NetBSD/sys/dev/pci/if_iwi.c
dyoung 0b81c10899 Cosmetic: use the idiom &ic->ic_nw_keys[0] instead of ic->ic_nw_keys,
just be a little more parallel to &ic->ic_nw_keys[IEEE80211_WEP_NKID]
on the same line.
2005-07-07 00:43:01 +00:00

2083 lines
53 KiB
C

/* $NetBSD: if_iwi.c,v 1.11 2005/07/07 00:43:01 dyoung Exp $ */
/*-
* Copyright (c) 2004, 2005
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_iwi.c,v 1.11 2005/07/07 00:43:01 dyoung Exp $");
/*-
* Intel(R) PRO/Wireless 2200BG/2915ABG driver
* http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <crypto/arc4/arc4.h>
#include <dev/pci/if_iwireg.h>
#include <dev/pci/if_iwivar.h>
static const struct ieee80211_rateset iwi_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset iwi_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset iwi_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static int iwi_match(struct device *, struct cfdata *, void *);
static void iwi_attach(struct device *, struct device *, void *);
static int iwi_detach(struct device *, int);
static int iwi_dma_alloc(struct iwi_softc *);
static void iwi_release(struct iwi_softc *);
static int iwi_media_change(struct ifnet *);
static void iwi_media_status(struct ifnet *, struct ifmediareq *);
static u_int16_t iwi_read_prom_word(struct iwi_softc *, u_int8_t);
static int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void iwi_fix_channel(struct ieee80211com *, struct mbuf *);
static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_buf *, int,
struct iwi_frame *);
static void iwi_notification_intr(struct iwi_softc *, struct iwi_rx_buf *,
struct iwi_notif *);
static void iwi_rx_intr(struct iwi_softc *);
static void iwi_tx_intr(struct iwi_softc *);
static int iwi_intr(void *);
static int iwi_cmd(struct iwi_softc *, u_int8_t, void *, u_int8_t, int);
static int iwi_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *);
static void iwi_start(struct ifnet *);
static void iwi_watchdog(struct ifnet *);
static int iwi_get_table0(struct iwi_softc *, u_int32_t *);
static int iwi_get_radio(struct iwi_softc *, int *);
static int iwi_ioctl(struct ifnet *, u_long, caddr_t);
static void iwi_stop_master(struct iwi_softc *);
static int iwi_reset(struct iwi_softc *);
static int iwi_load_ucode(struct iwi_softc *, void *, int);
static int iwi_load_firmware(struct iwi_softc *, void *, int);
static int iwi_cache_firmware(struct iwi_softc *, void *);
static void iwi_free_firmware(struct iwi_softc *);
static int iwi_config(struct iwi_softc *);
static int iwi_set_chan(struct iwi_softc *, struct ieee80211_channel *);
static int iwi_scan(struct iwi_softc *);
static int iwi_auth_and_assoc(struct iwi_softc *);
static int iwi_init(struct ifnet *);
static void iwi_stop(struct ifnet *, int);
static int iwi_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
static __inline u_int8_t MEM_READ_1(struct iwi_softc *sc, u_int32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
}
static __inline u_int32_t MEM_READ_4(struct iwi_softc *sc, u_int32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
}
#ifdef IWI_DEBUG
#define DPRINTF(x) if (iwi_debug > 0) printf x
#define DPRINTFN(n, x) if (iwi_debug >= (n)) printf x
int iwi_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
CFATTACH_DECL(iwi, sizeof (struct iwi_softc), iwi_match, iwi_attach,
iwi_detach, NULL);
static int
iwi_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
return 0;
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2200BG ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1)
return 1;
return 0;
}
/* Base Address Register */
#define IWI_PCI_BAR0 0x10
static void
iwi_attach(struct device *parent, struct device *self, void *aux)
{
struct iwi_softc *sc = (struct iwi_softc *)self;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct pci_attach_args *pa = aux;
const char *intrstr;
char devinfo[256];
bus_space_tag_t memt;
bus_space_handle_t memh;
bus_addr_t base;
pci_intr_handle_t ih;
pcireg_t data;
u_int16_t val;
int error, revision, i;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
revision = PCI_REVISION(pa->pa_class);
aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
/* clear device specific PCI configuration register 0x41 */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
data &= ~0x0000ff00;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
/* enable bus-mastering */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
data |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
/* map the register window */
error = pci_mapreg_map(pa, IWI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
if (error != 0) {
