((offset & chunksize_mask) == 0);
|
|
assert(offset < alloc_size);
|
|
if (offset == 0) {
|
|
/* Trim trailing space. */
|
|
chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
|
|
- chunk_size);
|
|
} else {
|
|
size_t trailsize;
|
|
|
|
/* Trim leading space. */
|
|
chunk_dealloc(ret, alignment - offset);
|
|
|
|
ret = (void *)((uintptr_t)ret + (alignment - offset));
|
|
|
|
trailsize = alloc_size - (alignment - offset) - chunk_size;
|
|
if (trailsize != 0) {
|
|
/* Trim trailing space. */
|
|
assert(trailsize < alloc_size);
|
|
chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
|
|
trailsize);
|
|
}
|
|
}
|
|
|
|
/* Insert node into huge. */
|
|
node->chunk = ret;
|
|
node->size = chunk_size;
|
|
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
RB_INSERT(chunk_tree_s, &huge, node);
|
|
#ifdef MALLOC_STATS
|
|
huge_nmalloc++;
|
|
huge_allocated += chunk_size;
|
|
#endif
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, chunk_size);
|
|
else if (opt_zero)
|
|
memset(ret, 0, chunk_size);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
huge_ralloc(void *ptr, size_t size, size_t oldsize)
|
|
{
|
|
void *ret;
|
|
|
|
/* Avoid moving the allocation if the size class would not change. */
|
|
if (oldsize > arena_maxclass &&
|
|
CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
|
|
if (opt_junk && size < oldsize) {
|
|
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
|
|
- size);
|
|
} else if (opt_zero && size > oldsize) {
|
|
memset((void *)((uintptr_t)ptr + oldsize), 0, size
|
|
- oldsize);
|
|
}
|
|
return (ptr);
|
|
}
|
|
|
|
if (CHUNK_ADDR2BASE(ptr) == ptr
|
|
#ifdef USE_BRK
|
|
&& ((uintptr_t)ptr < (uintptr_t)brk_base
|
|
|| (uintptr_t)ptr >= (uintptr_t)brk_max)
|
|
#endif
|
|
) {
|
|
chunk_node_t *node, key;
|
|
void *newptr;
|
|
size_t oldcsize;
|
|
size_t newcsize;
|
|
|
|
newcsize = CHUNK_CEILING(size);
|
|
oldcsize = CHUNK_CEILING(oldsize);
|
|
assert(oldcsize != newcsize);
|
|
if (newcsize == 0) {
|
|
/* size_t wrap-around */
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Remove the old region from the tree now. If mremap()
|
|
* returns the region to the system, other thread may
|
|
* map it for same huge allocation and insert it to the
|
|
* tree before we acquire the mutex lock again.
|
|
*/
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
key.chunk = __DECONST(void *, ptr);
|
|
node = RB_FIND(chunk_tree_s, &huge, &key);
|
|
assert(node != NULL);
|
|
assert(node->chunk == ptr);
|
|
assert(node->size == oldcsize);
|
|
RB_REMOVE(chunk_tree_s, &huge, node);
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
|
|
newptr = mremap(ptr, oldcsize, NULL, newcsize,
|
|
MAP_ALIGNED(chunksize_2pow));
|
|
if (newptr == MAP_FAILED) {
|
|
/* We still own the old region. */
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
RB_INSERT(chunk_tree_s, &huge, node);
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
} else {
|
|
assert(CHUNK_ADDR2BASE(newptr) == newptr);
|
|
|
|
/* Insert new or resized old region. */
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
node->size = newcsize;
|
|
node->chunk = newptr;
|
|
RB_INSERT(chunk_tree_s, &huge, node);
|
|
#ifdef MALLOC_STATS
|
|
huge_nralloc++;
|
|
huge_allocated += newcsize - oldcsize;
|
|
if (newcsize > oldcsize) {
|
|
stats_chunks.curchunks +=
|
|
(newcsize - oldcsize) / chunksize;
|
|
if (stats_chunks.curchunks >
|
|
stats_chunks.highchunks)
|
|
stats_chunks.highchunks =
|
|
stats_chunks.curchunks;
|
|
} else {
|
|
stats_chunks.curchunks -=
|
|
(oldcsize - newcsize) / chunksize;
|
|
}
|
|
#endif
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
|
|
if (opt_junk && size < oldsize) {
|
|
memset((void *)((uintptr_t)newptr + size), 0x5a,
|
|
newcsize - size);
|
|
} else if (opt_zero && size > oldsize) {
|
|
memset((void *)((uintptr_t)newptr + oldsize), 0,
|
|
size - oldsize);
|
|
}
|
|
return (newptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we get here, then size and oldsize are different enough that we
|
|
* need to use a different size class. In that case, fall back to
|
|
* allocating new space and copying.
