NetBSD/sys/dev/pci/if_tl.c

1586 lines
40 KiB
C

/* $NetBSD: if_tl.c,v 1.11 1998/06/08 06:55:56 thorpej Exp $ */
/*
* Copyright (c) 1997 Manuel Bouyer. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Manuel Bouyer.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Texas Instruments ThunderLAN ethernet controller
* ThunderLAN Programmer's Guide (TI Literature Number SPWU013A)
* available from www.ti.com
*/
#undef TLDEBUG
#define TL_PRIV_STATS
#undef TLDEBUG_RX
#undef TLDEBUG_TX
#undef TLDEBUG_ADDR
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/proc.h> /* only for declaration of wakeup() used by vm.h */
#include <sys/device.h>
#include <net/if.h>
#if defined(SIOCSIFMEDIA)
#include <net/if_media.h>
#endif
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <net/netisr.h>
#include "bpfilter.h"
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#if defined(__NetBSD__)
#include <net/if_ether.h>
#if defined(INET)
#include <netinet/if_inarp.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/i2c/i2c_bus.h>
#include <dev/i2c/i2c_eeprom.h>
#include <dev/mii/mii_adapter.h>
#include <dev/mii/mii_adapters_id.h>
#include <dev/pci/if_tlregs.h>
#endif /* __NetBSD__ */
/* number of transmit/receive buffers */
#ifndef TL_NBUF
#define TL_NBUF 10
#endif
/* number of seconds the link can be idle */
#ifndef TL_IDLETIME
#define TL_IDLETIME 10
#endif
struct tl_softc {
struct device sc_dev; /* base device */
bus_space_tag_t tl_bustag;
bus_space_handle_t tl_bushandle; /* CSR region handle */
void* tl_ih;
struct ethercom tl_ec;
u_int8_t tl_enaddr[ETHER_ADDR_LEN]; /* hardware adress */
struct ifmedia tl_ifmedia;
u_int16_t tl_flags;
#define TL_IFACT 0x0001 /* chip has interface activity */
u_int8_t tl_lasttx; /* we were without input this many seconds */
i2c_adapter_t i2cbus; /* i2c bus, for eeprom */
mii_data_t mii; /* mii bus */
struct Rx_list *Rx_list; /* Receive and transmit lists */
struct Tx_list *Tx_list;
struct Rx_list *active_Rx, *last_Rx;
struct Tx_list *active_Tx, *last_Tx;
struct Tx_list *Free_Tx;
int opkt; /* used to detect link up/down for AUI/BNC */
int stats_exesscoll; /* idem */
#ifdef TL_PRIV_STATS
int ierr_overr;
int ierr_code;
int ierr_crc;
int ierr_nomem;
int oerr_underr;
int oerr_deffered;
int oerr_coll;
int oerr_multicoll;
int oerr_latecoll;
int oerr_exesscoll;
int oerr_carrloss;
int oerr_mcopy;
#endif
};
#define tl_if tl_ec.ec_if
#define tl_bpf tl_if.if_bpf
typedef struct tl_softc tl_softc_t;
typedef u_long ioctl_cmd_t;
#define TL_HR_READ(sc, reg) \
bus_space_read_4(sc->tl_bustag, sc->tl_bushandle, (reg))
#define TL_HR_READ_BYTE(sc, reg) \
bus_space_read_1(sc->tl_bustag, sc->tl_bushandle, (reg))
#define TL_HR_WRITE(sc, reg, data) \
bus_space_write_4(sc->tl_bustag, sc->tl_bushandle, (reg), (data))
#define TL_HR_WRITE_BYTE(sc, reg, data) \
bus_space_write_1(sc->tl_bustag, sc->tl_bushandle, (reg), (data))
#define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
static int tl_pci_match __P((struct device *, struct cfdata *, void *));
static void tl_pci_attach __P((struct device *, struct device *, void *));
static int tl_intr __P((void *));
static int tl_ifioctl __P((struct ifnet *, ioctl_cmd_t, caddr_t));
static int tl_mediachange __P((struct ifnet *));
static void tl_mediastatus __P((struct ifnet *, struct ifmediareq *));
static void tl_ifwatchdog __P((struct ifnet *));
static void tl_shutdown __P((void*));
static void tl_ifstart __P((struct ifnet *));
static void tl_reset __P((tl_softc_t*));
static int tl_init __P((tl_softc_t*));
static void tl_restart __P((void *));
static int tl_add_RxBuff __P((struct Rx_list*, struct mbuf*));
static void tl_read_stats __P((tl_softc_t*));
static void tl_ticks __P((void*));
static int tl_multicast_hash __P((u_int8_t*));
static void tl_addr_filter __P((tl_softc_t*));
static u_int32_t tl_intreg_read __P((tl_softc_t*, u_int32_t));
static void tl_intreg_write __P((tl_softc_t*, u_int32_t, u_int32_t));
static u_int8_t tl_intreg_read_byte __P((tl_softc_t*, u_int32_t));
static void tl_intreg_write_byte __P((tl_softc_t*, u_int32_t, u_int8_t));
#if defined(TLDEBUG_RX)
static void ether_printheader __P((struct ether_header*));
#endif
void tl_mii_set __P((void*, u_int8_t));
void tl_mii_clr __P((void*, u_int8_t));
int tl_mii_read __P((void*, u_int8_t));
void tl_i2c_set __P((void*, u_int8_t));
void tl_i2c_clr __P((void*, u_int8_t));
int tl_i2c_read __P((void*, u_int8_t));
static __inline void netsio_clr __P((tl_softc_t*, u_int8_t));
static __inline void netsio_set __P((tl_softc_t*, u_int8_t));
static __inline u_int8_t netsio_read __P((tl_softc_t*, u_int8_t));
static __inline void netsio_clr(sc, bits)
tl_softc_t* sc;
u_int8_t bits;
{
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio,
tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) & (~bits));
}
static __inline void netsio_set(sc, bits)
tl_softc_t* sc;
u_int8_t bits;
{