aprint_error("%s: could not map memory space\n",
sc->sc_dev.dv_xname);
return;
}
sc->sc_st = memt;
sc->sc_sh = memh;
sc->sc_dmat = pa->pa_dmat;
/* disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
if (pci_intr_map(pa, &ih) != 0) {
aprint_error("%s: could not map interrupt\n",
sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwi_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error("%s: could not establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
if (iwi_reset(sc) != 0) {
aprint_error("%s: could not reset adapter\n",
sc->sc_dev.dv_xname);
return;
}
if (iwi_dma_alloc(sc) != 0) {
aprint_error("%s: could not allocate DMA resources\n",
sc->sc_dev.dv_xname);
return;
}
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps = IEEE80211_C_IBSS | IEEE80211_C_PMGT | IEEE80211_C_WEP |
IEEE80211_C_TXPMGT | IEEE80211_C_SHPREAMBLE | IEEE80211_C_MONITOR;
/* read MAC address from EEPROM */
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
ic->ic_myaddr[0] = val >> 8;
ic->ic_myaddr[1] = val & 0xff;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
ic->ic_myaddr[2] = val >> 8;
ic->ic_myaddr[3] = val & 0xff;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
ic->ic_myaddr[4] = val >> 8;
ic->ic_myaddr[5] = val & 0xff;
aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(ic->ic_myaddr));
if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_INTEL_PRO_WL_2200BG) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 161; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
/* default to authmode OPEN */
sc->authmode = IEEE80211_AUTH_OPEN;
/* IBSS channel undefined for now */
ic->ic_ibss_chan = &ic->ic_channels[0];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = iwi_init;
ifp->if_stop = iwi_stop;
ifp->if_ioctl = iwi_ioctl;
ifp->if_start = iwi_start;
ifp->if_watchdog = iwi_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwi_newstate;
ic->ic_crypto.cs_key_alloc = iwi_key_alloc;
ieee80211_media_init(ic, iwi_media_change, iwi_media_status);
#if NBPFILTER > 0
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
#endif
}
static int
iwi_detach(struct device* self, int flags)
{
struct iwi_softc *sc = (struct iwi_softc *)self;
struct ifnet *ifp = &sc->sc_if;
iwi_stop(ifp, 1);
iwi_free_firmware(sc);
#if NBPFILTER > 0
bpfdetach(ifp);
#endif
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
iwi_release(sc);
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
sc->sc_ih = NULL;
}
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
return 0;
}
static int
iwi_dma_alloc(struct iwi_softc *sc)
{
int i, nsegs, error;
/*
* Allocate and map Tx ring
*/
error = bus_dmamap_create(sc->sc_dmat,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE, 1,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE, 0, BUS_DMA_NOWAIT,
&sc->tx_ring_map);
if (error != 0) {
aprint_error("%s: could not create tx ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE, PAGE_SIZE, 0,
&sc->tx_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not allocate tx ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->tx_ring_seg, nsegs,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE,
(caddr_t *)&sc->tx_desc, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not map tx ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->tx_ring_map, sc->tx_desc,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not load tx ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
memset(sc->tx_desc, 0, sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE);
/*
* Allocate and map command ring
*/
error = bus_dmamap_create(sc->sc_dmat,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE, 1,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE, 0,
BUS_DMA_NOWAIT, &sc->cmd_ring_map);
if (error != 0) {
aprint_error("%s: could not create command ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE, PAGE_SIZE, 0,
&sc->cmd_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not allocate command ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_ring_seg, nsegs,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE,
(caddr_t *)&sc->cmd_desc, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not map command ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->cmd_ring_map, sc->cmd_desc,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not load command ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
memset(sc->cmd_desc, 0,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE);
/*
* Allocate Tx buffers DMA maps
*/
for (i = 0; i < IWI_TX_RING_SIZE; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IWI_MAX_NSEG,
MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->tx_buf[i].map);
if (error != 0) {
aprint_error("%s: could not create tx buf DMA map",
sc->sc_dev.dv_xname);
goto fail;
}
}
/*
* Allocate and map Rx buffers
*/
for (i = 0; i < IWI_RX_RING_SIZE; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &sc->rx_buf[i].map);
if (error != 0) {
aprint_error("%s: could not create rx buf DMA map",
sc->sc_dev.dv_xname);
goto fail;
}
MGETHDR(sc->rx_buf[i].m, M_DONTWAIT, MT_DATA);
if (sc->rx_buf[i].m == NULL) {
aprint_error("%s: could not allocate rx mbuf\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
MCLGET(sc->rx_buf[i].m, M_DONTWAIT);
if (!(sc->rx_buf[i].m->m_flags & M_EXT)) {
m_freem(sc->rx_buf[i].m);
aprint_error("%s: could not allocate rx mbuf cluster\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->rx_buf[i].map,
mtod(sc->rx_buf[i].m, void *), MCLBYTES, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not load rx buffer DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
return 0;
fail: iwi_release(sc);
return error;
}
static void
iwi_release(struct iwi_softc *sc)
{
int i;
if (sc->tx_ring_map != NULL) {
if (sc->tx_desc != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->tx_ring_map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->tx_desc,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE);
bus_dmamem_free(sc->sc_dmat, &sc->tx_ring_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->tx_ring_map);
}
if (sc->cmd_ring_map != NULL) {
if (sc->cmd_desc != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->cmd_ring_map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->cmd_desc,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE);
bus_dmamem_free(sc->sc_dmat, &sc->cmd_ring_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->cmd_ring_map);
}
for (i = 0; i < IWI_TX_RING_SIZE; i++) {
if (sc->tx_buf[i].m != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->tx_buf[i].map);
m_freem(sc->tx_buf[i].m);
}
bus_dmamap_destroy(sc->sc_dmat, sc->tx_buf[i].map);
}
for (i = 0; i < IWI_RX_RING_SIZE; i++) {
if (sc->rx_buf[i].m != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->rx_buf[i].map);
m_freem(sc->rx_buf[i].m);
}
bus_dmamap_destroy(sc->sc_dmat, sc->rx_buf[i].map);
}
}
static int
iwi_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
{
if (k >= &ic->ic_nw_keys[0] && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
return k - ic->ic_nw_keys;
return IEEE80211_KEYIX_NONE;
}
static int
iwi_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
iwi_init(ifp);
return 0;
}
static void
iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
#define N(a) (sizeof (a) / sizeof (a[0]))
static const struct {
u_int32_t val;
int rate;
} rates[] = {
{ IWI_RATE_DS1, 2 },
{ IWI_RATE_DS2, 4 },
{ IWI_RATE_DS5, 11 },
{ IWI_RATE_DS11, 22 },
{ IWI_RATE_OFDM6, 12 },
{ IWI_RATE_OFDM9, 18 },
{ IWI_RATE_OFDM12, 24 },
{ IWI_RATE_OFDM18, 36 },
{ IWI_RATE_OFDM24, 48 },
{ IWI_RATE_OFDM36, 72 },
{ IWI_RATE_OFDM48, 96 },
{ IWI_RATE_OFDM54, 108 },
};
u_int32_t val;
int rate, i;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/* read current transmission rate from adapter */
val = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
/* convert rate to 802.11 rate */
for (i = 0; i < N(rates) && rates[i].val != val; i++);
rate = (i < N(rates)) ? rates[i].rate : 0;
imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
/* should not get there */
break;
}
#undef N
}
static int
iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct iwi_softc *sc = ic->ic_ifp->if_softc;
switch (nstate) {
case IEEE80211_S_SCAN:
iwi_scan(sc);
break;
case IEEE80211_S_AUTH:
iwi_auth_and_assoc(sc);
break;
case IEEE80211_S_RUN:
if (ic->ic_opmode == IEEE80211_M_IBSS)
ieee80211_new_state(ic, IEEE80211_S_AUTH, -1);
else if (ic->ic_opmode == IEEE80211_M_MONITOR)
iwi_set_chan(sc, ic->ic_ibss_chan);
break;
case IEEE80211_S_ASSOC:
case IEEE80211_S_INIT:
break;
}
ic->ic_state = nstate;
return 0;
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM.
* DON'T PLAY WITH THIS CODE UNLESS YOU KNOW *EXACTLY* WHAT YOU'RE DOING!
*/
static u_int16_t
iwi_read_prom_word(struct iwi_softc *sc, u_int8_t addr)
{
u_int32_t tmp;
u_int16_t val;
int n;
/* Clock C once before the first command */
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* Write start bit (1) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
/* Write READ opcode (10) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
/* Write address A7-A0 */
for (n = 7; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
}
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* Read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