|
|
*/
|
|
ret = huge_malloc(size);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
|
|
if (CHUNK_ADDR2BASE(ptr) == ptr) {
|
|
/* The old allocation is a chunk. */
|
|
if (size < oldsize)
|
|
memcpy(ret, ptr, size);
|
|
else
|
|
memcpy(ret, ptr, oldsize);
|
|
} else {
|
|
/* The old allocation is a region. */
|
|
assert(oldsize < size);
|
|
memcpy(ret, ptr, oldsize);
|
|
}
|
|
idalloc(ptr);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
huge_dalloc(void *ptr)
|
|
{
|
|
chunk_node_t key;
|
|
chunk_node_t *node;
|
|
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
|
|
/* Extract from tree of huge allocations. */
|
|
key.chunk = ptr;
|
|
node = RB_FIND(chunk_tree_s, &huge, &key);
|
|
assert(node != NULL);
|
|
assert(node->chunk == ptr);
|
|
RB_REMOVE(chunk_tree_s, &huge, node);
|
|
|
|
#ifdef MALLOC_STATS
|
|
huge_ndalloc++;
|
|
huge_allocated -= node->size;
|
|
#endif
|
|
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
|
|
/* Unmap chunk. */
|
|
#ifdef USE_BRK
|
|
if (opt_junk)
|
|
memset(node->chunk, 0x5a, node->size);
|
|
#endif
|
|
chunk_dealloc(node->chunk, node->size);
|
|
|
|
base_chunk_node_dealloc(node);
|
|
}
|
|
|
|
static void *
|
|
imalloc(size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
assert(size != 0);
|
|
|
|
if (size <= arena_maxclass)
|
|
ret = arena_malloc(choose_arena(), size);
|
|
else
|
|
ret = huge_malloc(size);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
ipalloc(size_t alignment, size_t size)
|
|
{
|
|
void *ret;
|
|
size_t ceil_size;
|
|
|
|
/*
|
|
* Round size up to the nearest multiple of alignment.
|
|
*
|
|
* This done, we can take advantage of the fact that for each small
|
|
* size class, every object is aligned at the smallest power of two
|
|
* that is non-zero in the base two representation of the size. For
|
|
* example:
|
|
*
|
|
* Size | Base 2 | Minimum alignment
|
|
* -----+----------+------------------
|
|
* 96 | 1100000 | 32
|
|
* 144 | 10100000 | 32
|
|
* 192 | 11000000 | 64
|
|
*
|
|
* Depending on runtime settings, it is possible that arena_malloc()
|
|
* will further round up to a power of two, but that never causes
|
|
* correctness issues.
|
|
*/
|
|
ceil_size = (size + (alignment - 1)) & (-alignment);
|
|
/*
|
|
* (ceil_size < size) protects against the combination of maximal
|
|
* alignment and size greater than maximal alignment.
|
|
*/
|
|
if (ceil_size < size) {
|
|
/* size_t overflow. */
|
|
return (NULL);
|
|
}
|
|
|
|
if (ceil_size <= pagesize || (alignment <= pagesize
|
|
&& ceil_size <= arena_maxclass))
|
|
ret = arena_malloc(choose_arena(), ceil_size);
|
|
else {
|
|
size_t run_size;
|
|
|
|
/*
|
|
* We can't achieve sub-page alignment, so round up alignment
|
|
* permanently; it makes later calculations simpler.
|
|
*/
|
|
alignment = PAGE_CEILING(alignment);
|
|
ceil_size = PAGE_CEILING(size);
|
|
/*
|
|
* (ceil_size < size) protects against very large sizes within
|
|
* pagesize of SIZE_T_MAX.
|
|
*
|
|
* (ceil_size + alignment < ceil_size) protects against the
|
|
* combination of maximal alignment and ceil_size large enough
|
|
* to cause overflow. This is similar to the first overflow
|
|
* check above, but it needs to be repeated due to the new
|
|
* ceil_size value, which may now be *equal* to maximal
|
|
* alignment, whereas before we only detected overflow if the
|
|
* original size was *greater* than maximal alignment.
