2514 lines
65 KiB
C
2514 lines
65 KiB
C
/*
|
|
* All Rights Reserved, Copyright (C) Fujitsu Limited 1995
|
|
*
|
|
* This software may be used, modified, copied, distributed, and sold, in
|
|
* both source and binary form provided that the above copyright, these
|
|
* terms and the following disclaimer are retained. The name of the author
|
|
* and/or the contributor may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Portions copyright (C) 1993, David Greenman. This software may be used,
|
|
* modified, copied, distributed, and sold, in both source and binary form
|
|
* provided that the above copyright and these terms are retained. Under no
|
|
* circumstances is the author responsible for the proper functioning of this
|
|
* software, nor does the author assume any responsibility for damages
|
|
* incurred with its use.
|
|
*/
|
|
|
|
#define FE_VERSION "if_fe.c ver. 0.8"
|
|
|
|
/*
|
|
* Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
|
|
* Contributed by M.S. <seki@sysrap.cs.fujitsu.co.jp>
|
|
*
|
|
* This version is intended to be a generic template for various
|
|
* MB86960A/MB86965A based Ethernet cards. It currently supports
|
|
* Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
|
|
* Telesis AT1700 series and RE2000 series. There are some
|
|
* unnecessary hooks embedded, which are primarily intended to support
|
|
* other types of Ethernet cards, but the author is not sure whether
|
|
* they are useful.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/netisr.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
#endif
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
#endif
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/intr.h>
|
|
#include <machine/pio.h>
|
|
|
|
#include <dev/isa/isareg.h>
|
|
#include <dev/isa/isavar.h>
|
|
#include <dev/ic/mb86960reg.h>
|
|
#include <dev/isa/if_fereg.h>
|
|
|
|
/*
|
|
* Default settings for fe driver specific options.
|
|
* They can be set in config file by "options" statements.
|
|
*/
|
|
|
|
/*
|
|
* Debug control.
|
|
* 0: No debug at all. All debug specific codes are stripped off.
|
|
* 1: Silent. No debug messages are logged except emergent ones.
|
|
* 2: Brief. Lair events and/or important information are logged.
|
|
* 3: Detailed. Logs all information which *may* be useful for debugging.
|
|
* 4: Trace. All actions in the driver is logged. Super verbose.
|
|
*/
|
|
#ifndef FE_DEBUG
|
|
#define FE_DEBUG 1
|
|
#endif
|
|
|
|
/*
|
|
* Delay padding of short transmission packets to minimum Ethernet size.
|
|
* This may or may not gain performance. An EXPERIMENTAL option.
|
|
*/
|
|
#ifndef FE_DELAYED_PADDING
|
|
#define FE_DELAYED_PADDING 0
|
|
#endif
|
|
|
|
/*
|
|
* Transmit just one packet per a "send" command to 86960.
|
|
* This option is intended for performance test. An EXPERIMENTAL option.
|
|
*/
|
|
#ifndef FE_SINGLE_TRANSMISSION
|
|
#define FE_SINGLE_TRANSMISSION 0
|
|
#endif
|
|
|
|
/*
|
|
* Device configuration flags.
|
|
*/
|
|
|
|
/* DLCR6 settings. */
|
|
#define FE_FLAGS_DLCR6_VALUE 0x007F
|
|
|
|
/* Force DLCR6 override. */
|
|
#define FE_FLAGS_OVERRIDE_DLCR6 0x0080
|
|
|
|
/* A cludge for PCMCIA support. */
|
|
#define FE_FLAGS_PCMCIA 0x8000
|
|
|
|
/* Identification of the driver version. */
|
|
static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
|
|
|
|
/*
|
|
* Supported hardware (Ethernet card) types
|
|
* This information is currently used only for debugging
|
|
*/
|
|
enum fe_type {
|
|
/* For cards which are successfully probed but not identified. */
|
|
FE_TYPE_UNKNOWN,
|
|
|
|
/* Fujitsu FMV-180 series. */
|
|
FE_TYPE_FMV181,
|
|
FE_TYPE_FMV182,
|
|
|
|
/* Allied-Telesis AT1700 series and RE2000 series. */
|
|
FE_TYPE_AT1700T,
|
|
FE_TYPE_AT1700BT,
|
|
FE_TYPE_AT1700FT,
|
|
FE_TYPE_AT1700AT,
|
|
FE_TYPE_RE2000,
|
|
|
|
/* PCMCIA by Fujitsu. */
|
|
FE_TYPE_MBH10302,
|
|
FE_TYPE_MBH10304,
|
|
};
|
|
|
|
/*
|
|
* fe_softc: per line info and status
|
|
*/
|
|
struct fe_softc {
|
|
struct device sc_dev;
|
|
void *sc_ih;
|
|
|
|
struct arpcom sc_arpcom; /* ethernet common */
|
|
|
|
/* Set by probe() and not modified in later phases. */
|
|
enum fe_type type; /* interface type code */
|
|
char *typestr; /* printable name of the interface. */
|
|
int sc_iobase; /* MB86960A I/O base address */
|
|
|
|
u_char proto_dlcr4; /* DLCR4 prototype. */
|
|
u_char proto_dlcr5; /* DLCR5 prototype. */
|
|
u_char proto_dlcr6; /* DLCR6 prototype. */
|
|
u_char proto_dlcr7; /* DLCR7 prototype. */
|
|
u_char proto_bmpr13; /* BMPR13 prototype. */
|
|
|
|
/* Vendor specific hooks. */
|
|
void (*init) __P((struct fe_softc *)); /* Just before fe_init(). */
|
|
void (*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
|
|
|
|
/* Transmission buffer management. */
|
|
u_short txb_size; /* total bytes in TX buffer */
|
|
u_short txb_free; /* free bytes in TX buffer */
|
|
u_char txb_count; /* number of packets in TX buffer */
|
|
u_char txb_sched; /* number of scheduled packets */
|
|
u_char txb_padding; /* number of delayed padding bytes */
|
|
|
|
/* Multicast address filter management. */
|
|
u_char filter_change; /* MARs must be changed ASAP. */
|
|
u_char filter[FE_FILTER_LEN]; /* new filter value. */
|
|
};
|
|
|
|
/* Frequently accessed members in arpcom. */
|
|
#define sc_enaddr sc_arpcom.ac_enaddr
|
|
|
|
/* Standard driver entry points. These can be static. */
|
|
int feprobe __P((struct device *, void *, void *));
|
|
void feattach __P((struct device *, struct device *, void *));
|
|
int feintr __P((void *));
|
|
void fe_init __P((struct fe_softc *));
|
|
int fe_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
void fe_start __P((struct ifnet *));
|
|
void fe_reset __P((struct fe_softc *));
|
|
void fe_watchdog __P((struct ifnet *));
|
|
|
|
/* Local functions. Order of declaration is confused. FIXME. */
|
|
int fe_probe_fmv __P((struct fe_softc *, struct isa_attach_args *));
|
|
int fe_probe_ati __P((struct fe_softc *, struct isa_attach_args *));
|
|
int fe_probe_mbh __P((struct fe_softc *, struct isa_attach_args *));
|
|
void fe_init_mbh __P((struct fe_softc *));
|
|
int fe_get_packet __P((struct fe_softc *, int));
|
|
void fe_stop __P((struct fe_softc *));
|
|
void fe_tint __P((/*struct fe_softc *, u_char*/));
|
|
void fe_rint __P((/*struct fe_softc *, u_char*/));
|
|
static inline
|
|
void fe_xmit __P((struct fe_softc *));
|
|
void fe_write_mbufs __P((struct fe_softc *, struct mbuf *));
|
|
void fe_getmcaf __P((struct arpcom *, u_char *));
|
|
void fe_setmode __P((struct fe_softc *));
|
|
void fe_loadmar __P((struct fe_softc *));
|
|
#if FE_DEBUG >= 1
|
|
void fe_dump __P((int, struct fe_softc *));
|
|
#endif
|
|
|
|
struct cfattach fe_ca = {
|
|
sizeof(struct fe_softc), feprobe, feattach
|
|
};
|
|
|
|
struct cfdriver fe_cd = {
|
|
NULL, "fe", DV_IFNET
|
|
};
|
|
|
|
/* Ethernet constants. To be defined in if_ehter.h? FIXME. */
|
|
#define ETHER_MIN_LEN 60 /* with header, without CRC. */
|
|
#define ETHER_MAX_LEN 1514 /* with header, without CRC. */
|
|
#define ETHER_ADDR_LEN 6 /* number of bytes in an address. */
|
|
#define ETHER_HDR_SIZE 14 /* src addr, dst addr, and data type. */
|
|
|
|
/*
|
|
* Fe driver specific constants which relate to 86960/86965.
|
|
*/
|
|
|
|
/* Interrupt masks. */
|
|
#define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
|
|
#define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
|
|
FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
|
|
|
|
/* Maximum number of iterrations for a receive interrupt. */
|
|
#define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
|
|
/* Maximum size of SRAM is 65536,
|
|
* minimum size of transmission buffer in fe is 2x2KB,
|
|
* and minimum amount of received packet including headers
|
|
* added by the chip is 64 bytes.
|
|
* Hence FE_MAX_RECV_COUNT is the upper limit for number
|
|
* of packets in the receive buffer. */
|
|
|
|
/*
|
|
* Convenient routines to access contiguous I/O ports.