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio,
tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) | bits);
}
static __inline u_int8_t netsio_read(sc, bits)
tl_softc_t* sc;
u_int8_t bits;
{
return (tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) & bits);
}
struct cfattach tl_ca = {
sizeof(tl_softc_t), tl_pci_match, tl_pci_attach
};
struct tl_product_desc {
u_int32_t tp_product;
u_int32_t tp_adapter;
int tp_flags;
const char *tp_desc;
};
/* tp_flags */
#define TPF_BROKEN_MEM 0x00000001 /* memory-mapped access is broken */
const struct tl_product_desc tl_compaq_products[] = {
{ PCI_PRODUCT_COMPAQ_N100TX, COMPAQ_NETLIGENT_10_100,
0, "Compaq Netelligent 10/100 TX" },
{ PCI_PRODUCT_COMPAQ_N10T, COMPAQ_NETLIGENT_10,
0, "Compaq Netelligent 10 T" },
{ PCI_PRODUCT_COMPAQ_IntNF3P, COMPAQ_INT_NETFLEX,
0, "Compaq Integrated NetFlex 3/P" },
{ PCI_PRODUCT_COMPAQ_IntPL100TX, COMPAQ_INT_NETLIGENT_10_100,
0, "Compaq ProLiant Integrated Netelligent 10/100 TX" },
{ PCI_PRODUCT_COMPAQ_DPNet100TX, COMPAQ_DUAL_NETLIGENT_10_100,
0, "Compaq Dual Port Netelligent 10/100 TX" },
{ PCI_PRODUCT_COMPAQ_DP4000, COMPAQ_DSKP4000,
0, "Compaq Deskpro 4000 5233MMX" },
{ PCI_PRODUCT_COMPAQ_NF3P_BNC, COMPAQ_NETFLEX_BNC,
0, "Compaq NetFlex 3/P w/ BNC" },
{ PCI_PRODUCT_COMPAQ_NF3P, COMPAQ_NETFLEX,
0, "Compaq NetFlex 3/P" },
{ 0, 0, NULL },
};
const struct tl_product_desc tl_ti_products[] = {
/*
* Built-in Ethernet on the TI TravelMate 5000
* docking station; better product description?
* XXX Seems to have broken memory-mapped access.
*/
{ PCI_PRODUCT_TI_TLAN, TI_TLAN,
TPF_BROKEN_MEM, "Texas Instruments ThunderLAN" },
{ 0, 0, NULL },
};
struct tl_vendor_desc {
u_int32_t tv_vendor;
const struct tl_product_desc *tv_products;
};
const struct tl_vendor_desc tl_vendors[] = {
{ PCI_VENDOR_COMPAQ, tl_compaq_products },
{ PCI_VENDOR_TI, tl_ti_products },
{ 0, NULL },
};
const struct tl_product_desc *tl_lookup_product __P((u_int32_t));
const struct tl_product_desc *
tl_lookup_product(id)
u_int32_t id;
{
const struct tl_product_desc *tp;
const struct tl_vendor_desc *tv;
for (tv = tl_vendors; tv->tv_products != NULL; tv++)
if (PCI_VENDOR(id) == tv->tv_vendor)
break;
if ((tp = tv->tv_products) == NULL)
return (NULL);
for (; tp->tp_desc != NULL; tp++)
if (PCI_PRODUCT(id) == tp->tp_product)
break;
if (tp->tp_desc == NULL)
return (NULL);
return (tp);
}
static char *nullbuf = NULL;
static int
tl_pci_match(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = (struct pci_attach_args *) aux;
if (tl_lookup_product(pa->pa_id) != NULL)
return (1);
return (0);
}
static void
tl_pci_attach(parent, self, aux)
struct device * parent;
struct device * self;
void * aux;
{
tl_softc_t *sc = (tl_softc_t *)self;
struct pci_attach_args * const pa = (struct pci_attach_args *) aux;
const struct tl_product_desc *tp;
struct ifnet * const ifp = &sc->tl_if;
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
pci_intr_handle_t intrhandle;
const char *intrstr;
int i, tmp, ioh_valid, memh_valid;
pcireg_t csr;
printf("\n");
tp = tl_lookup_product(pa->pa_id);
if (tp == NULL)
panic("tl_pci_attach: impossible");
/* Map the card space. */
ioh_valid = (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, NULL) == 0);
memh_valid = (pci_mapreg_map(pa, PCI_CBMA,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
0, &memt, &memh, NULL, NULL) == 0);
if (memh_valid && (tp->tp_flags & TPF_BROKEN_MEM) == 0) {
sc->tl_bustag = memt;
sc->tl_bushandle = memh;
} else if (ioh_valid) {
sc->tl_bustag = iot;
sc->tl_bushandle = ioh;
} else {
printf("%s: unable to map device registers\n",
sc->sc_dev.dv_xname);
return;
}
/* Enable the device. */
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
printf("%s: %s\n", sc->sc_dev.dv_xname, tp->tp_desc);
sc->mii.adapter_id = tp->tp_adapter;
tl_reset(sc);
/* fill in the i2c struct */
sc->i2cbus.adapter_softc = sc;
sc->i2cbus.set_bit = tl_i2c_set;
sc->i2cbus.clr_bit = tl_i2c_clr;
sc->i2cbus.read_bit = tl_i2c_read;
#ifdef TLDEBUG
printf("default values of INTreg: 0x%x\n",
tl_intreg_read(sc, TL_INT_Defaults));
#endif
/* read mac addr */
for (i=0; i<ETHER_ADDR_LEN; i++) {
tmp = i2c_eeprom_read(&sc->i2cbus, 0x83 + i);
if (tmp < 0) {
printf("%s: error reading Ethernet adress\n",
sc->sc_dev.dv_xname);
return;
} else {
sc->tl_enaddr[i] = tmp;
}
}
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(sc->tl_enaddr));
/* Map and establish interrupts */
if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
pa->pa_intrline, &intrhandle)) {
printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pa->pa_pc, intrhandle);
sc->tl_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
tl_intr, sc);
if (sc->tl_ih == NULL) {
printf("%s: couldn't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
/*
* Add shutdown hook so that DMA is disabled prior to reboot. Not
* doing do could allow DMA to corrupt kernel memory during the
* reboot before the driver initializes.