|
|
*/
|
|
if (ceil_size < size || ceil_size + alignment < ceil_size) {
|
|
/* size_t overflow. */
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Calculate the size of the over-size run that arena_palloc()
|
|
* would need to allocate in order to guarantee the alignment.
|
|
*/
|
|
if (ceil_size >= alignment)
|
|
run_size = ceil_size + alignment - pagesize;
|
|
else {
|
|
/*
|
|
* It is possible that (alignment << 1) will cause
|
|
* overflow, but it doesn't matter because we also
|
|
* subtract pagesize, which in the case of overflow
|
|
* leaves us with a very large run_size. That causes
|
|
* the first conditional below to fail, which means
|
|
* that the bogus run_size value never gets used for
|
|
* anything important.
|
|
*/
|
|
run_size = (alignment << 1) - pagesize;
|
|
}
|
|
|
|
if (run_size <= arena_maxclass) {
|
|
ret = arena_palloc(choose_arena(), alignment, ceil_size,
|
|
run_size);
|
|
} else if (alignment <= chunksize)
|
|
ret = huge_malloc(ceil_size);
|
|
else
|
|
ret = huge_palloc(alignment, ceil_size);
|
|
}
|
|
|
|
assert(((uintptr_t)ret & (alignment - 1)) == 0);
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
icalloc(size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
if (size <= arena_maxclass) {
|
|
ret = arena_malloc(choose_arena(), size);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
memset(ret, 0, size);
|
|
} else {
|
|
/*
|
|
* The virtual memory system provides zero-filled pages, so
|
|
* there is no need to do so manually, unless opt_junk is
|
|
* enabled, in which case huge_malloc() fills huge allocations
|
|
* with junk.
|
|
*/
|
|
ret = huge_malloc(size);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
|
|
if (opt_junk)
|
|
memset(ret, 0, size);
|
|
#ifdef USE_BRK
|
|
else if ((uintptr_t)ret >= (uintptr_t)brk_base
|
|
&& (uintptr_t)ret < (uintptr_t)brk_max) {
|
|
/*
|
|
* This may be a re-used brk chunk. Therefore, zero
|
|
* the memory.
|
|
*/
|
|
memset(ret, 0, size);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static size_t
|
|
isalloc(const void *ptr)
|
|
{
|
|
size_t ret;
|
|
arena_chunk_t *chunk;
|
|
|
|
assert(ptr != NULL);
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
if (chunk != ptr) {
|
|
/* Region. */
|
|
assert(chunk->arena->magic == ARENA_MAGIC);
|
|
|
|
ret = arena_salloc(ptr);
|
|
} else {
|
|
chunk_node_t *node, key;
|
|
|
|
/* Chunk (huge allocation). */
|
|
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
|
|
/* Extract from tree of huge allocations. */
|
|
key.chunk = __DECONST(void *, ptr);
|
|
node = RB_FIND(chunk_tree_s, &huge, &key);
|
|
assert(node != NULL);
|
|
|
|
ret = node->size;
|
|
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
iralloc(void *ptr, size_t size)
|
|
{
|
|
void *ret;
|
|
size_t oldsize;
|
|
|
|
assert(ptr != NULL);
|
|
assert(size != 0);
|
|
|
|
oldsize = isalloc(ptr);
|
|
|
|
if (size <= arena_maxclass)
|
|
ret = arena_ralloc(ptr, size, oldsize);
|
|
else
|
|
ret = huge_ralloc(ptr, size, oldsize);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
idalloc(void *ptr)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
|
|
assert(ptr != NULL);
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
if (chunk != ptr) {
|
|
/* Region. */
|
|
arena_dalloc(chunk->arena, chunk, ptr);
|
|
} else
|
|
huge_dalloc(ptr);
|
|
}
|
|
|
|
static void
|
|
malloc_print_stats(void)
|
|
{
|
|
|
|
if (opt_print_stats) {
|
|
char s[UMAX2S_BUFSIZE];
|
|
_malloc_message("___ Begin malloc statistics ___\n", "", "",
|
|
"");