|
|
*/
|
|
|
|
static inline void
|
|
inblk (int addr, u_char * mem, int len)
|
|
{
|
|
while (--len >= 0) {
|
|
*mem++ = inb(addr++);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
outblk (int addr, u_char const * mem, int len)
|
|
{
|
|
while (--len >= 0) {
|
|
outb(addr++, *mem++);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hardware probe routines.
|
|
*/
|
|
|
|
/*
|
|
* Determine if the device is present.
|
|
*/
|
|
int
|
|
feprobe(parent, match, aux)
|
|
struct device *parent;
|
|
void *match, *aux;
|
|
{
|
|
struct fe_softc *sc = match;
|
|
struct isa_attach_args *ia = aux;
|
|
|
|
#if FE_DEBUG >= 2
|
|
log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
|
|
#endif
|
|
|
|
/* Probe an address. */
|
|
sc->sc_iobase = ia->ia_iobase;
|
|
|
|
if (fe_probe_fmv(sc, ia))
|
|
return (1);
|
|
if (fe_probe_ati(sc, ia))
|
|
return (1);
|
|
if (fe_probe_mbh(sc, ia))
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check for specific bits in specific registers have specific values.
|
|
*/
|
|
struct fe_simple_probe_struct {
|
|
u_char port; /* Offset from the base I/O address. */
|
|
u_char mask; /* Bits to be checked. */
|
|
u_char bits; /* Values to be compared against. */
|
|
};
|
|
|
|
static inline int
|
|
fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
|
|
{
|
|
struct fe_simple_probe_struct const * p;
|
|
|
|
for (p = sp; p->mask != 0; p++) {
|
|
if ((inb(addr + p->port) & p->mask) != p->bits) {
|
|
return (0);
|
|
}
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Routines to read all bytes from the config EEPROM through MB86965A.
|
|
* I'm not sure what exactly I'm doing here... I was told just to follow
|
|
* the steps, and it worked. Could someone tell me why the following
|
|
* code works? (Or, why all similar codes I tried previously doesn't
|
|
* work.) FIXME.
|
|
*/
|
|
|
|
static inline void
|
|
strobe (int bmpr16)
|
|
{
|
|
/*
|
|
* Output same value twice. To speed-down execution?
|
|
*/
|
|
outb(bmpr16, FE_B16_SELECT);
|
|
outb(bmpr16, FE_B16_SELECT);
|
|
outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
|
|
outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
|
|
outb(bmpr16, FE_B16_SELECT);
|
|
outb(bmpr16, FE_B16_SELECT);
|
|
}
|
|
|
|
void
|
|
fe_read_eeprom(sc, data)
|
|
struct fe_softc *sc;
|
|
u_char *data;
|
|
{
|
|
int iobase = sc->sc_iobase;
|
|
int bmpr16 = iobase + FE_BMPR16;
|
|
int bmpr17 = iobase + FE_BMPR17;
|
|
u_char n, val, bit;
|
|
|
|
/* Read bytes from EEPROM; two bytes per an iterration. */
|
|
for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
|
|
/* Reset the EEPROM interface. */
|
|
outb(bmpr16, 0x00);
|
|
outb(bmpr17, 0x00);
|
|
outb(bmpr16, FE_B16_SELECT);
|
|
|
|
/* Start EEPROM access. */
|
|
outb(bmpr17, FE_B17_DATA);
|
|
strobe(bmpr16);
|
|
|
|
/* Pass the iterration count to the chip. */
|
|
val = 0x80 | n;
|
|
for (bit = 0x80; bit != 0x00; bit >>= 1) {
|
|
outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
|
|
strobe(bmpr16);
|
|
}
|
|
outb(bmpr17, 0x00);
|
|
|
|
/* Read a byte. */
|
|
val = 0;
|
|
for (bit = 0x80; bit != 0x00; bit >>= 1) {
|
|
strobe(bmpr16);
|
|
if (inb(bmpr17) & FE_B17_DATA)
|
|
val |= bit;
|
|
}
|
|
*data++ = val;
|
|
|
|
/* Read one more byte. */
|
|
val = 0;
|
|
for (bit = 0x80; bit != 0x00; bit >>= 1) {
|
|
strobe(bmpr16);
|
|
if (inb(bmpr17) & FE_B17_DATA)
|
|
val |= bit;
|
|
}
|
|
*data++ = val;
|
|
}
|
|
|
|
#if FE_DEBUG >= 3
|
|
/* Report what we got. */
|
|
data -= FE_EEPROM_SIZE;
|
|
log(LOG_INFO, "%s: EEPROM at %04x:"
|
|
" %02x%02x%02x%02x %02x%02x%02x%02x -"
|
|
" %02x%02x%02x%02x %02x%02x%02x%02x -"
|
|
" %02x%02x%02x%02x %02x%02x%02x%02x -"
|
|
" %02x%02x%02x%02x %02x%02x%02x%02x\n",
|
|
sc->sc_dev.dv_xname, iobase,
|
|
data[ 0], data[ 1], data[ 2], data[ 3],
|
|
data[ 4], data[ 5], data[ 6], data[ 7],
|
|
data[ 8], data[ 9], data[10], data[11],
|
|
data[12], data[13], data[14], data[15],
|
|
data[16], data[17], data[18], data[19],
|
|
data[20], data[21], data[22], data[23],
|
|
data[24], data[25], data[26], data[27],
|
|
data[28], data[29], data[30], data[31]);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Hardware (vendor) specific probe routines.
|
|
*/
|
|
|
|
/*
|
|
* Probe and initialization for Fujitsu FMV-180 series boards
|
|
*/
|
|
int
|
|
fe_probe_fmv(sc, ia)
|
|
struct fe_softc *sc;
|
|
struct isa_attach_args *ia;
|
|
{
|
|
int i, n;
|
|
int iobase = sc->sc_iobase;
|
|
int irq;
|
|
|
|
static int const iomap[8] =
|
|
{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
|
|
static int const irqmap[4] =
|
|
{ 3, 7, 10, 15 };
|
|
|
|
static struct fe_simple_probe_struct const probe_table[] = {
|
|
{ FE_DLCR2, 0x70, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
/* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
|
|
|
|
{ FE_FMV0, FE_FMV0_MAGIC_MASK, FE_FMV0_MAGIC_VALUE },
|
|
{ FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID },
|
|
{ FE_FMV3, FE_FMV3_EXTRA_MASK, FE_FMV3_EXTRA_VALUE },
|
|
#if 1
|
|
/*
|
|
* Test *vendor* part of the station address for Fujitsu.
|
|
* The test will gain reliability of probe process, but
|
|
* it rejects FMV-180 clone boards manufactured by other vendors.
|
|
* We have to turn the test off when such cards are made available.
|
|
*/
|
|
{ FE_FMV4, 0xFF, 0x00 },
|
|
{ FE_FMV5, 0xFF, 0x00 },
|
|
{ FE_FMV6, 0xFF, 0x0E },
|
|
#else
|
|
/*
|
|
* We can always verify the *first* 2 bits (in Ehternet
|
|
* bit order) are "no multicast" and "no local" even for
|
|
* unknown vendors.
|
|
*/
|
|
{ FE_FMV4, 0x03, 0x00 },
|
|
#endif
|
|
{ 0 }
|
|
};
|
|
|
|
#if 0
|
|
/*
|
|
* Dont probe at all if the config says we are PCMCIA...
|
|
*/
|
|
if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
|
|
return (0);
|
|
#endif
|
|
|
|
/*
|
|
* See if the sepcified address is possible for FMV-180 series.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
if (iomap[i] == iobase)
|
|
break;
|
|
}
|
|
if (i == 8)
|
|
return (0);
|
|
|
|
/* Simple probe. */
|
|
if (!fe_simple_probe(iobase, probe_table))
|
|
return (0);
|
|
|
|
/* Check if our I/O address matches config info on EEPROM. */
|
|
n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
|
|
if (iomap[n] != iobase)
|
|
return (0);
|
|
|
|
/* Determine the card type. */
|
|
switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
|
|
case FE_FMV0_MODEL_FMV181:
|
|
sc->type = FE_TYPE_FMV181;
|
|
sc->typestr = "FMV-181";
|
|
break;
|
|
case FE_FMV0_MODEL_FMV182:
|
|
sc->type = FE_TYPE_FMV182;
|
|
sc->typestr = "FMV-182";
|
|
break;
|
|
default:
|
|
/* Unknown card type: maybe a new model, but... */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* An FMV-180 has successfully been proved.
|
|
* Determine which IRQ to be used.
|
|
*
|
|
* In this version, we always get an IRQ assignment from the
|
|
* FMV-180's configuration EEPROM, ignoring that specified in
|
|
* config file.
|
|
*/
|
|
n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
|
|
irq = irqmap[n];
|
|
|
|
if (ia->ia_irq != IRQUNK) {
|
|
if (ia->ia_irq != irq) {
|
|
kprintf("%s: irq mismatch; kernel configured %d != board configured %d\n",
|
|
sc->sc_dev.dv_xname, ia->ia_irq, irq);
|
|
return (0);
|
|
}
|
|
} else
|
|
ia->ia_irq = irq;
|
|
|
|
/*
|
|
* Initialize constants in the per-line structure.
|
|
*/
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* Make sure we got a valid station address. */
|
|
if ((sc->sc_enaddr[0] & 0x03) != 0x00
|
|
|| (sc->sc_enaddr[0] == 0x00
|
|
&& sc->sc_enaddr[1] == 0x00
|
|
&& sc->sc_enaddr[2] == 0x00))
|
|
return (0);
|
|
|
|
/* Register values which depend on board design. */
|
|
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
|
|
sc->proto_dlcr5 = 0;
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
|
|
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
|
|
|
|
/*
|
|
* Program the 86960 as follows:
|
|
* SRAM: 32KB, 100ns, byte-wide access.