*/
(void) shutdownhook_establish(tl_shutdown, sc);
sc->mii.adapter_softc = sc;
sc->mii.mii_setbit = tl_mii_set;
sc->mii.mii_clrbit = tl_mii_clr;
sc->mii.mii_readbit = tl_mii_read;
sc->mii.mii_readreg = NULL; /* Let generic MII function handle that */
sc->mii.mii_writereg = NULL;
if (config_found(self, (void*)&sc->mii, mii_adapter_print) == NULL) {
return;
}
ifmedia_init(&sc->tl_ifmedia, 0, tl_mediachange, tl_mediastatus);
mii_media_add(&sc->tl_ifmedia, &sc->mii);
ifmedia_set(&sc->tl_ifmedia, IFM_ETHER | IFM_NONE);
bcopy(sc->sc_dev.dv_xname, sc->tl_if.if_xname, IFNAMSIZ);
sc->tl_if.if_softc = sc;
ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
ifp->if_ioctl = tl_ifioctl;
ifp->if_start = tl_ifstart;
ifp->if_watchdog = tl_ifwatchdog;
ifp->if_timer = 0;
if_attach(ifp);
ether_ifattach(&(sc)->tl_if, (sc)->tl_enaddr);
#if NBPFILTER > 0
bpfattach(&sc->tl_bpf, &sc->tl_if, DLT_EN10MB,
sizeof(struct ether_header));
#endif
sc->mii.mii_media_active = IFM_NONE;
}
static void
tl_reset(sc)
tl_softc_t *sc;
{
int i;
/* read stats */
if (sc->tl_if.if_flags & IFF_RUNNING) {
untimeout(tl_ticks, sc);
tl_read_stats(sc);
}
/* Reset adapter */
TL_HR_WRITE(sc, TL_HOST_CMD,
TL_HR_READ(sc, TL_HOST_CMD) | HOST_CMD_Ad_Rst);
DELAY(100000);
/* Disable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff);
/* setup aregs & hash */
for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4)
tl_intreg_write(sc, i, 0);
#ifdef TLDEBUG_ADDR
printf("Areg & hash registers: \n");
for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4)
printf(" reg %x: %x\n", i, tl_intreg_read(sc, i));
#endif
/* Setup NetConfig */
tl_intreg_write(sc, TL_INT_NetConfig,
TL_NETCONFIG_1F | TL_NETCONFIG_1chn | TL_NETCONFIG_PHY_EN);
/* Bsize: accept default */
/* TX commit in Acommit: accept default */
/* Load Ld_tmr and Ld_thr */
/* Ld_tmr = 3 */
TL_HR_WRITE(sc, TL_HOST_CMD, 0x3 | HOST_CMD_LdTmr);
/* Ld_thr = 0 */
TL_HR_WRITE(sc, TL_HOST_CMD, 0x0 | HOST_CMD_LdThr);
/* Unreset MII */
netsio_set(sc, TL_NETSIO_NMRST);
DELAY(100000);
sc->mii.mii_media_status &= ~IFM_ACTIVE;
sc->tl_flags = 0;
sc->opkt = 0;
sc->stats_exesscoll = 0;
}
static void tl_shutdown(v)
void *v;
{
tl_softc_t *sc = v;
struct Tx_list *Tx;
int i;
if ((sc->tl_if.if_flags & IFF_RUNNING) == 0)
return;
/* disable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD,
HOST_CMD_IntOff);
/* stop TX and RX channels */
TL_HR_WRITE(sc, TL_HOST_CMD,
HOST_CMD_STOP | HOST_CMD_RT | HOST_CMD_Nes);
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_STOP);
DELAY(100000);
/* stop statistics reading loop, read stats */
untimeout(tl_ticks, sc);
tl_read_stats(sc);
/* deallocate memory allocations */
for (i=0; i< TL_NBUF; i++) {
if (sc->Rx_list[i].m)
m_freem(sc->Rx_list[i].m);
sc->Rx_list[i].m = NULL;
}
free(sc->Rx_list, M_DEVBUF);
sc->Rx_list = NULL;
while ((Tx = sc->active_Tx) != NULL) {
Tx->hw_list.stat = 0;
m_freem(Tx->m);
sc->active_Tx = Tx->next;
Tx->next = sc->Free_Tx;
sc->Free_Tx = Tx;
}
sc->last_Tx = NULL;
free(sc->Tx_list, M_DEVBUF);
sc->Tx_list = NULL;
sc->tl_if.if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
sc->mii.mii_media_status &= ~IFM_ACTIVE;
sc->tl_flags = 0;
}
static void tl_restart(v)
void *v;
{
tl_init(v);
}
static int tl_init(sc)
tl_softc_t *sc;
{
struct ifnet *ifp = &sc->tl_if;
int i, s;
s = splimp();
/* cancel any pending IO */
tl_shutdown(sc);
tl_reset(sc);
if ((sc->tl_if.if_flags & IFF_UP) == 0) {
splx(s);
return 0;
}
/* Set various register to reasonable value */
/* setup NetCmd in promisc mode if needed */
i = (ifp->if_flags & IFF_PROMISC) ? TL_NETCOMMAND_CAF : 0;
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd,
TL_NETCOMMAND_NRESET | TL_NETCOMMAND_NWRAP | i);
/* Max receive size : MCLBYTES */
tl_intreg_write_byte(sc, TL_INT_MISC + TL_MISC_MaxRxL, MCLBYTES & 0xff);
tl_intreg_write_byte(sc, TL_INT_MISC + TL_MISC_MaxRxH,
(MCLBYTES >> 8) & 0xff);
/* init MAC addr */
for (i = 0; i < ETHER_ADDR_LEN; i++)
tl_intreg_write_byte(sc, TL_INT_Areg0 + i , sc->tl_enaddr[i]);
/* add multicast filters */
tl_addr_filter(sc);
#ifdef TLDEBUG_ADDR
printf("Wrote Mac addr, Areg & hash registers are now: \n");
for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4)
printf(" reg %x: %x\n", i, tl_intreg_read(sc, i));
#endif
/* Pre-allocate receivers mbuf, make the lists */
sc->Rx_list = malloc(sizeof(struct Rx_list) * TL_NBUF, M_DEVBUF, M_NOWAIT);