|
|
_malloc_message("Assertions ",
|
|
#ifdef NDEBUG
|
|
"disabled",
|
|
#else
|
|
"enabled",
|
|
#endif
|
|
"\n", "");
|
|
_malloc_message("Boolean MALLOC_OPTIONS: ",
|
|
opt_abort ? "A" : "a",
|
|
opt_junk ? "J" : "j",
|
|
opt_hint ? "H" : "h");
|
|
_malloc_message(opt_utrace ? "PU" : "Pu",
|
|
opt_sysv ? "V" : "v",
|
|
opt_xmalloc ? "X" : "x",
|
|
opt_zero ? "Z\n" : "z\n");
|
|
|
|
_malloc_message("CPUs: ", size_t2s(ncpus, s), "\n", "");
|
|
_malloc_message("Max arenas: ", size_t2s(narenas, s), "\n", "");
|
|
_malloc_message("Pointer size: ", size_t2s(sizeof(void *), s),
|
|
"\n", "");
|
|
_malloc_message("Quantum size: ", size_t2s(quantum, s), "\n", "");
|
|
_malloc_message("Max small size: ", size_t2s(small_max, s), "\n",
|
|
"");
|
|
|
|
_malloc_message("Chunk size: ", size_t2s(chunksize, s), "", "");
|
|
_malloc_message(" (2^", size_t2s((size_t)opt_chunk_2pow, s),
|
|
")\n", "");
|
|
|
|
#ifdef MALLOC_STATS
|
|
{
|
|
size_t allocated, mapped;
|
|
unsigned i;
|
|
arena_t *arena;
|
|
|
|
/* Calculate and print allocated/mapped stats. */
|
|
|
|
/* arenas. */
|
|
for (i = 0, allocated = 0; i < narenas; i++) {
|
|
if (arenas[i] != NULL) {
|
|
malloc_mutex_lock(&arenas[i]->mtx);
|
|
allocated +=
|
|
arenas[i]->stats.allocated_small;
|
|
allocated +=
|
|
arenas[i]->stats.allocated_large;
|
|
malloc_mutex_unlock(&arenas[i]->mtx);
|
|
}
|
|
}
|
|
|
|
/* huge/base. */
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
allocated += huge_allocated;
|
|
mapped = stats_chunks.curchunks * chunksize;
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
|
|
malloc_mutex_lock(&base_mtx);
|
|
mapped += base_mapped;
|
|
malloc_mutex_unlock(&base_mtx);
|
|
|
|
malloc_printf("Allocated: %zu, mapped: %zu\n",
|
|
allocated, mapped);
|
|
|
|
/* Print chunk stats. */
|
|
{
|
|
chunk_stats_t chunks_stats;
|
|
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
chunks_stats = stats_chunks;
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
|
|
malloc_printf("chunks: nchunks "
|
|
"highchunks curchunks\n");
|
|
malloc_printf(" %13llu%13lu%13lu\n",
|
|
chunks_stats.nchunks,
|
|
chunks_stats.highchunks,
|
|
chunks_stats.curchunks);
|
|
}
|
|
|
|
/* Print chunk stats. */
|
|
malloc_printf(
|
|
"huge: nmalloc ndalloc "
|
|
"nralloc allocated\n");
|
|
malloc_printf(" %12llu %12llu %12llu %12zu\n",
|
|
huge_nmalloc, huge_ndalloc, huge_nralloc,
|
|
huge_allocated);
|
|
|
|
/* Print stats for each arena. */
|
|
for (i = 0; i < narenas; i++) {
|
|
arena = arenas[i];
|
|
if (arena != NULL) {
|
|
malloc_printf(
|
|
"\narenas[%u] @ %p\n", i, arena);
|
|
malloc_mutex_lock(&arena->mtx);
|
|
stats_print(arena);
|
|
malloc_mutex_unlock(&arena->mtx);
|
|
}
|
|
}
|
|
}
|
|
#endif /* #ifdef MALLOC_STATS */
|
|
_malloc_message("--- End malloc statistics ---\n", "", "", "");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* FreeBSD's pthreads implementation calls malloc(3), so the malloc
|
|
* implementation has to take pains to avoid infinite recursion during
|
|
* initialization.
|
|
*/
|
|
static inline bool
|
|
malloc_init(void)
|
|
{
|
|
|
|
if (malloc_initialized == false)
|
|
return (malloc_init_hard());
|
|
|
|
return (false);
|
|
}
|
|
|
|
static bool
|
|
malloc_init_hard(void)
|
|
{
|
|
unsigned i, j;
|
|
ssize_t linklen;
|
|
char buf[PATH_MAX + 1];
|
|
const char *opts = "";
|
|
int serrno;
|
|
|
|
malloc_mutex_lock(&init_lock);
|
|
if (malloc_initialized) {
|
|
/*
|
|
* Another thread initialized the allocator before this one
|
|
* acquired init_lock.