|
|
* Transmission buffer: 4KB x 2.
|
|
* System bus interface: 16 bits.
|
|
* We cannot change these values but TXBSIZE, because they
|
|
* are hard-wired on the board. Modifying TXBSIZE will affect
|
|
* the driver performance.
|
|
*/
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
|
|
|
|
/*
|
|
* Minimum initialization of the hardware.
|
|
* We write into registers; hope I/O ports have no
|
|
* overlap with other boards.
|
|
*/
|
|
|
|
/* Initialize ASIC. */
|
|
outb(iobase + FE_FMV3, 0);
|
|
outb(iobase + FE_FMV10, 0);
|
|
|
|
/* Wait for a while. I'm not sure this is necessary. FIXME. */
|
|
delay(200);
|
|
|
|
/* Initialize 86960. */
|
|
outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
|
|
delay(200);
|
|
|
|
/* Disable all interrupts. */
|
|
outb(iobase + FE_DLCR2, 0);
|
|
outb(iobase + FE_DLCR3, 0);
|
|
|
|
/* Turn the "master interrupt control" flag of ASIC on. */
|
|
outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
|
|
|
|
/*
|
|
* That's all. FMV-180 occupies 32 I/O addresses, by the way.
|
|
*/
|
|
ia->ia_iosize = 32;
|
|
ia->ia_msize = 0;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for Allied-Telesis AT1700/RE2000 series.
|
|
*/
|
|
int
|
|
fe_probe_ati(sc, ia)
|
|
struct fe_softc *sc;
|
|
struct isa_attach_args *ia;
|
|
{
|
|
int i, n;
|
|
int iobase = sc->sc_iobase;
|
|
u_char eeprom[FE_EEPROM_SIZE];
|
|
u_char save16, save17;
|
|
int irq;
|
|
|
|
static int const iomap[8] =
|
|
{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
|
|
static int const irqmap[4][4] = {
|
|
{ 3, 4, 5, 9 },
|
|
{ 10, 11, 12, 15 },
|
|
{ 3, 11, 5, 15 },
|
|
{ 10, 11, 14, 15 },
|
|
};
|
|
static struct fe_simple_probe_struct const probe_table[] = {
|
|
{ FE_DLCR2, 0x70, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ FE_DLCR5, 0x80, 0x00 },
|
|
#if 0
|
|
{ FE_BMPR16, 0x1B, 0x00 },
|
|
{ FE_BMPR17, 0x7F, 0x00 },
|
|
#endif
|
|
{ 0 }
|
|
};
|
|
|
|
#if 0
|
|
/*
|
|
* Don't probe at all if the config says we are PCMCIA...
|
|
*/
|
|
if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
|
|
return (0);
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 4
|
|
log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/*
|
|
* See if the sepcified address is possible for MB86965A JLI mode.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
if (iomap[i] == iobase)
|
|
break;
|
|
}
|
|
if (i == 8)
|
|
return (0);
|
|
|
|
/*
|
|
* We should test if MB86965A is on the base address now.
|
|
* Unfortunately, it is very hard to probe it reliably, since
|
|
* we have no way to reset the chip under software control.
|
|
* On cold boot, we could check the "signature" bit patterns
|
|
* described in the Fujitsu document. On warm boot, however,
|
|
* we can predict almost nothing about register values.
|
|
*/
|
|
if (!fe_simple_probe(iobase, probe_table))
|
|
return (0);
|
|
|
|
/* Save old values of the registers. */
|
|
save16 = inb(iobase + FE_BMPR16);
|
|
save17 = inb(iobase + FE_BMPR17);
|
|
|
|
/* Check if our I/O address matches config info on 86965. */
|
|
n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
|
|
if (iomap[n] != iobase)
|
|
goto fail;
|
|
|
|
/*
|
|
* We are now almost sure we have an AT1700 at the given
|
|
* address. So, read EEPROM through 86965. We have to write
|
|
* into LSI registers to read from EEPROM. I want to avoid it
|
|
* at this stage, but I cannot test the presense of the chip
|
|
* any further without reading EEPROM. FIXME.
|
|
*/
|
|
fe_read_eeprom(sc, eeprom);
|
|
|
|
/* Make sure the EEPROM is turned off. */
|
|
outb(iobase + FE_BMPR16, 0);
|
|
outb(iobase + FE_BMPR17, 0);
|
|
|
|
/* Make sure that config info in EEPROM and 86965 agree. */
|
|
if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
|
|
goto fail;
|
|
|
|
/*
|
|
* Determine the card type.
|
|
*/
|
|
switch (eeprom[FE_ATI_EEP_MODEL]) {
|
|
case FE_ATI_MODEL_AT1700T:
|
|
sc->type = FE_TYPE_AT1700T;
|
|
sc->typestr = "AT-1700T";
|
|
break;
|
|
case FE_ATI_MODEL_AT1700BT:
|
|
sc->type = FE_TYPE_AT1700BT;
|
|
sc->typestr = "AT-1700BT";
|
|
break;
|
|
case FE_ATI_MODEL_AT1700FT:
|
|
sc->type = FE_TYPE_AT1700FT;
|
|
sc->typestr = "AT-1700FT";
|
|
break;
|
|
case FE_ATI_MODEL_AT1700AT:
|
|
sc->type = FE_TYPE_AT1700AT;
|
|
sc->typestr = "AT-1700AT";
|
|
break;
|
|
default:
|
|
sc->type = FE_TYPE_RE2000;
|
|
sc->typestr = "unknown (RE-2000?)";
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Try to determine IRQ settings.
|
|
* Different models use different ranges of IRQs.
|
|
*/
|
|
n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
|
|
switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
|
|
case 0x30:
|
|
irq = irqmap[3][n];
|
|
break;
|
|
case 0x10:
|
|
case 0x50:
|
|
irq = irqmap[2][n];
|
|
break;
|
|
case 0x40:
|
|
case 0x60:
|
|
if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
|
|
irq = irqmap[1][n];
|
|
break;
|
|
}
|
|
default:
|
|
irq = irqmap[0][n];
|
|
break;
|
|
}
|
|
|
|
if (ia->ia_irq != IRQUNK) {
|
|
if (ia->ia_irq != irq) {
|
|
kprintf("%s: irq mismatch; kernel configured %d != board configured %d\n",
|
|
sc->sc_dev.dv_xname, ia->ia_irq, irq);
|
|
return (0);
|
|
}
|
|
} else
|
|
ia->ia_irq = irq;
|
|
|
|
/*
|
|
* Initialize constants in the per-line structure.
|
|
*/
|
|
|
|
/* Get our station address from EEPROM. */
|
|
bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* Make sure we got a valid station address. */
|
|
if ((sc->sc_enaddr[0] & 0x03) != 0x00
|
|
|| (sc->sc_enaddr[0] == 0x00
|
|
&& sc->sc_enaddr[1] == 0x00
|
|
&& sc->sc_enaddr[2] == 0x00))
|
|
goto fail;
|
|
|
|
/* Should find all register prototypes here. FIXME. */
|
|
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; /* FIXME */
|
|
sc->proto_dlcr5 = 0;
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
|
|
#if 0 /* XXXX Should we use this? */
|
|
sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
|
|
#else
|
|
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
|
|
#endif
|
|
|
|
/*
|
|
* Program the 86965 as follows:
|
|
* SRAM: 32KB, 100ns, byte-wide access.
|
|
* Transmission buffer: 4KB x 2.
|
|
* System bus interface: 16 bits.
|
|
* We cannot change these values but TXBSIZE, because they
|
|
* are hard-wired on the board. Modifying TXBSIZE will affect
|
|
* the driver performance.
|
|
*/
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/* Initialize 86965. */
|
|
outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
|
|
delay(200);
|
|
|
|
/* Disable all interrupts. */
|
|
outb(iobase + FE_DLCR2, 0);
|
|
outb(iobase + FE_DLCR3, 0);
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/*
|
|
* That's all. AT1700 occupies 32 I/O addresses, by the way.
|
|
*/
|
|
ia->ia_iosize = 32;
|
|
ia->ia_msize = 0;
|
|
return (1);
|
|
|
|
fail:
|
|
/* Restore register values, in the case we had no 86965. */
|
|
outb(iobase + FE_BMPR16, save16);
|
|
outb(iobase + FE_BMPR17, save17);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
|
|
*/
|
|
int
|
|
fe_probe_mbh(sc, ia)
|
|
struct fe_softc *sc;
|
|
struct isa_attach_args *ia;
|
|
{
|
|
int iobase = sc->sc_iobase;
|
|
|
|
static struct fe_simple_probe_struct probe_table[] = {
|
|
{ FE_DLCR2, 0x70, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
/* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
|
|
#if 0
|
|
/*
|
|
* Test *vendor* part of the address for Fujitsu.
|
|
* The test will gain reliability of probe process, but
|
|
* it rejects clones by other vendors, or OEM product
|
|
* supplied by resalers other than Fujitsu.
|
|
*/
|
|
{ FE_MBH10, 0xFF, 0x00 },
|
|
{ FE_MBH11, 0xFF, 0x00 },
|
|
{ FE_MBH12, 0xFF, 0x0E },
|
|
#else
|
|
/*
|
|
* We can always verify the *first* 2 bits (in Ehternet
|
|
* bit order) are "global" and "unicast" even for
|
|
* unknown vendors.