sc->Tx_list = malloc(sizeof(struct Tx_list) * TL_NBUF, M_DEVBUF, M_NOWAIT);
if (sc->Rx_list == NULL || sc->Tx_list == NULL) {
printf("%s: out of memory for lists\n", sc->sc_dev.dv_xname);
sc->tl_if.if_flags &= ~IFF_UP;
splx(s);
return ENOMEM;
}
for (i=0; i< TL_NBUF; i++) {
if(tl_add_RxBuff(&sc->Rx_list[i], NULL) == 0) {
printf("%s: out of mbuf for receive list\n", sc->sc_dev.dv_xname);
sc->tl_if.if_flags &= ~IFF_UP;
splx(s);
return ENOMEM;
}
if (i > 0) { /* chain the list */
sc->Rx_list[i-1].next = &sc->Rx_list[i];
sc->Rx_list[i-1].hw_list.fwd = vtophys(&sc->Rx_list[i].hw_list);
#ifdef DIAGNOSTIC
if (sc->Rx_list[i-1].hw_list.fwd & 0x7)
printf("%s: physical addr 0x%x of list not properly aligned\n",
sc->sc_dev.dv_xname, sc->Rx_list[i-1].hw_list.fwd);
#endif
sc->Tx_list[i-1].next = &sc->Tx_list[i];
}
}
sc->Rx_list[TL_NBUF-1].next = NULL;
sc->Rx_list[TL_NBUF-1].hw_list.fwd = 0;
sc->Tx_list[TL_NBUF-1].next = NULL;
sc->active_Rx = &sc->Rx_list[0];
sc->last_Rx = &sc->Rx_list[TL_NBUF-1];
sc->active_Tx = sc->last_Tx = NULL;
sc->Free_Tx = &sc->Tx_list[0];
if (nullbuf == NULL)
nullbuf = malloc(ETHER_MIN_TX, M_DEVBUF, M_NOWAIT);
if (nullbuf == NULL) {
printf("%s: can't allocate space for pad buffer\n",
sc->sc_dev.dv_xname);
sc->tl_if.if_flags &= ~IFF_UP;
splx(s);
return ENOMEM;
}
bzero(nullbuf, ETHER_MIN_TX);
/* set media if needed */
if (IFM_SUBTYPE(sc->mii.mii_media_active) != IFM_NONE) {
mii_mediachg(&sc->mii);
}
/* start ticks calls */
timeout(tl_ticks, sc, hz);
/* write adress of Rx list and enable interrupts */
TL_HR_WRITE(sc, TL_HOST_CH_PARM, vtophys(&sc->Rx_list[0].hw_list));
TL_HR_WRITE(sc, TL_HOST_CMD,
HOST_CMD_GO | HOST_CMD_RT | HOST_CMD_Nes | HOST_CMD_IntOn);
sc->tl_if.if_flags |= IFF_RUNNING;
sc->tl_if.if_flags &= ~IFF_OACTIVE;
return 0;
}
static u_int32_t
tl_intreg_read(sc, reg)
tl_softc_t *sc;
u_int32_t reg;
{
TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, reg & TL_HOST_DIOADR_MASK);
return TL_HR_READ(sc, TL_HOST_DIO_DATA);
}
static u_int8_t
tl_intreg_read_byte(sc, reg)
tl_softc_t *sc;
u_int32_t reg;
{
TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR,
(reg & (~0x07)) & TL_HOST_DIOADR_MASK);
return TL_HR_READ_BYTE(sc, TL_HOST_DIO_DATA + (reg & 0x07));
}
static void
tl_intreg_write(sc, reg, val)
tl_softc_t *sc;
u_int32_t reg;
u_int32_t val;
{
TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, reg & TL_HOST_DIOADR_MASK);
TL_HR_WRITE(sc, TL_HOST_DIO_DATA, val);
}
static void
tl_intreg_write_byte(sc, reg, val)
tl_softc_t *sc;
u_int32_t reg;
u_int8_t val;
{
TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR,
(reg & (~0x03)) & TL_HOST_DIOADR_MASK);
TL_HR_WRITE_BYTE(sc, TL_HOST_DIO_DATA + (reg & 0x03), val);
}
void tl_mii_set(v, bit)
void *v;
u_int8_t bit;
{
tl_softc_t *sc = v;
switch (bit) {
case MII_DATA:
netsio_set(sc, TL_NETSIO_MDATA);
break;
case MII_CLOCK:
netsio_set(sc, TL_NETSIO_MCLK);
break;
case MII_TXEN:
netsio_set(sc, TL_NETSIO_MTXEN);
break;
default:
printf("tl_mii_set: unknown bit %d\n", bit);
}
}
void tl_mii_clr(v, bit)
void *v;
u_int8_t bit;
{
tl_softc_t *sc = v;
switch (bit) {
case MII_DATA:
netsio_clr(sc, TL_NETSIO_MDATA);
break;
case MII_CLOCK:
netsio_clr(sc, TL_NETSIO_MCLK);
break;
case MII_TXEN:
netsio_clr(sc, TL_NETSIO_MTXEN);
break;
default:
printf("tl_mii_clr: unknown bit %d\n", bit);
}
return;
}
int tl_mii_read(v, bit)
void *v;
u_int8_t bit;
{
tl_softc_t *sc = v;
switch (bit) {
case MII_DATA:
return netsio_read(sc, TL_NETSIO_MDATA);
break;
case MII_CLOCK:
return netsio_read(sc, TL_NETSIO_MCLK);
break;
case MII_TXEN:
return netsio_read(sc, TL_NETSIO_MTXEN);
break;
default:
printf("tl_mii_read: unknown bit %d\n", bit);
return -1;
}
}
void tl_i2c_set(v, bit)
void *v;
u_int8_t bit;
{
tl_softc_t *sc = v;
switch (bit) {
case I2C_DATA:
netsio_set(sc, TL_NETSIO_EDATA);
break;
case I2C_CLOCK:
netsio_set(sc, TL_NETSIO_ECLOCK);
break;
case I2C_TXEN:
netsio_set(sc, TL_NETSIO_ETXEN);
break;
default:
printf("tl_i2c_set: unknown bit %d\n", bit);
}
return;
}
void tl_i2c_clr(v, bit)
void *v;
u_int8_t bit;
{
tl_softc_t *sc = v;
switch (bit) {
case I2C_DATA:
netsio_clr(sc, TL_NETSIO_EDATA);
break;
case I2C_CLOCK:
netsio_clr(sc, TL_NETSIO_ECLOCK);
break;
case I2C_TXEN:
netsio_clr(sc, TL_NETSIO_ETXEN);
break;
default:
printf("tl_i2c_clr: unknown bit %d\n", bit);
}
return;
}
int tl_i2c_read(v, bit)
void *v;
u_int8_t bit;
{
tl_softc_t *sc = v;
switch (bit) {
case I2C_DATA:
return netsio_read(sc, TL_NETSIO_EDATA);
break;
case I2C_CLOCK:
return netsio_read(sc, TL_NETSIO_ECLOCK);
break;
case I2C_TXEN:
return netsio_read(sc, TL_NETSIO_ETXEN);
break;
default:
printf("tl_i2c_read: unknown bit %d\n", bit);
return -1;
}
}
static int
tl_intr(v)
void *v;
{
tl_softc_t *sc = v;
struct ifnet *ifp = &sc->tl_if;
struct Rx_list *Rx;
struct Tx_list *Tx;
struct mbuf *m;
u_int32_t int_type, int_reg;
int ack = 0;
int size;
int_reg = TL_HR_READ(sc, TL_HOST_INTR_DIOADR);
int_type = int_reg & TL_INTR_MASK;
if (int_type == 0)
return 0;
#if defined(TLDEBUG_RX) || defined(TLDEBUG_TX)
printf("%s: interrupt type %x, intr_reg %x\n", sc->sc_dev.dv_xname,
int_type, int_reg);
#endif
/* disable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff);
switch(int_type & TL_INTR_MASK) {
case TL_INTR_RxEOF:
while(sc->active_Rx->hw_list.stat & TL_RX_CSTAT_CPLT) {
/* dequeue and requeue at end of list */
ack++;
Rx = sc->active_Rx;
sc->active_Rx = Rx->next;
m = Rx->m;
size = Rx->hw_list.stat >> 16;
#ifdef TLDEBUG_RX
printf("tl_intr: RX list complete, Rx %p, size=%d\n", Rx, size);
#endif
if (tl_add_RxBuff(Rx, m ) == 0) {
/* No new mbuf, reuse the same. This means that this packet
is lost */
m = NULL;
#ifdef TL_PRIV_STATS
sc->ierr_nomem++;
#endif
#ifdef TLDEBUG
printf("%s: out of mbuf, lost input packet\n",
sc->sc_dev.dv_xname);
#endif
}
Rx->next = NULL;
Rx->hw_list.fwd = 0;
sc->last_Rx->hw_list.fwd = vtophys(&Rx->hw_list);
#ifdef DIAGNOSTIC
if (sc->last_Rx->hw_list.fwd & 0x7)
printf("%s: physical addr 0x%x of list not properly aligned\n",
sc->sc_dev.dv_xname, sc->last_Rx->hw_list.fwd);
#endif
sc->last_Rx->next = Rx;
sc->last_Rx = Rx;
/* deliver packet */
if (m) {
struct ether_header *eh;
if (size < sizeof(struct ether_header)) {
m_freem(m);
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len =
size - sizeof(struct ether_header);
eh = mtod(m, struct ether_header *);
#ifdef TLDEBUG_RX
printf("tl_intr: Rx packet:\n");
ether_printheader(eh);
#endif
#if NBPFILTER > 0
if (ifp->if_bpf) {
bpf_tap(ifp->if_bpf,
mtod(m, caddr_t),
size);
/*
* Only pass this packet up
* if it is for us.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
continue;
}
}
#endif /* NBPFILTER > 0 */
m->m_data += sizeof(struct ether_header);
ether_input(ifp, eh, m);
}
}
#ifdef TLDEBUG_RX
printf("TL_INTR_RxEOF: ack %d\n", ack);
#else
if (ack == 0) {
printf("%s: EOF intr without anything to read !\n",
sc->sc_dev.dv_xname);
tl_reset(sc);
/* shedule reinit of the board */
timeout(tl_restart, sc, 1);
return(1);
}
#endif
break;
case TL_INTR_RxEOC:
ack++;
#ifdef TLDEBUG_RX
printf("TL_INTR_RxEOC: ack %d\n", ack);
#endif
#ifdef DIAGNOSTIC
if (sc->active_Rx->hw_list.stat & TL_RX_CSTAT_CPLT) {
printf("%s: Rx EOC interrupt and active Rx list not cleared\n",
sc->sc_dev.dv_xname);
return 0;
} else
#endif
{
/* write adress of Rx list and send Rx GO command, ack interrupt
and enable interrupts in one command */
TL_HR_WRITE(sc, TL_HOST_CH_PARM,
vtophys(&sc->active_Rx->hw_list));
TL_HR_WRITE(sc, TL_HOST_CMD,
HOST_CMD_GO | HOST_CMD_RT | HOST_CMD_Nes | ack | int_type |
HOST_CMD_ACK | HOST_CMD_IntOn);
return 1;
}
case TL_INTR_TxEOF:
case TL_INTR_TxEOC:
while ((Tx = sc->active_Tx) != NULL) {
if((Tx->hw_list.stat & TL_TX_CSTAT_CPLT) == 0)
break;
ack++;
#ifdef TLDEBUG_TX
printf("TL_INTR_TxEOC: list 0x%xp done\n", vtophys(&Tx->hw_list));
#endif
Tx->hw_list.stat = 0;
m_freem(Tx->m);
Tx->m = NULL;
sc->active_Tx = Tx->next;
if (sc->active_Tx == NULL)
sc->last_Tx = NULL;
Tx->next = sc->Free_Tx;
sc->Free_Tx = Tx;
}
/* if this was an EOC, ACK immediatly */
if (int_type == TL_INTR_TxEOC) {
#ifdef TLDEBUG_TX
printf("TL_INTR_TxEOC: ack %d (will be set to 1)\n", ack);
#endif
TL_HR_WRITE(sc, TL_HOST_CMD, 1 | int_type | HOST_CMD_ACK |
HOST_CMD_IntOn);
if ( sc->active_Tx != NULL) { /* needs a Tx go command */
TL_HR_WRITE(sc, TL_HOST_CH_PARM,
vtophys(&sc->active_Tx->hw_list));
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO);
}
sc->tl_if.if_timer = 0;
if (sc->tl_if.if_snd.ifq_head != NULL)
tl_ifstart(&sc->tl_if);
return 1;
}
#ifdef TLDEBUG
else {
printf("TL_INTR_TxEOF: ack %d\n", ack);
}
#endif
sc->tl_if.if_timer = 0;
if (sc->tl_if.if_snd.ifq_head != NULL)
tl_ifstart(&sc->tl_if);
break;
case TL_INTR_Stat:
ack++;
#ifdef TLDEBUG
printf("TL_INTR_Stat: ack %d\n", ack);
#endif
tl_read_stats(sc);
break;
case TL_INTR_Adc:
if (int_reg & TL_INTVec_MASK) {