|
|
*/
|
|
malloc_mutex_unlock(&init_lock);
|
|
return (false);
|
|
}
|
|
|
|
serrno = errno;
|
|
/* Get number of CPUs. */
|
|
{
|
|
int mib[2];
|
|
size_t len;
|
|
|
|
mib[0] = CTL_HW;
|
|
mib[1] = HW_NCPU;
|
|
len = sizeof(ncpus);
|
|
if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
|
|
/* Error. */
|
|
ncpus = 1;
|
|
}
|
|
}
|
|
|
|
/* Get page size. */
|
|
{
|
|
long result;
|
|
|
|
result = sysconf(_SC_PAGESIZE);
|
|
assert(result != -1);
|
|
pagesize = (unsigned) result;
|
|
|
|
/*
|
|
* We assume that pagesize is a power of 2 when calculating
|
|
* pagesize_mask and pagesize_2pow.
|
|
*/
|
|
assert(((result - 1) & result) == 0);
|
|
pagesize_mask = result - 1;
|
|
pagesize_2pow = ffs((int)result) - 1;
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
/* Get runtime configuration. */
|
|
switch (i) {
|
|
case 0:
|
|
if ((linklen = readlink("/etc/malloc.conf", buf,
|
|
sizeof(buf) - 1)) != -1) {
|
|
/*
|
|
* Use the contents of the "/etc/malloc.conf"
|
|
* symbolic link's name.
|
|
*/
|
|
buf[linklen] = '\0';
|
|
opts = buf;
|
|
} else {
|
|
/* No configuration specified. */
|
|
buf[0] = '\0';
|
|
opts = buf;
|
|
}
|
|
break;
|
|
case 1:
|
|
if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
|
|
issetugid() == 0) {
|
|
/*
|
|
* Do nothing; opts is already initialized to
|
|
* the value of the MALLOC_OPTIONS environment
|
|
* variable.
|
|
*/
|
|
} else {
|
|
/* No configuration specified. */
|
|
buf[0] = '\0';
|
|
opts = buf;
|
|
}
|
|
break;
|
|
case 2:
|
|
if (_malloc_options != NULL) {
|
|
/*
|
|
* Use options that were compiled into the program.
|
|
*/
|
|
opts = _malloc_options;
|
|
} else {
|
|
/* No configuration specified. */
|
|
buf[0] = '\0';
|
|
opts = buf;
|
|
}
|
|
break;
|
|
default:
|
|
/* NOTREACHED */
|
|
/* LINTED */
|
|
assert(false);
|
|
}
|
|
|
|
for (j = 0; opts[j] != '\0'; j++) {
|
|
switch (opts[j]) {
|
|
case 'a':
|
|
opt_abort = false;
|
|
break;
|
|
case 'A':
|
|
opt_abort = true;
|
|
break;
|
|
case 'h':
|
|
opt_hint = false;
|
|
break;
|
|
case 'H':
|
|
opt_hint = true;
|
|
break;
|
|
case 'j':
|
|
opt_junk = false;
|
|
break;
|
|
case 'J':
|
|
opt_junk = true;
|
|
break;
|
|
case 'k':
|
|
/*
|
|
* Chunks always require at least one header
|
|
* page, so chunks can never be smaller than
|
|
* two pages.
|
|
*/
|
|
if (opt_chunk_2pow > pagesize_2pow + 1)
|
|
opt_chunk_2pow--;
|
|
break;
|
|
case 'K':
|
|
if (opt_chunk_2pow + 1 <
|
|
(int)(sizeof(size_t) << 3))
|
|
opt_chunk_2pow++;
|
|
break;
|
|
case 'n':
|
|
opt_narenas_lshift--;
|
|
break;
|
|
case 'N':
|
|
opt_narenas_lshift++;
|
|
break;
|
|
case 'p':
|
|
opt_print_stats = false;
|
|
break;
|
|
case 'P':
|
|
opt_print_stats = true;
|
|
break;
|
|
case 'q':
|
|
if (opt_quantum_2pow > QUANTUM_2POW_MIN)
|
|
opt_quantum_2pow--;
|
|
break;
|
|
case 'Q':
|
|
if (opt_quantum_2pow < pagesize_2pow - 1)
|
|
opt_quantum_2pow++;
|
|
break;
|
|
case 's':
|
|
if (opt_small_max_2pow > QUANTUM_2POW_MIN)
|
|
opt_small_max_2pow--;
|
|
break;
|
|
case 'S':
|
|
if (opt_small_max_2pow < pagesize_2pow - 1)
|
|
opt_small_max_2pow++;
|
|
break;
|
|
case 'u':
|
|
opt_utrace = false;
|
|
break;
|
|
case 'U':
|
|
opt_utrace = true;
|
|
break;
|
|
case 'v':