|
|
*/
|
|
{ FE_MBH10, 0x03, 0x00 },
|
|
#endif
|
|
/* Just a gap? Seems reliable, anyway. */
|
|
{ 0x12, 0xFF, 0x00 },
|
|
{ 0x13, 0xFF, 0x00 },
|
|
{ 0x14, 0xFF, 0x00 },
|
|
{ 0x15, 0xFF, 0x00 },
|
|
{ 0x16, 0xFF, 0x00 },
|
|
{ 0x17, 0xFF, 0x00 },
|
|
{ 0x18, 0xFF, 0xFF },
|
|
{ 0x19, 0xFF, 0xFF },
|
|
|
|
{ 0 }
|
|
};
|
|
|
|
#if 0
|
|
/*
|
|
* We need a PCMCIA flag.
|
|
*/
|
|
if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
|
|
return (0);
|
|
#endif
|
|
|
|
/*
|
|
* We need explicit IRQ and supported address.
|
|
*/
|
|
if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
|
|
return (0);
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/*
|
|
* See if MBH10302 is on its address.
|
|
* I'm not sure the following probe code works. FIXME.
|
|
*/
|
|
if (!fe_simple_probe(iobase, probe_table))
|
|
return (0);
|
|
|
|
/* Determine the card type. */
|
|
sc->type = FE_TYPE_MBH10302;
|
|
sc->typestr = "MBH10302 (PCMCIA)";
|
|
|
|
/*
|
|
* Initialize constants in the per-line structure.
|
|
*/
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* Make sure we got a valid station address. */
|
|
if ((sc->sc_enaddr[0] & 0x03) != 0x00
|
|
|| (sc->sc_enaddr[0] == 0x00
|
|
&& sc->sc_enaddr[1] == 0x00
|
|
&& sc->sc_enaddr[2] == 0x00))
|
|
return (0);
|
|
|
|
/* Should find all register prototypes here. FIXME. */
|
|
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
|
|
sc->proto_dlcr5 = 0;
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
|
|
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
|
|
|
|
/*
|
|
* Program the 86960 as follows:
|
|
* SRAM: 32KB, 100ns, byte-wide access.
|
|
* Transmission buffer: 4KB x 2.
|
|
* System bus interface: 16 bits.
|
|
* We cannot change these values but TXBSIZE, because they
|
|
* are hard-wired on the board. Modifying TXBSIZE will affect
|
|
* the driver performance.
|
|
*/
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
|
|
|
|
/* Setup hooks. We need a special initialization procedure. */
|
|
sc->init = fe_init_mbh;
|
|
|
|
/*
|
|
* Minimum initialization.
|
|
*/
|
|
|
|
/* Wait for a while. I'm not sure this is necessary. FIXME. */
|
|
delay(200);
|
|
|
|
/* Minimul initialization of 86960. */
|
|
outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
|
|
delay(200);
|
|
|
|
/* Disable all interrupts. */
|
|
outb(iobase + FE_DLCR2, 0);
|
|
outb(iobase + FE_DLCR3, 0);
|
|
|
|
#if 1 /* FIXME. */
|
|
/* Initialize system bus interface and encoder/decoder operation. */
|
|
outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
|
|
#endif
|
|
|
|
/*
|
|
* That's all. MBH10302 occupies 32 I/O addresses, by the way.
|
|
*/
|
|
ia->ia_iosize = 32;
|
|
ia->ia_msize = 0;
|
|
return (1);
|
|
}
|
|
|
|
/* MBH specific initialization routine. */
|
|
void
|
|
fe_init_mbh(sc)
|
|
struct fe_softc *sc;
|
|
{
|
|
|
|
/* Probably required after hot-insertion... */
|
|
|
|
/* Wait for a while. I'm not sure this is necessary. FIXME. */
|
|
delay(200);
|
|
|
|
/* Minimul initialization of 86960. */
|
|
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
|
|
delay(200);
|
|
|
|
/* Disable all interrupts. */
|
|
outb(sc->sc_iobase + FE_DLCR2, 0);
|
|
outb(sc->sc_iobase + FE_DLCR3, 0);
|
|
|
|
/* Enable master interrupt flag. */
|
|
outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
|
|
}
|
|
|
|
/*
|
|
* Install interface into kernel networking data structures
|
|
*/
|
|
void
|
|
feattach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
struct fe_softc *sc = (void *)self;
|
|
struct isa_attach_args *ia = aux;
|
|
struct cfdata *cf = sc->sc_dev.dv_cfdata;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
|
|
/* Stop the 86960. */
|
|
fe_stop(sc);
|
|
|
|
/* Initialize ifnet structure. */
|
|
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_start = fe_start;
|
|
ifp->if_ioctl = fe_ioctl;
|
|
ifp->if_watchdog = fe_watchdog;
|
|
ifp->if_flags =
|
|
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
|
|
|
|
/*
|
|
* Set maximum size of output queue, if it has not been set.
|
|
* It is done here as this driver may be started after the
|
|
* system intialization (i.e., the interface is PCMCIA.)
|
|
*
|
|
* I'm not sure this is really necessary, but, even if it is,
|
|
* it should be done somewhere else, e.g., in if_attach(),
|
|
* since it must be a common workaround for all network drivers.
|
|
* FIXME.
|
|
*/
|
|
if (ifp->if_snd.ifq_maxlen == 0) {
|
|
extern int ifqmaxlen; /* Don't be so shocked... */
|
|
ifp->if_snd.ifq_maxlen = ifqmaxlen;
|
|
}
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
#if FE_SINGLE_TRANSMISSION
|
|
/* Override txb config to allocate minimum. */
|
|
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
|
|
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
|
|
#endif
|
|
|
|
/* Modify hardware config if it is requested. */
|
|
if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
|
|
sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
|
|
|
|
/* Find TX buffer size, based on the hardware dependent proto. */
|
|
switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
|
|
case FE_D6_TXBSIZ_2x2KB:
|
|
sc->txb_size = 2048;
|
|
break;
|
|
case FE_D6_TXBSIZ_2x4KB:
|
|
sc->txb_size = 4096;
|
|
break;
|
|
case FE_D6_TXBSIZ_2x8KB:
|
|
sc->txb_size = 8192;
|
|
break;
|
|
default:
|
|
/* Oops, we can't work with single buffer configuration. */
|
|
#if FE_DEBUG >= 2
|
|
log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
|
|
sc->sc_dev.dv_xname);
|
|
#endif
|
|
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
|
|
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
|
|
sc->txb_size = 2048;
|
|
break;
|
|
}
|
|
|
|
/* Attach the interface. */
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
/* Print additional info when attached. */
|
|
kprintf(": address %s, type %s\n",
|
|
ether_sprintf(sc->sc_arpcom.ac_enaddr), sc->typestr);
|
|
#if FE_DEBUG >= 3
|
|
{
|
|
int buf, txb, bbw, sbw, ram;
|
|
|
|
buf = txb = bbw = sbw = ram = -1;
|
|
switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
|
|
case FE_D6_BUFSIZ_8KB:
|
|
buf = 8;
|
|
break;
|
|
case FE_D6_BUFSIZ_16KB:
|
|
buf = 16;
|
|
break;
|
|
case FE_D6_BUFSIZ_32KB:
|
|
buf = 32;
|
|
break;
|
|
case FE_D6_BUFSIZ_64KB:
|
|
buf = 64;
|
|
break;
|
|
}
|
|
switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
|
|
case FE_D6_TXBSIZ_2x2KB:
|
|
txb = 2;
|
|
break;
|
|
case FE_D6_TXBSIZ_2x4KB:
|
|
txb = 4;
|
|
break;
|
|
case FE_D6_TXBSIZ_2x8KB:
|
|
txb = 8;
|
|
break;
|
|
}
|
|
switch (sc->proto_dlcr6 & FE_D6_BBW) {
|
|
case FE_D6_BBW_BYTE:
|
|
bbw = 8;
|
|
break;
|
|
case FE_D6_BBW_WORD:
|
|
bbw = 16;
|
|
break;
|
|
}
|
|
switch (sc->proto_dlcr6 & FE_D6_SBW) {
|
|
case FE_D6_SBW_BYTE:
|
|
sbw = 8;
|
|
break;
|
|
case FE_D6_SBW_WORD:
|
|
sbw = 16;
|
|
break;
|
|
}
|
|
switch (sc->proto_dlcr6 & FE_D6_SRAM) {
|
|
case FE_D6_SRAM_100ns:
|
|
ram = 100;
|
|
break;
|
|
case FE_D6_SRAM_150ns:
|
|
ram = 150;
|
|
break;
|
|
}
|
|
kprintf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
|
|
sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
|
|
}
|
|
#endif
|
|
|
|
#if NBPFILTER > 0
|
|
/* If BPF is in the kernel, call the attach for it. */
|
|
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
|
|
sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
|
|
IPL_NET, feintr, sc);
|
|
}
|
|
|
|
/*
|
|
* Reset interface.
|
|
*/
|
|
void
|
|
fe_reset(sc)
|
|
struct fe_softc *sc;
|
|
{
|
|
int s;
|
|
|
|
s = splnet();
|
|
fe_stop(sc);
|
|
fe_init(sc);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Stop everything on the interface.
|
|
*
|
|
* All buffered packets, both transmitting and receiving,
|
|
* if any, will be lost by stopping the interface.