}
IWI_EEPROM_CTL(sc, 0);
/* Clear Chip Select and clock C */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
return be16toh(val);
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
*/
static void
iwi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
{
struct ieee80211_frame *wh;
u_int8_t subtype;
u_int8_t *frm, *efrm;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
frm = (u_int8_t *)(wh + 1);
efrm = mtod(m, u_int8_t *) + m->m_len;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
ic->ic_bss->ni_chan = &ic->ic_channels[frm[2]];
frm += frm[1] + 2;
}
}
static void
iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_buf *buf, int i,
struct iwi_frame *frame)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct mbuf *m;
struct ieee80211_frame_min *wh;
struct ieee80211_node *ni;
int error;
DPRINTFN(5, ("RX!DATA!%u!%u!%u\n", le16toh(frame->len), frame->chan,
frame->rssi_dbm));
bus_dmamap_sync(sc->sc_dmat, buf->map, sizeof (struct iwi_hdr),
sizeof (struct iwi_frame) + le16toh(frame->len),
BUS_DMASYNC_POSTREAD);
if (le16toh(frame->len) < sizeof (struct ieee80211_frame_min) ||
le16toh(frame->len) > MCLBYTES) {
aprint_error("%s: bad frame length\n", sc->sc_dev.dv_xname);
}
bus_dmamap_unload(sc->sc_dmat, buf->map);
/* Finalize mbuf */
m = buf->m;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
sizeof (struct iwi_frame) + le16toh(frame->len);
m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
wh = mtod(m, struct ieee80211_frame_min *);
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
}
#endif
if (ic->ic_state == IEEE80211_S_SCAN)
iwi_fix_channel(ic, m);
ni = ieee80211_find_rxnode(ic, wh);
/* Send the frame to the upper layer */
ieee80211_input(ic, m, ni, IWI_RSSIDBM2RAW(frame->rssi_dbm), 0);
ieee80211_free_node(ni);
MGETHDR(buf->m, M_DONTWAIT, MT_DATA);
if (buf->m == NULL) {
aprint_error("%s: could not allocate rx mbuf\n",
sc->sc_dev.dv_xname);
return;
}
MCLGET(buf->m, M_DONTWAIT);
if (!(buf->m->m_flags & M_EXT)) {
aprint_error("%s: could not allocate rx mbuf cluster\n",
sc->sc_dev.dv_xname);
m_freem(buf->m);
buf->m = NULL;
return;
}
error = bus_dmamap_load(sc->sc_dmat, buf->map, mtod(buf->m, void *),
MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not load rx buf DMA map\n",
sc->sc_dev.dv_xname);
m_freem(buf->m);
buf->m = NULL;
return;
}
CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4, buf->map->dm_segs[0].ds_addr);
}
static void
iwi_notification_intr(struct iwi_softc *sc, struct iwi_rx_buf *buf,
struct iwi_notif *notif)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_notif_scan_channel *chan;
struct iwi_notif_scan_complete *scan;
struct iwi_notif_authentication *auth;
struct iwi_notif_association *assoc;
bus_dmamap_sync(sc->sc_dmat, buf->map, sizeof (struct iwi_hdr),
sizeof (struct iwi_notif) + le16toh(notif->len),
BUS_DMASYNC_POSTREAD);
switch (notif->type) {
case IWI_NOTIF_TYPE_SCAN_CHANNEL:
chan = (struct iwi_notif_scan_channel *)(notif + 1);
DPRINTFN(2, ("Scan channel (%u)\n", chan->nchan));
break;
case IWI_NOTIF_TYPE_SCAN_COMPLETE:
scan = (struct iwi_notif_scan_complete *)(notif + 1);
DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
scan->status));
/* monitor mode uses scan to set the channel ... */
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_end_scan(ic);
else
iwi_set_chan(sc, ic->ic_ibss_chan);
break;
case IWI_NOTIF_TYPE_AUTHENTICATION:
auth = (struct iwi_notif_authentication *)(notif + 1);
DPRINTFN(2, ("Authentication (%u)\n", auth->state));
switch (auth->state) {
case IWI_AUTHENTICATED:
ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
break;
case IWI_DEAUTHENTICATED:
break;
default:
aprint_error("%s: unknown authentication state %u\n",
sc->sc_dev.dv_xname, auth->state);
}
break;
case IWI_NOTIF_TYPE_ASSOCIATION:
assoc = (struct iwi_notif_association *)(notif + 1);
DPRINTFN(2, ("Association (%u, %u)\n", assoc->state,
assoc->status));
switch (assoc->state) {
case IWI_ASSOCIATED:
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case IWI_DEASSOCIATED:
ieee80211_begin_scan(ic, 0);
break;
default:
aprint_error("%s: unknown association state %u\n",
sc->sc_dev.dv_xname, assoc->state);
}
break;
case IWI_NOTIF_TYPE_CALIBRATION:
case IWI_NOTIF_TYPE_BEACON:
case IWI_NOTIF_TYPE_NOISE:
DPRINTFN(5, ("Notification (%u)\n", notif->type));
break;
default:
aprint_error("%s: unknown notification type %u\n",
sc->sc_dev.dv_xname, notif->type);
}
}
static void
iwi_rx_intr(struct iwi_softc *sc)
{
struct iwi_rx_buf *buf;
struct iwi_hdr *hdr;
u_int32_t r, i;
r = CSR_READ_4(sc, IWI_CSR_RX_READ_INDEX);