/* adapter check conditions */
printf("%s: check condition, intvect=0x%x, ch_param=0x%x\n",
sc->sc_dev.dv_xname, int_reg & TL_INTVec_MASK,
TL_HR_READ(sc, TL_HOST_CH_PARM));
tl_reset(sc);
/* shedule reinit of the board */
timeout(tl_restart, sc, 1);
return(1);
} else {
u_int8_t netstat;
/* Network status */
netstat = tl_intreg_read_byte(sc, TL_INT_NET+TL_INT_NetSts);
printf("%s: network status, NetSts=%x\n",
sc->sc_dev.dv_xname, netstat);
/* Ack interrupts */
tl_intreg_write_byte(sc, TL_INT_NET+TL_INT_NetSts, netstat);
ack++;
}
break;
default:
printf("%s: unhandled interrupt code %x!\n",
sc->sc_dev.dv_xname, int_type);
ack++;
}
if (ack) {
/* Ack the interrupt and enable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD, ack | int_type | HOST_CMD_ACK |
HOST_CMD_IntOn);
return 1;
}
/* ack = 0 ; interrupt was perhaps not our. Just enable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOn);
return 0;
}
static int
tl_ifioctl(ifp, cmd, data)
struct ifnet *ifp;
ioctl_cmd_t cmd;
caddr_t data;
{
struct tl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splimp();
switch(cmd) {
case SIOCSIFADDR: {
struct ifaddr *ifa = (struct ifaddr *)data;
sc->tl_if.if_flags |= IFF_UP;
if ((error = tl_init(sc)) != NULL) {
sc->tl_if.if_flags &= ~IFF_UP;
break;
}
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NS
case AF_NS: {
struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host*) LLADDR(ifp->if_sadl);
else
bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
ifp->if_addrlen);
break;
}
#endif
default:
break;
}
break;
}
case SIOCSIFFLAGS:
{
u_int8_t reg;
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
*/
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_flags & IFF_RUNNING) == 0) {
error = tl_init(sc);
/* all flags have been handled by init */
break;
}
error = 0;
reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetCmd);
if (ifp->if_flags & IFF_PROMISC)
reg |= TL_NETCOMMAND_CAF;
else
reg &= ~TL_NETCOMMAND_CAF;
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd, reg);
#ifdef TL_PRIV_STATS
if (ifp->if_flags & IFF_LINK0) {
ifp->if_flags &= ~IFF_LINK0;
printf("%s errors statistics\n", sc->sc_dev.dv_xname);
printf(" %4d RX buffer overrun\n",sc->ierr_overr);
printf(" %4d RX code error\n", sc->ierr_code);
printf(" %4d RX crc error\n", sc->ierr_crc);
printf(" %4d RX out of memory\n", sc->ierr_nomem);
printf(" %4d TX buffer underrun\n", sc->oerr_underr);
printf(" %4d TX deffered frames\n", sc->oerr_deffered);
printf(" %4d TX single collisions\n", sc->oerr_coll);
printf(" %4d TX multi collisions\n", sc->oerr_multicoll);
printf(" %4d TX exessive collisions\n", sc->oerr_exesscoll);
printf(" %4d TX late collisions\n", sc->oerr_latecoll);
printf(" %4d TX carrier loss\n", sc->oerr_carrloss);
printf(" %4d TX mbuf copy\n", sc->oerr_mcopy);
}
#endif
} else {
if (ifp->if_flags & IFF_RUNNING)
tl_shutdown(sc);
error = 0;
}
break;
}
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Update multicast listeners
*/
if (cmd == SIOCADDMULTI)
error = ether_addmulti(ifr, &sc->tl_ec);
else
error = ether_delmulti(ifr, &sc->tl_ec);
if (error == ENETRESET) {
tl_addr_filter(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->tl_ifmedia, cmd);
break;
default:
error = EINVAL;
}
splx(s);
return error;
}
static void
tl_ifstart(ifp)
struct ifnet *ifp;
{
tl_softc_t *sc = ifp->if_softc;
struct mbuf *m, *mb_head;
struct Tx_list *Tx;
int segment, size;
txloop:
/* If we don't have more space ... */
if (sc->Free_Tx == NULL) {
#ifdef TLDEBUG
printf("tl_ifstart: No free TX list\n");
#endif
return;
}
/* Grab a paquet for output */
IF_DEQUEUE(&ifp->if_snd, mb_head);
if (mb_head == NULL) {
#ifdef TLDEBUG_TX
printf("tl_ifstart: nothing to send\n");
#endif
return;
}
Tx = sc->Free_Tx;
sc->Free_Tx = Tx->next;
/*
* Go through each of the mbufs in the chain and initialize
* the transmit list descriptors with the physical address
* and size of the mbuf.
*/
tbdinit:
bzero(Tx, sizeof(struct Tx_list));
Tx->m = mb_head;
size = 0;
for (m = mb_head, segment = 0; m != NULL ; m = m->m_next) {
if (m->m_len != 0) {
if (segment == TL_NSEG)
break;
size += m->m_len;
Tx->hw_list.seg[segment].data_addr =
vtophys(mtod(m, vm_offset_t));
Tx->hw_list.seg[segment].data_count = m->m_len;
segment++;
}
}
if (m != NULL || (size < ETHER_MIN_TX && segment == TL_NSEG)) {
/*
* We ran out of segments, or we will. We have to recopy this mbuf
* chain first.