|
|
*/
|
|
void
|
|
fe_stop(sc)
|
|
struct fe_softc *sc;
|
|
{
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/* Disable interrupts. */
|
|
outb(sc->sc_iobase + FE_DLCR2, 0x00);
|
|
outb(sc->sc_iobase + FE_DLCR3, 0x00);
|
|
|
|
/* Stop interface hardware. */
|
|
delay(200);
|
|
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
|
|
delay(200);
|
|
|
|
/* Clear all interrupt status. */
|
|
outb(sc->sc_iobase + FE_DLCR0, 0xFF);
|
|
outb(sc->sc_iobase + FE_DLCR1, 0xFF);
|
|
|
|
/* Put the chip in stand-by mode. */
|
|
delay(200);
|
|
outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
|
|
delay(200);
|
|
|
|
/* MAR loading can be delayed. */
|
|
sc->filter_change = 0;
|
|
|
|
/* Call a hook. */
|
|
if (sc->stop)
|
|
sc->stop(sc);
|
|
|
|
#if DEBUG >= 3
|
|
log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Device timeout/watchdog routine. Entered if the device neglects to
|
|
* generate an interrupt after a transmit has been started on it.
|
|
*/
|
|
void
|
|
fe_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct fe_softc *sc = ifp->if_softc;
|
|
|
|
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
|
|
#if FE_DEBUG >= 3
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/* Record how many packets are lost by this accident. */
|
|
sc->sc_arpcom.ac_if.if_oerrors += sc->txb_sched + sc->txb_count;
|
|
|
|
fe_reset(sc);
|
|
}
|
|
|
|
/*
|
|
* Drop (skip) a packet from receive buffer in 86960 memory.
|
|
*/
|
|
static inline void
|
|
fe_droppacket(sc)
|
|
struct fe_softc *sc;
|
|
{
|
|
|
|
outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
|
|
}
|
|
|
|
/*
|
|
* Initialize device.
|
|
*/
|
|
void
|
|
fe_init(sc)
|
|
struct fe_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
int i;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/* Reset transmitter flags. */
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ifp->if_timer = 0;
|
|
|
|
sc->txb_free = sc->txb_size;
|
|
sc->txb_count = 0;
|
|
sc->txb_sched = 0;
|
|
|
|
/* Call a hook. */
|
|
if (sc->init)
|
|
sc->init(sc);
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/*
|
|
* Make sure to disable the chip, also.
|
|
* This may also help re-programming the chip after
|
|
* hot insertion of PCMCIAs.
|
|
*/
|
|
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
|
|
|
|
/* Power up the chip and select register bank for DLCRs. */
|
|
delay(200);
|
|
outb(sc->sc_iobase + FE_DLCR7,
|
|
sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
|
|
delay(200);
|
|
|
|
/* Feed the station address. */
|
|
outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* Select the BMPR bank for runtime register access. */
|
|
outb(sc->sc_iobase + FE_DLCR7,
|
|
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
|
|
|
|
/* Initialize registers. */
|
|
outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
|
|
outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
|
|
outb(sc->sc_iobase + FE_DLCR2, 0x00);
|
|
outb(sc->sc_iobase + FE_DLCR3, 0x00);
|
|
outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
|
|
outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
|
|
outb(sc->sc_iobase + FE_BMPR10, 0x00);
|
|
outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
|
|
outb(sc->sc_iobase + FE_BMPR12, 0x00);
|
|
outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
|
|
outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
|
|
outb(sc->sc_iobase + FE_BMPR15, 0x00);
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/* Enable interrupts. */
|
|
outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
|
|
outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
|
|
|
|
/* Enable transmitter and receiver. */
|
|
delay(200);
|
|
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
|
|
delay(200);
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/*
|
|
* Make sure to empty the receive buffer.
|
|
*
|
|
* This may be redundant, but *if* the receive buffer were full
|
|
* at this point, the driver would hang. I have experienced
|
|
* some strange hangups just after UP. I hope the following
|
|
* code solve the problem.
|
|
*
|
|
* I have changed the order of hardware initialization.
|
|
* I think the receive buffer cannot have any packets at this
|
|
* point in this version. The following code *must* be
|
|
* redundant now. FIXME.
|
|
*/
|
|
for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
|
|
if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
|
|
break;
|
|
fe_droppacket(sc);
|
|
}
|
|
#if FE_DEBUG >= 1
|
|
if (i >= FE_MAX_RECV_COUNT) {
|
|
log(LOG_ERR, "%s: cannot empty receive buffer\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
#endif
|
|
#if FE_DEBUG >= 3
|
|
if (i < FE_MAX_RECV_COUNT) {
|
|
log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
|
|
sc->sc_dev.dv_xname, i);
|
|
}
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/* Do we need this here? */
|
|
outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
|
|
outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/* Set 'running' flag. */
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
/*
|
|
* At this point, the interface is runnung properly,
|
|
* except that it receives *no* packets. we then call
|
|
* fe_setmode() to tell the chip what packets to be
|
|
* received, based on the if_flags and multicast group
|
|
* list. It completes the initialization process.
|
|
*/
|
|
fe_setmode(sc);
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/* ...and attempt to start output. */
|
|
fe_start(ifp);
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This routine actually starts the transmission on the interface
|
|
*/
|
|
static inline void
|
|
fe_xmit(sc)
|
|
struct fe_softc *sc;
|
|
{
|
|
|
|
/*
|
|
* Set a timer just in case we never hear from the board again.
|
|
* We use longer timeout for multiple packet transmission.
|
|
* I'm not sure this timer value is appropriate. FIXME.
|
|
*/
|
|
sc->sc_arpcom.ac_if.if_timer = 1 + sc->txb_count;
|
|
|
|
/* Update txb variables. */
|
|
sc->txb_sched = sc->txb_count;
|
|
sc->txb_count = 0;
|
|
sc->txb_free = sc->txb_size;
|
|
|
|
#if FE_DELAYED_PADDING
|
|
/* Omit the postponed padding process. */
|
|
sc->txb_padding = 0;
|
|
#endif
|
|
|
|
/* Start transmitter, passing packets in TX buffer. */
|
|
outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
|
|
}
|
|
|
|
/*
|
|
* Start output on interface.
|
|
* We make two assumptions here:
|
|
* 1) that the current priority is set to splnet _before_ this code
|
|
* is called *and* is returned to the appropriate priority after
|
|
* return
|
|
* 2) that the IFF_OACTIVE flag is checked before this code is called
|
|
* (i.e. that the output part of the interface is idle)
|
|
*/
|
|
void
|
|
fe_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct fe_softc *sc = ifp->if_softc;
|
|
struct mbuf *m;
|
|
|
|
#if FE_DEBUG >= 1
|
|
/* Just a sanity check. */
|
|
if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
|
|
/*
|
|
* Txb_count and txb_free co-works to manage the
|
|
* transmission buffer. Txb_count keeps track of the
|
|
* used potion of the buffer, while txb_free does unused
|
|
* potion. So, as long as the driver runs properly,
|
|
* txb_count is zero if and only if txb_free is same
|
|
* as txb_size (which represents whole buffer.)
|
|
*/
|
|
log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
|
|
sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
|
|
/*
|
|
* So, what should I do, then?
|
|
*
|
|
* We now know txb_count and txb_free contradicts. We
|
|
* cannot, however, tell which is wrong. More
|
|
* over, we cannot peek 86960 transmission buffer or
|
|
* reset the transmission buffer. (In fact, we can
|
|
* reset the entire interface. I don't want to do it.)
|
|
*
|
|
* If txb_count is incorrect, leaving it as is will cause
|
|
* sending of gabages after next interrupt. We have to
|
|
* avoid it. Hence, we reset the txb_count here. If
|
|
* txb_free was incorrect, resetting txb_count just loose
|
|
* some packets. We can live with it.
|
|
*/
|
|
sc->txb_count = 0;
|
|
}
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 1
|
|
/*
|
|
* First, see if there are buffered packets and an idle
|
|
* transmitter - should never happen at this point.
|
|
*/
|
|
if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
|
|
log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
|
|
sc->sc_dev.dv_xname, sc->txb_count);
|
|
fe_xmit(sc);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Stop accepting more transmission packets temporarily, when
|
|
* a filter change request is delayed. Updating the MARs on
|
|
* 86960 flushes the transmisstion buffer, so it is delayed
|
|
* until all buffered transmission packets have been sent
|
|
* out.
|
|
*/
|
|
if (sc->filter_change) {
|
|
/*
|
|
* Filter change requst is delayed only when the DLC is
|
|
* working. DLC soon raise an interrupt after finishing
|
|
* the work.
|
|
*/
|
|
goto indicate_active;
|
|
}
|
|
|
|
for (;;) {
|
|
/*
|
|
* See if there is room to put another packet in the buffer.
|
|
* We *could* do better job by peeking the send queue to
|
|
* know the length of the next packet. Current version just
|
|
* tests against the worst case (i.e., longest packet). FIXME.
|
|
*
|
|
* When adding the packet-peek feature, don't forget adding a
|
|
* test on txb_count against QUEUEING_MAX.
|
|
* There is a little chance the packet count exceeds
|
|
* the limit. Assume transmission buffer is 8KB (2x8KB
|
|
* configuration) and an application sends a bunch of small
|
|
* (i.e., minimum packet sized) packets rapidly. An 8KB
|
|
* buffer can hold 130 blocks of 62 bytes long...
|
|
*/
|
|
if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
|
|
/* No room. */
|
|
goto indicate_active;
|
|
}
|
|
|
|
#if FE_SINGLE_TRANSMISSION
|
|
if (sc->txb_count > 0) {
|
|
/* Just one packet per a transmission buffer. */
|
|
goto indicate_active;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Get the next mbuf chain for a packet to send.