for (i = (sc->rx_cur + 1) % IWI_RX_RING_SIZE; i != r;
i = (i + 1) % IWI_RX_RING_SIZE) {
buf = &sc->rx_buf[i];
bus_dmamap_sync(sc->sc_dmat, buf->map, 0,
sizeof (struct iwi_hdr), BUS_DMASYNC_POSTREAD);
hdr = mtod(buf->m, struct iwi_hdr *);
switch (hdr->type) {
case IWI_HDR_TYPE_FRAME:
iwi_frame_intr(sc, buf, i,
(struct iwi_frame *)(hdr + 1));
break;
case IWI_HDR_TYPE_NOTIF:
iwi_notification_intr(sc, buf,
(struct iwi_notif *)(hdr + 1));
break;
default:
aprint_error("%s: unknown hdr type %u\n",
sc->sc_dev.dv_xname, hdr->type);
}
}
/* Tell the firmware what we have processed */
sc->rx_cur = (r == 0) ? IWI_RX_RING_SIZE - 1 : r - 1;
CSR_WRITE_4(sc, IWI_CSR_RX_WRITE_INDEX, sc->rx_cur);
}
static void
iwi_tx_intr(struct iwi_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct iwi_tx_buf *buf;
u_int32_t r, i;
r = CSR_READ_4(sc, IWI_CSR_TX1_READ_INDEX);
for (i = (sc->tx_old + 1) % IWI_TX_RING_SIZE; i != r;
i = (i + 1) % IWI_TX_RING_SIZE) {
buf = &sc->tx_buf[i];
bus_dmamap_unload(sc->sc_dmat, buf->map);
m_freem(buf->m);
buf->m = NULL;
ieee80211_free_node(buf->ni);
buf->ni = NULL;
sc->tx_queued--;
/* kill watchdog timer */
sc->sc_tx_timer = 0;
}
/* Remember what the firmware has processed */
sc->tx_old = (r == 0) ? IWI_TX_RING_SIZE - 1 : r - 1;
/* Call start() since some buffer descriptors have been released */
ifp->if_flags &= ~IFF_OACTIVE;
(*ifp->if_start)(ifp);
}
static int
iwi_intr(void *arg)
{
struct iwi_softc *sc = arg;
u_int32_t r;
if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff)
return 0;
/* Disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
DPRINTFN(8, ("INTR!0x%08x\n", r));
if (r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)) {
aprint_error("%s: fatal error\n", sc->sc_dev.dv_xname);
iwi_stop(&sc->sc_if, 1);
}
if (r & IWI_INTR_FW_INITED) {
if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
wakeup(sc);
}
if (r & IWI_INTR_RADIO_OFF) {
DPRINTF(("radio transmitter off\n"));
iwi_stop(&sc->sc_if, 1);
}
if (r & IWI_INTR_RX_TRANSFER)
iwi_rx_intr(sc);
if (r & IWI_INTR_CMD_TRANSFER)
wakeup(sc);
if (r & IWI_INTR_TX1_TRANSFER)
iwi_tx_intr(sc);
/* Acknowledge interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR, r);
/* Re-enable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
return 1;
}
static int
iwi_cmd(struct iwi_softc *sc, u_int8_t type, void *data, u_int8_t len,
int async)
{
struct iwi_cmd_desc *desc;
DPRINTFN(2, ("TX!CMD!%u!%u\n", type, len));
desc = &sc->cmd_desc[sc->cmd_cur];
desc->hdr.type = IWI_HDR_TYPE_COMMAND;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->type = type;
desc->len = len;
memcpy(desc->data, data, len);
bus_dmamap_sync(sc->sc_dmat, sc->cmd_ring_map,
sc->cmd_cur * sizeof (struct iwi_cmd_desc),
sizeof (struct iwi_cmd_desc), BUS_DMASYNC_PREWRITE);
sc->cmd_cur = (sc->cmd_cur + 1) % IWI_CMD_RING_SIZE;
CSR_WRITE_4(sc, IWI_CSR_CMD_WRITE_INDEX, sc->cmd_cur);
return async ? 0 : tsleep(sc, 0, "iwicmd", hz);
}
static int
iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct iwi_tx_buf *buf;
struct iwi_tx_desc *desc;
struct mbuf *mnew;
int error, i;
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
#endif
buf = &sc->tx_buf[sc->tx_cur];
desc = &sc->tx_desc[sc->tx_cur];
wh = mtod(m0, struct ieee80211_frame *);
/* trim IEEE802.11 header */
m_adj(m0, sizeof (struct ieee80211_frame));
error = bus_dmamap_load_mbuf(sc->sc_dmat, buf->map, m0, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
aprint_error("%s: could not map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m0);
return error;
}
if (error != 0) {
/* too many fragments, linearize */
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
m_freem(m0);
return ENOMEM;
}
M_COPY_PKTHDR(mnew, m0);
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(m0);
m_freem(mnew);
return ENOMEM;
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
m_freem(m0);
mnew->m_len = mnew->m_pkthdr.len;
m0 = mnew;
error = bus_dmamap_load_mbuf(sc->sc_dmat, buf->map, m0,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m0);
return error;
}
}
buf->m = m0;
buf->ni = ni;
desc->hdr.type = IWI_HDR_TYPE_DATA;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->cmd = IWI_DATA_CMD_TX;
desc->len = htole16(m0->m_pkthdr.len);
desc->flags = 0;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
desc->flags |= IWI_DATA_FLAG_NEED_ACK;
} else if (!IEEE80211_IS_MULTICAST(wh->i_addr3))
desc->flags |= IWI_DATA_FLAG_NEED_ACK;
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
wh->i_fc[1] |= IEEE80211_FC1_WEP;
desc->wep_txkey = ic->ic_def_txkey;
} else
desc->flags |= IWI_DATA_FLAG_NO_WEP;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