|
|
opt_sysv = false;
|
|
break;
|
|
case 'V':
|
|
opt_sysv = true;
|
|
break;
|
|
case 'x':
|
|
opt_xmalloc = false;
|
|
break;
|
|
case 'X':
|
|
opt_xmalloc = true;
|
|
break;
|
|
case 'z':
|
|
opt_zero = false;
|
|
break;
|
|
case 'Z':
|
|
opt_zero = true;
|
|
break;
|
|
default: {
|
|
char cbuf[2];
|
|
|
|
cbuf[0] = opts[j];
|
|
cbuf[1] = '\0';
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Unsupported character in "
|
|
"malloc options: '", cbuf, "'\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
errno = serrno;
|
|
|
|
/* Take care to call atexit() only once. */
|
|
if (opt_print_stats) {
|
|
/* Print statistics at exit. */
|
|
atexit(malloc_print_stats);
|
|
}
|
|
|
|
/* Set variables according to the value of opt_small_max_2pow. */
|
|
if (opt_small_max_2pow < opt_quantum_2pow)
|
|
opt_small_max_2pow = opt_quantum_2pow;
|
|
small_max = (1 << opt_small_max_2pow);
|
|
|
|
/* Set bin-related variables. */
|
|
bin_maxclass = (pagesize >> 1);
|
|
assert(opt_quantum_2pow >= TINY_MIN_2POW);
|
|
ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
|
|
assert(ntbins <= opt_quantum_2pow);
|
|
nqbins = (unsigned)(small_max >> opt_quantum_2pow);
|
|
nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
|
|
|
|
/* Set variables according to the value of opt_quantum_2pow. */
|
|
quantum = (1 << opt_quantum_2pow);
|
|
quantum_mask = quantum - 1;
|
|
if (ntbins > 0)
|
|
small_min = (quantum >> 1) + 1;
|
|
else
|
|
small_min = 1;
|
|
assert(small_min <= quantum);
|
|
|
|
/* Set variables according to the value of opt_chunk_2pow. */
|
|
chunksize = (1LU << opt_chunk_2pow);
|
|
chunksize_mask = chunksize - 1;
|
|
chunksize_2pow = (unsigned)opt_chunk_2pow;
|
|
chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
|
|
{
|
|
unsigned header_size;
|
|
|
|
header_size = (unsigned)(sizeof(arena_chunk_t) +
|
|
(sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
|
|
arena_chunk_header_npages = (header_size >> pagesize_2pow);
|
|
if ((header_size & pagesize_mask) != 0)
|
|
arena_chunk_header_npages++;
|
|
}
|
|
arena_maxclass = chunksize - (arena_chunk_header_npages <<
|
|
pagesize_2pow);
|
|
|
|
UTRACE(0, 0, 0);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&stats_chunks, 0, sizeof(chunk_stats_t));
|
|
#endif
|
|
|
|
/* Various sanity checks that regard configuration. */
|
|
assert(quantum >= sizeof(void *));
|
|
assert(quantum <= pagesize);
|
|
assert(chunksize >= pagesize);
|
|
assert(quantum * 4 <= chunksize);
|
|
|
|
/* Initialize chunks data. */
|
|
malloc_mutex_init(&chunks_mtx);
|
|
RB_INIT(&huge);
|
|
#ifdef USE_BRK
|
|
malloc_mutex_init(&brk_mtx);
|
|
brk_base = sbrk(0);
|
|
brk_prev = brk_base;
|
|
brk_max = brk_base;
|
|
#endif
|
|
#ifdef MALLOC_STATS
|
|
huge_nmalloc = 0;
|
|
huge_ndalloc = 0;
|
|
huge_nralloc = 0;
|
|
huge_allocated = 0;
|
|
#endif
|
|
RB_INIT(&old_chunks);
|
|
|
|
/* Initialize base allocation data structures. */
|
|
#ifdef MALLOC_STATS
|
|
base_mapped = 0;
|
|
#endif
|
|
#ifdef USE_BRK
|
|
/*
|
|
* Allocate a base chunk here, since it doesn't actually have to be
|
|
* chunk-aligned. Doing this before allocating any other chunks allows
|
|
* the use of space that would otherwise be wasted.