|
|
*/
|
|
IF_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == 0) {
|
|
/* No more packets to send. */
|
|
goto indicate_inactive;
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
/* Tap off here if there is a BPF listener. */
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif
|
|
|
|
/*
|
|
* Copy the mbuf chain into the transmission buffer.
|
|
* txb_* variables are updated as necessary.
|
|
*/
|
|
fe_write_mbufs(sc, m);
|
|
|
|
m_freem(m);
|
|
|
|
/* Start transmitter if it's idle. */
|
|
if (sc->txb_sched == 0)
|
|
fe_xmit(sc);
|
|
}
|
|
|
|
indicate_inactive:
|
|
/*
|
|
* We are using the !OACTIVE flag to indicate to
|
|
* the outside world that we can accept an
|
|
* additional packet rather than that the
|
|
* transmitter is _actually_ active. Indeed, the
|
|
* transmitter may be active, but if we haven't
|
|
* filled all the buffers with data then we still
|
|
* want to accept more.
|
|
*/
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
return;
|
|
|
|
indicate_active:
|
|
/*
|
|
* The transmitter is active, and there are no room for
|
|
* more outgoing packets in the transmission buffer.
|
|
*/
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Transmission interrupt handler
|
|
* The control flow of this function looks silly. FIXME.
|
|
*/
|
|
void
|
|
fe_tint(sc, tstat)
|
|
struct fe_softc *sc;
|
|
u_char tstat;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
int left;
|
|
int col;
|
|
|
|
/*
|
|
* Handle "excessive collision" interrupt.
|
|
*/
|
|
if (tstat & FE_D0_COLL16) {
|
|
/*
|
|
* Find how many packets (including this collided one)
|
|
* are left unsent in transmission buffer.
|
|
*/
|
|
left = inb(sc->sc_iobase + FE_BMPR10);
|
|
|
|
#if FE_DEBUG >= 2
|
|
log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
|
|
sc->sc_dev.dv_xname, left, sc->txb_sched);
|
|
#endif
|
|
#if FE_DEBUG >= 3
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/*
|
|
* Update statistics.
|
|
*/
|
|
ifp->if_collisions += 16;
|
|
ifp->if_oerrors++;
|
|
ifp->if_opackets += sc->txb_sched - left;
|
|
|
|
/*
|
|
* Collision statistics has been updated.
|
|
* Clear the collision flag on 86960 now to avoid confusion.
|
|
*/
|
|
outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
|
|
|
|
/*
|
|
* Restart transmitter, skipping the
|
|
* collided packet.
|
|
*
|
|
* We *must* skip the packet to keep network running
|
|
* properly. Excessive collision error is an
|
|
* indication of the network overload. If we
|
|
* tried sending the same packet after excessive
|
|
* collision, the network would be filled with
|
|
* out-of-time packets. Packets belonging
|
|
* to reliable transport (such as TCP) are resent
|
|
* by some upper layer.
|
|
*/
|
|
outb(sc->sc_iobase + FE_BMPR11,
|
|
FE_B11_CTRL_SKIP | FE_B11_MODE1);
|
|
sc->txb_sched = left - 1;
|
|
}
|
|
|
|
/*
|
|
* Handle "transmission complete" interrupt.
|
|
*/
|
|
if (tstat & FE_D0_TXDONE) {
|
|
/*
|
|
* Add in total number of collisions on last
|
|
* transmission. We also clear "collision occurred" flag
|
|
* here.
|
|
*
|
|
* 86960 has a design flow on collision count on multiple
|
|
* packet transmission. When we send two or more packets
|
|
* with one start command (that's what we do when the
|
|
* transmission queue is clauded), 86960 informs us number
|
|
* of collisions occured on the last packet on the
|
|
* transmission only. Number of collisions on previous
|
|
* packets are lost. I have told that the fact is clearly
|
|
* stated in the Fujitsu document.
|
|
*
|
|
* I considered not to mind it seriously. Collision
|
|
* count is not so important, anyway. Any comments? FIXME.
|
|
*/
|
|
|
|
if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
|
|
/* Clear collision flag. */
|
|
outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
|
|
|
|
/* Extract collision count from 86960. */
|
|
col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
|
|
if (col == 0) {
|
|
/*
|
|
* Status register indicates collisions,
|
|
* while the collision count is zero.
|
|
* This can happen after multiple packet
|
|
* transmission, indicating that one or more
|
|
* previous packet(s) had been collided.
|
|
*
|
|
* Since the accurate number of collisions
|
|
* has been lost, we just guess it as 1;
|
|
* Am I too optimistic? FIXME.
|
|
*/
|
|
col = 1;
|
|
} else
|
|
col >>= FE_D4_COL_SHIFT;
|
|
ifp->if_collisions += col;
|
|
#if FE_DEBUG >= 4
|
|
log(LOG_WARNING, "%s: %d collision%s (%d)\n",
|
|
sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
|
|
sc->txb_sched);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Update total number of successfully
|
|
* transmitted packets.
|
|
*/
|
|
ifp->if_opackets += sc->txb_sched;
|
|
sc->txb_sched = 0;
|
|
}
|
|
|
|
if (sc->txb_sched == 0) {
|
|
/*
|
|
* The transmitter is no more active.
|
|
* Reset output active flag and watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ifp->if_timer = 0;
|
|
|
|
/*
|
|
* If more data is ready to transmit in the buffer, start
|
|
* transmitting them. Otherwise keep transmitter idle,
|
|
* even if more data is queued. This gives receive
|
|
* process a slight priority.
|
|
*/
|
|
if (sc->txb_count > 0)
|
|
fe_xmit(sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface receiver interrupt.
|
|
*/
|
|
void
|
|
fe_rint(sc, rstat)
|
|
struct fe_softc *sc;
|
|
u_char rstat;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
int len;
|
|
u_char status;
|
|
int i;
|
|
|
|
/*
|
|
* Update statistics if this interrupt is caused by an error.
|
|
*/
|
|
if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
|
|
FE_D1_ALGERR | FE_D1_SRTPKT)) {
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_WARNING, "%s: receive error: %b\n",
|
|
sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
|
|
#endif
|
|
ifp->if_ierrors++;
|
|
}
|
|
|
|
/*
|
|
* MB86960 has a flag indicating "receive queue empty."
|
|
* We just loop cheking the flag to pull out all received
|
|
* packets.
|
|
*
|
|
* We limit the number of iterrations to avoid infinite loop.
|
|
* It can be caused by a very slow CPU (some broken
|
|
* peripheral may insert incredible number of wait cycles)
|
|
* or, worse, by a broken MB86960 chip.
|
|
*/
|
|
for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
|
|
/* Stop the iterration if 86960 indicates no packets. */
|
|
if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
|
|
break;
|
|
|
|
/*
|
|
* Extract A receive status byte.
|
|
* As our 86960 is in 16 bit bus access mode, we have to
|
|
* use inw() to get the status byte. The significant
|
|
* value is returned in lower 8 bits.
|
|
*/
|
|
status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
|
|
#if FE_DEBUG >= 4
|
|
log(LOG_INFO, "%s: receive status = %02x\n",
|
|
sc->sc_dev.dv_xname, status);
|
|
#endif
|
|
|
|
/*
|
|
* If there was an error, update statistics and drop
|
|
* the packet, unless the interface is in promiscuous
|
|
* mode.
|
|
*/
|
|
if ((status & 0xF0) != 0x20) { /* XXXX ? */
|
|
if ((ifp->if_flags & IFF_PROMISC) == 0) {
|
|
ifp->if_ierrors++;
|
|
fe_droppacket(sc);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Extract the packet length.
|
|
* It is a sum of a header (14 bytes) and a payload.
|
|
* CRC has been stripped off by the 86960.
|
|
*/
|
|
len = inw(sc->sc_iobase + FE_BMPR8);
|
|
|
|
/*
|
|
* MB86965 checks the packet length and drop big packet
|
|
* before passing it to us. There are no chance we can
|
|
* get [crufty] packets. Hence, if the length exceeds
|
|
* the specified limit, it means some serious failure,
|
|
* such as out-of-sync on receive buffer management.
|
|
*
|
|
* Is this statement true? FIXME.
|
|
*/
|
|
if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
|
|
#if FE_DEBUG >= 2
|
|
log(LOG_WARNING,
|
|
"%s: received a %s packet? (%u bytes)\n",
|
|
sc->sc_dev.dv_xname,
|
|
len < ETHER_HDR_SIZE ? "partial" : "big", len);
|
|
#endif
|
|
ifp->if_ierrors++;
|
|
fe_droppacket(sc);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Check for a short (RUNT) packet. We *do* check
|
|
* but do nothing other than print a message.
|
|
* Short packets are illegal, but does nothing bad
|
|
* if it carries data for upper layer.
|
|
*/
|
|
#if FE_DEBUG >= 2
|
|
if (len < ETHER_MIN_LEN) {
|
|
log(LOG_WARNING,
|
|
"%s: received a short packet? (%u bytes)\n",
|
|
sc->sc_dev.dv_xname, len);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Go get a packet.