*/
struct mbuf *mn;
#ifdef TLDEBUG_TX
printf("tl_ifstart: need to copy mbuf\n");
#endif
#ifdef TL_PRIV_STATS
sc->oerr_mcopy++;
#endif
MGETHDR(mn, M_DONTWAIT, MT_DATA);
if (mn == NULL) {
m_freem(mb_head);
goto bad;
}
if (mb_head->m_pkthdr.len > MHLEN) {
MCLGET(mn, M_DONTWAIT);
if ((mn->m_flags & M_EXT) == 0) {
m_freem(mn);
m_freem(mb_head);
goto bad;
}
}
m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
mtod(mn, caddr_t));
mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
m_freem(mb_head);
mb_head = mn;
goto tbdinit;
}
/* We are at end of mbuf chain. check the size and
* see if it needs to be extended
*/
if (size < ETHER_MIN_TX) {
#ifdef DIAGNOSTIC
if (segment >= TL_NSEG) {
panic("tl_ifstart: to much segmets (%d)\n", segment);
}
#endif
/*
* add the nullbuf in the seg
*/
Tx->hw_list.seg[segment].data_count =
ETHER_MIN_TX - size;
Tx->hw_list.seg[segment].data_addr =
vtophys(nullbuf);
size = ETHER_MIN_TX;
segment++;
}
/* The list is done, finish the list init */
Tx->hw_list.seg[segment-1].data_count |=
TL_LAST_SEG;
Tx->hw_list.stat = (size << 16) | 0x3000;
#ifdef TLDEBUG_TX
printf("%s: sending, Tx : stat = 0x%x\n", sc->sc_dev.dv_xname,
Tx->hw_list.stat);
#if 0
for(segment = 0; segment < TL_NSEG; segment++) {
printf(" seg %d addr 0x%x len 0x%x\n",
segment,
Tx->hw_list.seg[segment].data_addr,
Tx->hw_list.seg[segment].data_count);
}
#endif
#endif
sc->opkt++;
if (sc->active_Tx == NULL) {
sc->active_Tx = sc->last_Tx = Tx;
#ifdef TLDEBUG_TX
printf("%s: Tx GO, addr=0x%x\n", sc->sc_dev.dv_xname,
vtophys(&Tx->hw_list));
#endif
TL_HR_WRITE(sc, TL_HOST_CH_PARM, vtophys(&Tx->hw_list));
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO);
} else {
#ifdef TLDEBUG_TX
printf("%s: Tx addr=0x%x queued\n", sc->sc_dev.dv_xname,
vtophys(&Tx->hw_list));
#endif
sc->last_Tx->hw_list.fwd = vtophys(&Tx->hw_list);
sc->last_Tx->next = Tx;
sc->last_Tx = Tx;
#ifdef DIAGNOSTIC
if (sc->last_Tx->hw_list.fwd & 0x7)
printf("%s: physical addr 0x%x of list not properly aligned\n",
sc->sc_dev.dv_xname, sc->last_Rx->hw_list.fwd);
#endif
}
#if NBPFILTER > 0
/* Pass packet to bpf if there is a listener */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, mb_head);
#endif
/* Set a 5 second timer just in case we don't hear from the card again. */
ifp->if_timer = 5;
goto txloop;
bad:
#ifdef TLDEBUG
printf("tl_ifstart: Out of mbuf, Tx pkt lost\n");
#endif
Tx->next = sc->Free_Tx;
sc->Free_Tx = Tx;
return;
}
static void
tl_ifwatchdog(ifp)
struct ifnet *ifp;
{
tl_softc_t *sc = ifp->if_softc;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
tl_init(sc);
}
static int
tl_mediachange(ifp)
struct ifnet *ifp;
{
tl_softc_t *sc = ifp->if_softc;
int err;
u_int32_t reg;
int oldmedia;
#ifdef TLDEBUG
printf("tl_mediachange, media %x\n", sc->tl_ifmedia.ifm_media);
#endif
oldmedia = sc->mii.mii_media_active;
sc->mii.mii_media_active = sc->tl_ifmedia.ifm_media;
if ((err = mii_mediachg(&sc->mii)) != 0)
sc->mii.mii_media_active = oldmedia;
reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetCmd);
if (sc->mii.mii_media_active & IFM_FDX)
reg |= TL_NETCOMMAND_DUPLEX;
else
reg &= ~TL_NETCOMMAND_DUPLEX;
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd, reg);
return err;
}
static void
tl_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
tl_softc_t *sc = ifp->if_softc;
if (IFM_SUBTYPE(sc->mii.mii_media_active) == IFM_10_2 ||
IFM_SUBTYPE(sc->mii.mii_media_active) == IFM_10_5)
if (sc->tl_flags & TL_IFACT)
sc->mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
else
sc->mii.mii_media_status = IFM_AVALID;
else
mii_pollstat(&sc->mii);
ifmr->ifm_active = sc->mii.mii_media_active;
ifmr->ifm_status = sc->mii.mii_media_status;
}
static int tl_add_RxBuff(Rx, oldm)
struct Rx_list *Rx;
struct mbuf *oldm;
{
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
if (oldm == NULL)
return 0;
m = oldm;
m->m_data = m->m_ext.ext_buf;
}
} else {
if (oldm == NULL)
return 0;
m = oldm;
m->m_data = m->m_ext.ext_buf;
}
/*
* Move the data pointer up so that the incoming data packet
* will be 32-bit aligned.
*/
m->m_data += 2;
/* (re)init the Rx_list struct */
Rx->m = m;
Rx->hw_list.stat = ((MCLBYTES -2) << 16) | 0x3000;
Rx->hw_list.seg.data_count = (MCLBYTES -2);
Rx->hw_list.seg.data_addr = vtophys(m->m_data);
return (m != oldm);
}
static void tl_ticks(v)
void *v;
{
tl_softc_t *sc = v;
tl_read_stats(sc);
if (sc->opkt > 0) {
if (sc->oerr_exesscoll > sc->opkt / 100) { /* exess collisions */
if (sc->tl_flags & TL_IFACT) /* only print once */
printf("%s: no carrier\n", sc->sc_dev.dv_xname);
sc->tl_flags &= ~TL_IFACT;
} else
sc->tl_flags |= TL_IFACT;
sc->oerr_exesscoll = sc->opkt = 0;
sc->tl_lasttx = 0;
} else {
sc->tl_lasttx++;
if (sc->tl_lasttx >= TL_IDLETIME) {
/*
* No TX activity in the last TL_IDLETIME seconds.