|
|
*/
|
|
base_pages_alloc(0);
|
|
#endif
|
|
base_chunk_nodes = NULL;
|
|
malloc_mutex_init(&base_mtx);
|
|
|
|
if (ncpus > 1) {
|
|
/*
|
|
* For SMP systems, create four times as many arenas as there
|
|
* are CPUs by default.
|
|
*/
|
|
opt_narenas_lshift += 2;
|
|
}
|
|
|
|
/* Determine how many arenas to use. */
|
|
narenas = ncpus;
|
|
if (opt_narenas_lshift > 0) {
|
|
if ((narenas << opt_narenas_lshift) > narenas)
|
|
narenas <<= opt_narenas_lshift;
|
|
/*
|
|
* Make sure not to exceed the limits of what base_malloc()
|
|
* can handle.
|
|
*/
|
|
if (narenas * sizeof(arena_t *) > chunksize)
|
|
narenas = (unsigned)(chunksize / sizeof(arena_t *));
|
|
} else if (opt_narenas_lshift < 0) {
|
|
if ((narenas << opt_narenas_lshift) < narenas)
|
|
narenas <<= opt_narenas_lshift;
|
|
/* Make sure there is at least one arena. */
|
|
if (narenas == 0)
|
|
narenas = 1;
|
|
}
|
|
|
|
next_arena = 0;
|
|
|
|
/* Allocate and initialize arenas. */
|
|
arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
|
|
if (arenas == NULL) {
|
|
malloc_mutex_unlock(&init_lock);
|
|
return (true);
|
|
}
|
|
/*
|
|
* Zero the array. In practice, this should always be pre-zeroed,
|
|
* since it was just mmap()ed, but let's be sure.
|
|
*/
|
|
memset(arenas, 0, sizeof(arena_t *) * narenas);
|
|
|
|
/*
|
|
* Initialize one arena here. The rest are lazily created in
|
|
* arena_choose_hard().
|
|
*/
|
|
arenas_extend(0);
|
|
if (arenas[0] == NULL) {
|
|
malloc_mutex_unlock(&init_lock);
|
|
return (true);
|
|
}
|
|
|
|
malloc_mutex_init(&arenas_mtx);
|
|
|
|
malloc_initialized = true;
|
|
malloc_mutex_unlock(&init_lock);
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
* End general internal functions.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin malloc(3)-compatible functions.
|
|
*/
|
|
|
|
void *
|
|
malloc(size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
if (malloc_init()) {
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
|
|
if (size == 0) {
|
|
if (opt_sysv == false)
|
|
size = 1;
|
|
else {
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
}
|
|
|
|
ret = imalloc(size);
|
|
|
|
RETURN:
|
|
if (ret == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Error in malloc(): out of memory\n", "",
|
|
"");
|
|
abort();
|
|
}
|
|
errno = ENOMEM;
|
|
}
|
|
|
|
UTRACE(0, size, ret);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
posix_memalign(void **memptr, size_t alignment, size_t size)
|
|
{
|
|
int ret;
|
|
void *result;
|
|
|
|
if (malloc_init())
|
|
result = NULL;
|
|
else {
|
|
/* Make sure that alignment is a large enough power of 2. */
|
|
if (((alignment - 1) & alignment) != 0
|
|
|| alignment < sizeof(void *)) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Error in posix_memalign(): "
|
|
"invalid alignment\n", "", "");
|
|
abort();
|
|
}
|
|
result = NULL;
|
|
ret = EINVAL;
|
|
goto RETURN;
|
|
}
|
|
|
|
result = ipalloc(alignment, size);
|
|
}
|
|
|
|
if (result == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Error in posix_memalign(): out of memory\n",
|
|
"", "");
|
|
abort();
|
|
}
|
|
ret = ENOMEM;
|
|
goto RETURN;
|
|
}
|
|
|
|
*memptr = result;
|
|
ret = 0;
|
|
|
|
RETURN:
|
|
UTRACE(0, size, result);
|
|
return (ret);
|
|
}
|
|
|
|
void *
|
|
calloc(size_t num, size_t size)
|
|
{
|
|
void *ret;
|
|
size_t num_size;
|
|
|
|
if (malloc_init()) {
|
|
num_size = 0;
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
|
|
num_size = num * size;
|
|
if (num_size == 0) {
|
|
if ((opt_sysv == false) && ((num == 0) || (size == 0)))
|
|
num_size = 1;
|
|
else {
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
/*
|
|
* Try to avoid division here. We know that it isn't possible to
|
|
* overflow during multiplication if neither operand uses any of the
|
|
* most significant half of the bits in a size_t.