|
|
*/
|
|
if (!fe_get_packet(sc, len)) {
|
|
/* Skip a packet, updating statistics. */
|
|
#if FE_DEBUG >= 2
|
|
log(LOG_WARNING,
|
|
"%s: out of mbufs; dropping packet (%u bytes)\n",
|
|
sc->sc_dev.dv_xname, len);
|
|
#endif
|
|
ifp->if_ierrors++;
|
|
fe_droppacket(sc);
|
|
|
|
/*
|
|
* We stop receiving packets, even if there are
|
|
* more in the buffer. We hope we can get more
|
|
* mbufs next time.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* Successfully received a packet. Update stat. */
|
|
ifp->if_ipackets++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface interrupt processor
|
|
*/
|
|
int
|
|
feintr(arg)
|
|
void *arg;
|
|
{
|
|
struct fe_softc *sc = arg;
|
|
u_char tstat, rstat;
|
|
|
|
#if FE_DEBUG >= 4
|
|
log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_INFO, sc);
|
|
#endif
|
|
|
|
/*
|
|
* Get interrupt conditions, masking unneeded flags.
|
|
*/
|
|
tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
|
|
rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
|
|
if (tstat == 0 && rstat == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Loop until there are no more new interrupt conditions.
|
|
*/
|
|
for (;;) {
|
|
/*
|
|
* Reset the conditions we are acknowledging.
|
|
*/
|
|
outb(sc->sc_iobase + FE_DLCR0, tstat);
|
|
outb(sc->sc_iobase + FE_DLCR1, rstat);
|
|
|
|
/*
|
|
* Handle transmitter interrupts. Handle these first because
|
|
* the receiver will reset the board under some conditions.
|
|
*/
|
|
if (tstat != 0)
|
|
fe_tint(sc, tstat);
|
|
|
|
/*
|
|
* Handle receiver interrupts.
|
|
*/
|
|
if (rstat != 0)
|
|
fe_rint(sc, rstat);
|
|
|
|
/*
|
|
* Update the multicast address filter if it is
|
|
* needed and possible. We do it now, because
|
|
* we can make sure the transmission buffer is empty,
|
|
* and there is a good chance that the receive queue
|
|
* is empty. It will minimize the possibility of
|
|
* packet lossage.
|
|
*/
|
|
if (sc->filter_change &&
|
|
sc->txb_count == 0 && sc->txb_sched == 0) {
|
|
fe_loadmar(sc);
|
|
sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
/*
|
|
* If it looks like the transmitter can take more data,
|
|
* attempt to start output on the interface. This is done
|
|
* after handling the receiver interrupt to give the
|
|
* receive operation priority.
|
|
*/
|
|
if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
|
|
fe_start(&sc->sc_arpcom.ac_if);
|
|
|
|
/*
|
|
* Get interrupt conditions, masking unneeded flags.
|
|
*/
|
|
tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
|
|
rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
|
|
if (tstat == 0 && rstat == 0)
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request. This code needs some work - it looks pretty ugly.
|
|
*/
|
|
int
|
|
fe_ioctl(ifp, command, data)
|
|
register struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct fe_softc *sc = ifp->if_softc;
|
|
register struct ifaddr *ifa = (struct ifaddr *)data;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error = 0;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
|
|
#endif
|
|
|
|
s = splnet();
|
|
|
|
switch (command) {
|
|
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
fe_init(sc);
|
|
arp_ifinit(&sc->sc_arpcom, ifa);
|
|
break;
|
|
#endif
|
|
#ifdef NS
|
|
case AF_NS:
|
|
{
|
|
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
|
|
|
|
if (ns_nullhost(*ina))
|
|
ina->x_host =
|
|
*(union ns_host *)(sc->sc_arpcom.ac_enaddr);
|
|
else
|
|
bcopy(ina->x_host.c_host,
|
|
sc->sc_arpcom.ac_enaddr,
|
|
sizeof(sc->sc_arpcom.ac_enaddr));
|
|
/* Set new address. */
|
|
fe_init(sc);
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
fe_init(sc);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) != 0) {
|
|
/*
|
|
* If interface is marked down and it is running, then
|
|
* stop it.
|
|
*/
|
|
fe_stop(sc);
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
} else if ((ifp->if_flags & IFF_UP) != 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0) {
|
|
/*
|
|
* If interface is marked up and it is stopped, then
|
|
* start it.
|
|
*/
|
|
fe_init(sc);
|
|
} else {
|
|
/*
|
|
* Reset the interface to pick up changes in any other
|
|
* flags that affect hardware registers.
|
|
*/
|
|
fe_setmode(sc);
|
|
}
|
|
#if DEBUG >= 1
|
|
/* "ifconfig fe0 debug" to print register dump. */
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
|
|
fe_dump(LOG_DEBUG, sc);
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/* Update our multicast list. */
|
|
error = (command == SIOCADDMULTI) ?
|
|
ether_addmulti(ifr, &sc->sc_arpcom) :
|
|
ether_delmulti(ifr, &sc->sc_arpcom);
|
|
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
fe_setmode(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Retreive packet from receive buffer and send to the next level up via
|
|
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
|
|
* Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
|
|
*/
|
|
int
|
|
fe_get_packet(sc, len)
|
|
struct fe_softc *sc;
|
|
int len;
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
|
|
/* Allocate a header mbuf. */
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0)
|
|
return (0);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = len;
|
|
|
|
/* The following silliness is to make NFS happy. */
|
|
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
|
|
#define EOFF (EROUND - sizeof(struct ether_header))
|
|
|
|
/*
|
|
* Our strategy has one more problem. There is a policy on
|
|
* mbuf cluster allocation. It says that we must have at
|
|
* least MINCLSIZE (208 bytes) to allocate a cluster. For a
|
|
* packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
|
|
* our code violates the rule...
|
|
* On the other hand, the current code is short, simle,
|
|
* and fast, however. It does no harmful thing, just waists
|
|
* some memory. Any comments? FIXME.
|
|
*/
|
|
|
|
/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
|
|
if (len > MHLEN - EOFF) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following assumes there is room for the ether header in the
|
|
* header mbuf.
|
|
*/
|
|
m->m_data += EOFF;
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
/* Set the length of this packet. */
|
|
m->m_len = len;
|
|
|
|
/* Get a packet. */
|
|
insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Check if there's a BPF listener on this interface. If so, hand off
|
|
* the raw packet to bpf.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
|
|
/*
|
|
* Note that the interface cannot be in promiscuous mode if
|
|
* there are no BPF listeners. And if we are in promiscuous
|
|
* mode, we have to check if this packet is really ours.
|
|
*/
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
|
|
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
|
|
bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
|
|
sizeof(eh->ether_dhost)) != 0) {
|
|
m_freem(m);
|
|
return (1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Fix up data start offset in mbuf to point past ether header. */
|
|
m_adj(m, sizeof(struct ether_header));
|
|
ether_input(ifp, eh, m);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
|
|
* Returns number of bytes actually written, including length word.
|
|
*
|
|
* If an mbuf chain is too long for an Ethernet frame, it is not sent.
|
|
* Packets shorter than Ethernet minimum are legal, and we pad them
|
|
* before sending out. An exception is "partial" packets which are
|
|
* shorter than mandatory Ethernet header.
|
|
*
|
|
* I wrote a code for an experimental "delayed padding" technique.
|
|
* When employed, it postpones the padding process for short packets.
|
|
* If xmit() occured at the moment, the padding process is omitted, and
|
|
* garbages are sent as pad data. If next packet is stored in the
|
|
* transmission buffer before xmit(), write_mbuf() pads the previous
|
|
* packet before transmitting new packet. This *may* gain the
|
|
* system performance (slightly).
|
|
*/
|
|
void
|
|
fe_write_mbufs(sc, m)
|
|
struct fe_softc *sc;
|
|
struct mbuf *m;
|
|
{
|
|
int bmpr8 = sc->sc_iobase + FE_BMPR8;
|
|
struct mbuf *mp;
|
|
u_char *data;
|
|
u_short savebyte; /* WARNING: Architecture dependent! */
|
|
int totlen, len, wantbyte;
|
|
|
|
#if FE_DELAYED_PADDING
|
|
/* Do the "delayed padding." */
|
|
len = sc->txb_padding >> 1;
|
|
if (len > 0) {
|
|
while (--len >= 0)
|
|
outw(bmpr8, 0);
|
|
sc->txb_padding = 0;
|
|
}
|
|
#endif
|
|
|
|
/* We need to use m->m_pkthdr.len, so require the header */
|
|
if ((m->m_flags & M_PKTHDR) == 0)
|
|
panic("fe_write_mbufs: no header mbuf");
|
|
|
|
#if FE_DEBUG >= 2
|
|
/* First, count up the total number of bytes to copy. */
|
|
for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
|
|
totlen += mp->m_len;
|
|
/* Check if this matches the one in the packet header. */
|
|
if (totlen != m->m_pkthdr.len)
|
|
log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
|
|
sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
|
|
#else
|
|
/* Just use the length value in the packet header. */
|
|
totlen = m->m_pkthdr.len;
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 1
|
|
/*
|
|
* Should never send big packets. If such a packet is passed,
|
|
* it should be a bug of upper layer. We just ignore it.
|
|
* ... Partial (too short) packets, neither.
|
|
*/
|
|
if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
|
|
log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
|
|
sc->sc_dev.dv_xname,
|
|
totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
|
|
sc->sc_arpcom.ac_if.if_oerrors++;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Put the length word for this frame.
|
|
* Does 86960 accept odd length? -- Yes.
|
|
* Do we need to pad the length to minimum size by ourselves?
|
|
* -- Generally yes. But for (or will be) the last
|
|
* packet in the transmission buffer, we can skip the
|
|
* padding process. It may gain performance slightly. FIXME.