desc->flags |= IWI_DATA_FLAG_SHPREAMBLE;
memcpy(&desc->wh, wh, sizeof (struct ieee80211_frame));
desc->nseg = htole32(buf->map->dm_nsegs);
for (i = 0; i < buf->map->dm_nsegs; i++) {
desc->seg_addr[i] = htole32(buf->map->dm_segs[i].ds_addr);
desc->seg_len[i] = htole32(buf->map->dm_segs[i].ds_len);
}
bus_dmamap_sync(sc->sc_dmat, sc->tx_ring_map,
sc->tx_cur * sizeof (struct iwi_tx_desc),
sizeof (struct iwi_tx_desc), BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, buf->map, 0, MCLBYTES,
BUS_DMASYNC_PREWRITE);
DPRINTFN(5, ("TX!DATA!%u!%u\n", desc->len, desc->nseg));
/* Inform firmware about this new packet */
sc->tx_queued++;
sc->tx_cur = (sc->tx_cur + 1) % IWI_TX_RING_SIZE;
CSR_WRITE_4(sc, IWI_CSR_TX1_WRITE_INDEX, sc->tx_cur);
return 0;
}
static void
iwi_start(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ieee80211_node *ni;
if (ic->ic_state != IEEE80211_S_RUN)
return;
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->tx_queued >= IWI_TX_RING_SIZE - 4) {
IF_PREPEND(&ifp->if_snd, m0);
ifp->if_flags |= IFF_OACTIVE;
break;
}
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
#endif
if ((ni = ieee80211_find_txnode(ic,
mtod(m0, struct ether_header *)->ether_dhost)) == NULL) {
m_freem(m0);
continue;
}
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL)
continue;
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
#endif
if (iwi_tx_start(ifp, m0, ni) != 0) {
if (ni != NULL)
ieee80211_free_node(ni);
break;
}
/* start watchdog timer */
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
iwi_watchdog(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error("%s: device timeout\n",
sc->sc_dev.dv_xname);
iwi_stop(ifp, 1);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
iwi_get_table0(struct iwi_softc *sc, u_int32_t *tbl)
{
u_int32_t size, buf[128];
if (!(sc->flags & IWI_FLAG_FW_INITED)) {
memset(buf, 0, sizeof buf);
return copyout(buf, tbl, sizeof buf);
}
size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
return copyout(buf, tbl, sizeof buf);
}
static int
iwi_get_radio(struct iwi_softc *sc, int *ret)
{
int val;
val = (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) ? 1 : 0;
return copyout(&val, ret, sizeof val);
}
static int
iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct iwi_softc *sc = ifp->if_softc;
struct ifreq *ifr;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
iwi_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
iwi_stop(ifp, 1);
}
break;
case SIOCGTABLE0:
ifr = (struct ifreq *)data;
error = iwi_get_table0(sc, (u_int32_t *)ifr->ifr_data);
break;
case SIOCGRADIO:
ifr = (struct ifreq *)data;
error = iwi_get_radio(sc, (int *)ifr->ifr_data);
break;
case SIOCSLOADFW:
/* only super-user can do that! */
if ((error = suser(curproc->p_ucred, &curproc->p_acflag)) != 0)
break;
ifr = (struct ifreq *)data;
error = iwi_cache_firmware(sc, ifr->ifr_data);
break;
case SIOCSKILLFW:
/* only super-user can do that! */
if ((error = suser(curproc->p_ucred, &curproc->p_acflag)) != 0)
break;
iwi_stop(ifp, 1);
iwi_free_firmware(sc);
break;
case SIOCG80211AUTH:
((struct ieee80211_auth *)data)->i_authtype = sc->authmode;
break;
case SIOCS80211AUTH:
/* only super-user can do that! */
if ((error = suser(curproc->p_ucred, &curproc->p_acflag)) != 0)
break;
sc->authmode = ((struct ieee80211_auth *)data)->i_authtype;
break;
default:
error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
}
if (error == ENETRESET && cmd != SIOCADDMULTI) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
iwi_init(ifp);
error = 0;
}
splx(s);
return error;
}
static void
iwi_stop_master(struct iwi_softc *sc)
{
int ntries;
/* Disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5)
aprint_error("%s: timeout waiting for master\n",
sc->sc_dev.dv_xname);
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
IWI_RST_PRINCETON_RESET);
sc->flags &= ~IWI_FLAG_FW_INITED;
}
static int
iwi_reset(struct iwi_softc *sc)
{
int i, ntries;
iwi_stop_master(sc);
/* Move adapter to D0 state */
CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) |
IWI_CTL_INIT);
/* Initialize Phase-Locked Level (PLL) */
CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
/* Wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000)
return EIO;
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
IWI_RST_SW_RESET);
DELAY(10);
CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) |
IWI_CTL_INIT);
/* Clear NIC memory */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
for (i = 0; i < 0xc000; i++)
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
return 0;
}
static int
iwi_load_ucode(struct iwi_softc *sc, void *uc, int size)