|
|
*/
|
|
} else if ((unsigned long long)((num | size) &
|
|
((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
|
|
(num_size / size != num)) {
|
|
/* size_t overflow. */
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
|
|
ret = icalloc(num_size);
|
|
|
|
RETURN:
|
|
if (ret == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Error in calloc(): out of memory\n", "",
|
|
"");
|
|
abort();
|
|
}
|
|
errno = ENOMEM;
|
|
}
|
|
|
|
UTRACE(0, num_size, ret);
|
|
return (ret);
|
|
}
|
|
|
|
void *
|
|
realloc(void *ptr, size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
if (size == 0) {
|
|
if (opt_sysv == false)
|
|
size = 1;
|
|
else {
|
|
if (ptr != NULL)
|
|
idalloc(ptr);
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
}
|
|
|
|
if (ptr != NULL) {
|
|
assert(malloc_initialized);
|
|
|
|
ret = iralloc(ptr, size);
|
|
|
|
if (ret == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Error in realloc(): out of "
|
|
"memory\n", "", "");
|
|
abort();
|
|
}
|
|
errno = ENOMEM;
|
|
}
|
|
} else {
|
|
if (malloc_init())
|
|
ret = NULL;
|
|
else
|
|
ret = imalloc(size);
|
|
|
|
if (ret == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(getprogname(),
|
|
": (malloc) Error in realloc(): out of "
|
|
"memory\n", "", "");
|
|
abort();
|
|
}
|
|
errno = ENOMEM;
|
|
}
|
|
}
|
|
|
|
RETURN:
|
|
UTRACE(ptr, size, ret);
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
free(void *ptr)
|
|
{
|
|
|
|
UTRACE(ptr, 0, 0);
|
|
if (ptr != NULL) {
|
|
assert(malloc_initialized);
|
|
|
|
idalloc(ptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* End malloc(3)-compatible functions.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin non-standard functions.
|
|
*/
|
|
#ifndef __NetBSD__
|
|
size_t
|
|
malloc_usable_size(const void *ptr)
|
|
{
|
|
|
|
assert(ptr != NULL);
|
|
|
|
return (isalloc(ptr));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* End non-standard functions.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin library-private functions, used by threading libraries for protection
|
|
* of malloc during fork(). These functions are only called if the program is
|
|
* running in threaded mode, so there is no need to check whether the program
|
|
* is threaded here.
|
|
*/
|
|
|
|
void
|
|
_malloc_prefork(void)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Acquire all mutexes in a safe order. */
|
|
malloc_mutex_lock(&init_lock);
|
|
malloc_mutex_lock(&arenas_mtx);
|
|
for (i = 0; i < narenas; i++) {
|
|
if (arenas[i] != NULL)
|
|
malloc_mutex_lock(&arenas[i]->mtx);
|
|
}
|
|
malloc_mutex_lock(&chunks_mtx);
|
|
malloc_mutex_lock(&base_mtx);
|
|
#ifdef USE_BRK
|
|
malloc_mutex_lock(&brk_mtx);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
_malloc_postfork(void)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Release all mutexes, now that fork() has completed. */
|
|
#ifdef USE_BRK
|
|
malloc_mutex_unlock(&brk_mtx);
|
|
#endif
|
|
malloc_mutex_unlock(&base_mtx);
|
|
malloc_mutex_unlock(&chunks_mtx);
|
|
|
|
for (i = narenas; i-- > 0; ) {
|
|
if (arenas[i] != NULL)
|
|
malloc_mutex_unlock(&arenas[i]->mtx);
|
|
}
|
|
malloc_mutex_unlock(&arenas_mtx);
|
|
malloc_mutex_unlock(&init_lock);
|
|
}
|
|
|
|
void
|
|
_malloc_postfork_child(void)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Release all mutexes, now that fork() has completed. */
|
|
#ifdef USE_BRK
|
|
malloc_mutex_init(&brk_mtx);
|
|
#endif
|
|
malloc_mutex_init(&base_mtx);
|
|
malloc_mutex_init(&chunks_mtx);
|
|
|
|
for (i = narenas; i-- > 0; ) {
|
|
if (arenas[i] != NULL)
|
|
malloc_mutex_init(&arenas[i]->mtx);
|
|
}
|
|
malloc_mutex_init(&arenas_mtx);
|
|
malloc_mutex_init(&init_lock);
|
|
}
|
|
|
|
/*
|
|
* End library-private functions.
|
|
*/
|
|
/******************************************************************************/
|