* sends a LLC Class1 TEST pkt
*/
struct mbuf *m;
int s;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) {
#ifdef TLDEBUG
printf("tl_ticks: sending LLC test pkt\n");
#endif
bcopy(sc->tl_enaddr,
mtod(m, struct ether_header *)->ether_dhost, 6);
bcopy(sc->tl_enaddr,
mtod(m, struct ether_header *)->ether_shost, 6);
mtod(m, struct ether_header *)->ether_type = htons(3);
mtod(m, unsigned char *)[14] = 0;
mtod(m, unsigned char *)[15] = 0;
mtod(m, unsigned char *)[16] = 0xE3;
/* LLC Class1 TEST (no poll) */
m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3;
s = splnet();
IF_PREPEND(&sc->tl_if.if_snd, m);
tl_ifstart(&sc->tl_if);
splx(s);
}
}
}
/* read statistics every seconds */
timeout(tl_ticks, v, hz);
}
static void
tl_read_stats(sc)
tl_softc_t *sc;
{
u_int32_t reg;
int ierr_overr;
int ierr_code;
int ierr_crc;
int oerr_underr;
int oerr_deffered;
int oerr_coll;
int oerr_multicoll;
int oerr_exesscoll;
int oerr_latecoll;
int oerr_carrloss;
struct ifnet *ifp = &sc->tl_if;
reg = tl_intreg_read(sc, TL_INT_STATS_TX);
ifp->if_opackets += reg & 0x00ffffff;
oerr_underr = reg >> 24;
reg = tl_intreg_read(sc, TL_INT_STATS_RX);
ifp->if_ipackets += reg & 0x00ffffff;
ierr_overr = reg >> 24;
reg = tl_intreg_read(sc, TL_INT_STATS_FERR);
ierr_crc = (reg & TL_FERR_CRC) >> 16;
ierr_code = (reg & TL_FERR_CODE) >> 24;
oerr_deffered = (reg & TL_FERR_DEF);
reg = tl_intreg_read(sc, TL_INT_STATS_COLL);
oerr_multicoll = (reg & TL_COL_MULTI);
oerr_coll = (reg & TL_COL_SINGLE) >> 16;
reg = tl_intreg_read(sc, TL_INT_LERR);
oerr_exesscoll = (reg & TL_LERR_ECOLL);
oerr_latecoll = (reg & TL_LERR_LCOLL) >> 8;
oerr_carrloss = (reg & TL_LERR_CL) >> 16;
sc->stats_exesscoll += oerr_exesscoll;
ifp->if_oerrors += oerr_underr + oerr_exesscoll + oerr_latecoll +
oerr_carrloss;
ifp->if_collisions += oerr_coll + oerr_multicoll;
ifp->if_ierrors += ierr_overr + ierr_code + ierr_crc;
if (ierr_overr)
printf("%s: receiver ring buffer overrun\n", sc->sc_dev.dv_xname);
if (oerr_underr)
printf("%s: transmit buffer underrun\n", sc->sc_dev.dv_xname);
#ifdef TL_PRIV_STATS
sc->ierr_overr += ierr_overr;
sc->ierr_code += ierr_code;
sc->ierr_crc += ierr_crc;
sc->oerr_underr += oerr_underr;
sc->oerr_deffered += oerr_deffered;
sc->oerr_coll += oerr_coll;
sc->oerr_multicoll += oerr_multicoll;
sc->oerr_exesscoll += oerr_exesscoll;
sc->oerr_latecoll += oerr_latecoll;
sc->oerr_carrloss += oerr_carrloss;
#endif
}
static void tl_addr_filter(sc)
tl_softc_t *sc;
{
struct ether_multistep step;
struct ether_multi *enm;
u_int32_t hash[2] = {0, 0};
int i;
sc->tl_if.if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, &sc->tl_ec, enm);
while (enm != NULL) {
#ifdef TLDEBUG
printf("tl_addr_filter: addrs %s %s\n", ether_sprintf(enm->enm_addrlo), ether_sprintf(enm->enm_addrhi));
#endif
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
i = tl_multicast_hash(enm->enm_addrlo);
hash[i/32] |= 1 << (i%32);
} else {
hash[0] = hash[1] = 0xffffffff;
sc->tl_if.if_flags |= IFF_ALLMULTI;
break;
}
ETHER_NEXT_MULTI(step, enm);
}
#ifdef TLDEBUG
printf("tl_addr_filer: hash1 %x has2 %x\n", hash[0], hash[1]);
#endif
tl_intreg_write(sc, TL_INT_HASH1, hash[0]);
tl_intreg_write(sc, TL_INT_HASH2, hash[1]);
}
static int tl_multicast_hash(a)
u_int8_t *a;
{
int hash;
#define DA(addr,bit) (addr[5 - (bit/8)] & (1 << bit%8))
#define xor8(a,b,c,d,e,f,g,h) (((a != 0) + (b != 0) + (c != 0) + (d != 0) + (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
hash = xor8( DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
DA(a,36), DA(a,42));
hash |= xor8( DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
DA(a,37), DA(a,43)) << 1;
hash |= xor8( DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
DA(a,38), DA(a,44)) << 2;
hash |= xor8( DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
DA(a,39), DA(a,45)) << 3;
hash |= xor8( DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
DA(a,40), DA(a,46)) << 4;
hash |= xor8( DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
DA(a,41), DA(a,47)) << 5;
return hash;
}
#if defined(TLDEBUG_RX)
void ether_printheader(eh)
struct ether_header *eh;
{
u_char *c = (char*)eh;
int i;
for (i=0; i<sizeof(struct ether_header); i++)
printf("%x ", (u_int)c[i]);
printf("\n");
}
#endif