{
u_int16_t *w;
int ntries, i;
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5) {
aprint_error("%s: timeout waiting for master\n",
sc->sc_dev.dv_xname);
return EIO;
}
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
DELAY(5000);
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) &
~IWI_RST_PRINCETON_RESET);
DELAY(5000);
MEM_WRITE_4(sc, 0x3000e0, 0);
DELAY(1000);
MEM_WRITE_4(sc, 0x300004, 1);
DELAY(1000);
MEM_WRITE_4(sc, 0x300004, 0);
DELAY(1000);
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x40);
/* Adapter is buggy, we must set the address for each word */
for (w = uc; size > 0; w++, size -= 2)
MEM_WRITE_2(sc, 0x200010, *w);
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x80);
/* Wait until we get a response in the uc queue */
for (ntries = 0; ntries < 100; ntries++) {
if (MEM_READ_1(sc, 0x200000) & 1)
break;
DELAY(100);
}
if (ntries == 100) {
aprint_error("%s: timeout waiting for ucode to initialize\n",
sc->sc_dev.dv_xname);
return EIO;
}
/* Empty the uc queue or the firmware will not initialize properly */
for (i = 0; i < 7; i++)
MEM_READ_4(sc, 0x200004);
MEM_WRITE_1(sc, 0x200000, 0x00);
return 0;
}
/* macro to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
static int
iwi_load_firmware(struct iwi_softc *sc, void *fw, int size)
{
bus_dmamap_t map;
bus_dma_segment_t seg;
caddr_t virtaddr;
u_char *p, *end;
u_int32_t sentinel, ctl, src, dst, sum, len, mlen;
int ntries, nsegs, error;
/* Allocate DMA memory for storing firmware image */
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &map);
if (error != 0) {
aprint_error("%s: could not create firmware DMA map\n",
sc->sc_dev.dv_xname);
goto fail1;
}
/*
* We cannot map fw directly because of some hardware constraints on
* the mapping address.
*/
error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not allocate firmware DMA memory\n",
sc->sc_dev.dv_xname);
goto fail2;
}
error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not load firmware DMA map\n",
sc->sc_dev.dv_xname);
goto fail3;
}
error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not load fw dma map\n",
sc->sc_dev.dv_xname);
goto fail4;
}
/* Copy firmware image to DMA memory */
memcpy(virtaddr, fw, size);
/* Make sure the adapter will get up-to-date values */
bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE);
/* Tell the adapter where the command blocks are stored */
MEM_WRITE_4(sc, 0x3000a0, 0x27000);
/*
* Store command blocks into adapter's internal memory using register
* indirections. The adapter will read the firmware image through DMA
* using information stored in command blocks.
*/
src = map->dm_segs[0].ds_addr;
p = virtaddr;
end = p + size;
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
while (p < end) {
dst = GETLE32(p); p += 4; src += 4;
len = GETLE32(p); p += 4; src += 4;
p += len;
while (len > 0) {
mlen = min(len, IWI_CB_MAXDATALEN);
ctl = IWI_CB_DEFAULT_CTL | mlen;
sum = ctl ^ src ^ dst;
/* Write a command block */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
src += mlen;
dst += mlen;
len -= mlen;
}
}
/* Write a fictive final command block (sentinel) */
sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) &
~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER));
/* Tell the adapter to start processing command blocks */
MEM_WRITE_4(sc, 0x3000a4, 0x540100);
/* Wait until the adapter has processed all command blocks */
for (ntries = 0; ntries < 400; ntries++) {
if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
break;
DELAY(100);
}
if (ntries == 400) {
aprint_error("%s: timeout processing cb\n",
sc->sc_dev.dv_xname);
error = EIO;
goto fail5;
}
/* We're done with command blocks processing */
MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
/* Allow interrupts so we know when the firmware is inited */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
/* Tell the adapter to initialize the firmware */
CSR_WRITE_4(sc, IWI_CSR_RST, 0);
CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) |
IWI_CTL_ALLOW_STANDBY);
/* Wait at most one second for firmware initialization to complete */
if ((error = tsleep(sc, 0, "iwiinit", hz)) != 0) {
aprint_error("%s: timeout waiting for firmware initialization "
"to complete\n", sc->sc_dev.dv_xname);
goto fail5;
}
fail5: bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
fail4: bus_dmamem_unmap(sc->sc_dmat, virtaddr, size);
fail3: bus_dmamem_free(sc->sc_dmat, &seg, 1);
fail2: bus_dmamap_destroy(sc->sc_dmat, map);
fail1: return error;
}
/*
* Store firmware into kernel memory so we can download it when we need to,
* e.g when the adapter wakes up from suspend mode.