|
|
*/
|
|
outw(bmpr8, max(totlen, ETHER_MIN_LEN));
|
|
|
|
/*
|
|
* Update buffer status now.
|
|
* Truncate the length up to an even number, since we use outw().
|
|
*/
|
|
totlen = (totlen + 1) & ~1;
|
|
sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
|
|
sc->txb_count++;
|
|
|
|
#if FE_DELAYED_PADDING
|
|
/* Postpone the packet padding if necessary. */
|
|
if (totlen < ETHER_MIN_LEN)
|
|
sc->txb_padding = ETHER_MIN_LEN - totlen;
|
|
#endif
|
|
|
|
/*
|
|
* Transfer the data from mbuf chain to the transmission buffer.
|
|
* MB86960 seems to require that data be transferred as words, and
|
|
* only words. So that we require some extra code to patch
|
|
* over odd-length mbufs.
|
|
*/
|
|
wantbyte = 0;
|
|
for (; m != 0; m = m->m_next) {
|
|
/* Ignore empty mbuf. */
|
|
len = m->m_len;
|
|
if (len == 0)
|
|
continue;
|
|
|
|
/* Find the actual data to send. */
|
|
data = mtod(m, caddr_t);
|
|
|
|
/* Finish the last byte. */
|
|
if (wantbyte) {
|
|
outw(bmpr8, savebyte | (*data << 8));
|
|
data++;
|
|
len--;
|
|
wantbyte = 0;
|
|
}
|
|
|
|
/* Output contiguous words. */
|
|
if (len > 1)
|
|
outsw(bmpr8, data, len >> 1);
|
|
|
|
/* Save remaining byte, if there is one. */
|
|
if (len & 1) {
|
|
data += len & ~1;
|
|
savebyte = *data;
|
|
wantbyte = 1;
|
|
}
|
|
}
|
|
|
|
/* Spit the last byte, if the length is odd. */
|
|
if (wantbyte)
|
|
outw(bmpr8, savebyte);
|
|
|
|
#if ! FE_DELAYED_PADDING
|
|
/*
|
|
* Pad the packet to the minimum length if necessary.
|
|
*/
|
|
len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
|
|
while (--len >= 0)
|
|
outw(bmpr8, 0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Compute the multicast address filter from the
|
|
* list of multicast addresses we need to listen to.
|
|
*/
|
|
void
|
|
fe_getmcaf(ac, af)
|
|
struct arpcom *ac;
|
|
u_char *af;
|
|
{
|
|
struct ifnet *ifp = &ac->ac_if;
|
|
struct ether_multi *enm;
|
|
register u_char *cp, c;
|
|
register u_long crc;
|
|
register int i, len;
|
|
struct ether_multistep step;
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast addresses
|
|
* through a crc generator, and then using the high order 6 bits as an
|
|
* index into the 64 bit logical address filter. The high order bit
|
|
* selects the word, while the rest of the bits select the bit within
|
|
* the word.
|
|
*/
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
goto allmulti;
|
|
|
|
af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
|
|
ETHER_FIRST_MULTI(step, ac, enm);
|
|
while (enm != NULL) {
|
|
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
sizeof(enm->enm_addrlo)) != 0) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
cp = enm->enm_addrlo;
|
|
crc = 0xffffffff;
|
|
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
|
|
c = *cp++;
|
|
for (i = 8; --i >= 0;) {
|
|
if ((crc & 0x01) ^ (c & 0x01)) {
|
|
crc >>= 1;
|
|
crc ^= 0xedb88320;
|
|
} else
|
|
crc >>= 1;
|
|
c >>= 1;
|
|
}
|
|
}
|
|
/* Just want the 6 most significant bits. */
|
|
crc >>= 26;
|
|
|
|
/* Turn on the corresponding bit in the filter. */
|
|
af[crc >> 3] |= 1 << (crc & 7);
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
return;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
|
|
}
|
|
|
|
/*
|
|
* Calculate a new "multicast packet filter" and put the 86960
|
|
* receiver in appropriate mode.
|
|
*/
|
|
void
|
|
fe_setmode(sc)
|
|
struct fe_softc *sc;
|
|
{
|
|
int flags = sc->sc_arpcom.ac_if.if_flags;
|
|
|
|
/*
|
|
* If the interface is not running, we postpone the update
|
|
* process for receive modes and multicast address filter
|
|
* until the interface is restarted. It reduces some
|
|
* complicated job on maintaining chip states. (Earlier versions
|
|
* of this driver had a bug on that point...)
|
|
*
|
|
* To complete the trick, fe_init() calls fe_setmode() after
|
|
* restarting the interface.
|
|
*/
|
|
if ((flags & IFF_RUNNING) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Promiscuous mode is handled separately.
|
|
*/
|
|
if ((flags & IFF_PROMISC) != 0) {
|
|
/*
|
|
* Program 86960 to receive all packets on the segment
|
|
* including those directed to other stations.
|
|
* Multicast filter stored in MARs are ignored
|
|
* under this setting, so we don't need to update it.
|
|
*
|
|
* Promiscuous mode is used solely by BPF, and BPF only
|
|
* listens to valid (no error) packets. So, we ignore
|
|
* errornous ones even in this mode.
|
|
*/
|
|
outb(sc->sc_iobase + FE_DLCR5,
|
|
sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
|
|
sc->filter_change = 0;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Turn the chip to the normal (non-promiscuous) mode.
|
|
*/
|
|
outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
|
|
|
|
/*
|
|
* Find the new multicast filter value.
|
|
*/
|
|
fe_getmcaf(&sc->sc_arpcom, sc->filter);
|
|
sc->filter_change = 1;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO,
|
|
"%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
|
|
sc->sc_dev.dv_xname,
|
|
sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
|
|
sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
|
|
#endif
|
|
|
|
/*
|
|
* We have to update the multicast filter in the 86960, A.S.A.P.
|
|
*
|
|
* Note that the DLC (Data Linc Control unit, i.e. transmitter
|
|
* and receiver) must be stopped when feeding the filter, and
|
|
* DLC trushes all packets in both transmission and receive
|
|
* buffers when stopped.
|
|
*
|
|
* ... Are the above sentenses correct? I have to check the
|
|
* manual of the MB86960A. FIXME.
|
|
*
|
|
* To reduce the packet lossage, we delay the filter update
|
|
* process until buffers are empty.
|
|
*/
|
|
if (sc->txb_sched == 0 && sc->txb_count == 0 &&
|
|
(inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
|
|
/*
|
|
* Buffers are (apparently) empty. Load
|
|
* the new filter value into MARs now.
|
|
*/
|
|
fe_loadmar(sc);
|
|
} else {
|
|
/*
|
|
* Buffers are not empty. Mark that we have to update
|
|
* the MARs. The new filter will be loaded by feintr()
|
|
* later.
|
|
*/
|
|
#if FE_DEBUG >= 4
|
|
log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load a new multicast address filter into MARs.
|
|
*
|
|
* The caller must have splnet'ed befor fe_loadmar.
|
|
* This function starts the DLC upon return. So it can be called only
|
|
* when the chip is working, i.e., from the driver's point of view, when
|
|
* a device is RUNNING. (I mistook the point in previous versions.)
|
|
*/
|
|
void
|
|
fe_loadmar(sc)
|
|
struct fe_softc *sc;
|
|
{
|
|
|
|
/* Stop the DLC (transmitter and receiver). */
|
|
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
|
|
|
|
/* Select register bank 1 for MARs. */
|
|
outb(sc->sc_iobase + FE_DLCR7,
|
|
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
|
|
|
|
/* Copy filter value into the registers. */
|
|
outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
|
|
|
|
/* Restore the bank selection for BMPRs (i.e., runtime registers). */
|
|
outb(sc->sc_iobase + FE_DLCR7,
|
|
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
|
|
|
|
/* Restart the DLC. */
|
|
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
|
|
|
|
/* We have just updated the filter. */
|
|
sc->filter_change = 0;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
|
|
#endif
|
|
}
|
|
|
|
#if FE_DEBUG >= 1
|
|
void
|
|
fe_dump(level, sc)
|
|
int level;
|
|
struct fe_softc *sc;
|
|
{
|
|
int iobase = sc->sc_iobase;
|
|
u_char save_dlcr7;
|
|
|
|
save_dlcr7 = inb(iobase + FE_DLCR7);
|
|
|
|
log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
inb(iobase + FE_DLCR0), inb(iobase + FE_DLCR1),
|
|
inb(iobase + FE_DLCR2), inb(iobase + FE_DLCR3),
|
|
inb(iobase + FE_DLCR4), inb(iobase + FE_DLCR5),
|
|
inb(iobase + FE_DLCR6), inb(iobase + FE_DLCR7));
|
|
|
|
outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
|
|
log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x,",
|
|
inb(iobase + FE_DLCR8), inb(iobase + FE_DLCR9),
|
|
inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
|
|
inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
|
|
inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
|
|
|
|
outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
|
|
log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x,",
|
|
inb(iobase + FE_MAR8), inb(iobase + FE_MAR9),
|
|
inb(iobase + FE_MAR10), inb(iobase + FE_MAR11),
|
|
inb(iobase + FE_MAR12), inb(iobase + FE_MAR13),
|
|
inb(iobase + FE_MAR14), inb(iobase + FE_MAR15));
|
|
|
|
outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
|
|
log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
|
|
inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
|
|
inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
|
|
inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
|
|
inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
|
|
inb(iobase + FE_BMPR19));
|
|
|
|
outb(iobase + FE_DLCR7, save_dlcr7);
|
|
}
|
|
#endif
|