*/
static int
iwi_cache_firmware(struct iwi_softc *sc, void *data)
{
struct iwi_firmware *kfw = &sc->fw;
struct iwi_firmware ufw;
int error;
iwi_free_firmware(sc);
if ((error = copyin(data, &ufw, sizeof ufw)) != 0)
goto fail1;
kfw->boot_size = ufw.boot_size;
kfw->ucode_size = ufw.ucode_size;
kfw->main_size = ufw.main_size;
kfw->boot = malloc(kfw->boot_size, M_DEVBUF, M_NOWAIT);
if (kfw->boot == NULL) {
error = ENOMEM;
goto fail1;
}
kfw->ucode = malloc(kfw->ucode_size, M_DEVBUF, M_NOWAIT);
if (kfw->ucode == NULL) {
error = ENOMEM;
goto fail2;
}
kfw->main = malloc(kfw->main_size, M_DEVBUF, M_NOWAIT);
if (kfw->main == NULL) {
error = ENOMEM;
goto fail3;
}
if ((error = copyin(ufw.boot, kfw->boot, kfw->boot_size)) != 0)
goto fail4;
if ((error = copyin(ufw.ucode, kfw->ucode, kfw->ucode_size)) != 0)
goto fail4;
if ((error = copyin(ufw.main, kfw->main, kfw->main_size)) != 0)
goto fail4;
DPRINTF(("Firmware cached: boot %u, ucode %u, main %u\n",
kfw->boot_size, kfw->ucode_size, kfw->main_size));
sc->flags |= IWI_FLAG_FW_CACHED;
return 0;
fail4: free(kfw->boot, M_DEVBUF);
fail3: free(kfw->ucode, M_DEVBUF);
fail2: free(kfw->main, M_DEVBUF);
fail1:
return error;
}
static void
iwi_free_firmware(struct iwi_softc *sc)
{
if (!(sc->flags & IWI_FLAG_FW_CACHED))
return;
free(sc->fw.boot, M_DEVBUF);
free(sc->fw.ucode, M_DEVBUF);
free(sc->fw.main, M_DEVBUF);
sc->flags &= ~IWI_FLAG_FW_CACHED;
}
static int
iwi_config(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct iwi_configuration config;
struct iwi_rateset rs;
struct iwi_txpower power;
struct ieee80211_key *k;
struct iwi_wep_key wepkey;
u_int32_t data;
int error, i;
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN, 0);
if (error != 0)
return error;
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = 1;
config.multicast_enabled = 1;
config.noise_reported = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config, sizeof config,
0);
if (error != 0)
return error;
data = htole32(IWI_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data, 0);
if (error != 0)
return error;
data = htole32(ic->ic_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data, 0);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
power.mode = IWI_MODE_11B;
power.nchan = 11;
for (i = 0; i < 11; i++) {
power.chan[i].chan = i + 1;
power.chan[i].power = IWI_TXPOWER_MAX;
}
DPRINTF(("Setting .11b channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power,
0);
if (error != 0)
return error;
power.mode = IWI_MODE_11G;
DPRINTF(("Setting .11g channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power,
0);
if (error != 0)
return error;
}
rs.mode = IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
rs.nrates);
DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
if (error != 0)
return error;
rs.mode = IWI_MODE_11A;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
rs.nrates);
DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
if (error != 0)
return error;
data = htole32(arc4random());
DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data, 0);
if (error != 0)
return error;
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
k = ic->ic_nw_keys;
for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
wepkey.idx = i;
wepkey.len = k->wk_keylen;
memset(wepkey.key, 0, sizeof wepkey.key);
memcpy(wepkey.key, k->wk_key, k->wk_keylen);
DPRINTF(("Setting wep key index %u len %u\n",
wepkey.idx, wepkey.len));
error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
sizeof wepkey, 0);
if (error != 0)
return error;
}
}
/* Enable adapter */
DPRINTF(("Enabling adapter\n"));
return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0, 0);
}
static int
iwi_set_chan(struct iwi_softc *sc, struct ieee80211_channel *chan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_scan scan;
bzero(&scan, sizeof scan);
scan.type = IWI_SCAN_TYPE_PASSIVE;
scan.intval = htole16(2000);
scan.channels[0] = 1 | (IEEE80211_IS_CHAN_5GHZ(chan) ? IWI_CHAN_5GHZ :
IWI_CHAN_2GHZ);
scan.channels[1] = ieee80211_chan2ieee(ic, chan);
DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan)));
return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1);
}
static int
iwi_scan(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_scan scan;
u_int8_t *p;
int i, count;
memset(&scan, 0, sizeof scan);
scan.type = IWI_SCAN_TYPE_BROADCAST;
scan.intval = htole16(40);
p = scan.channels;
count = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]) &&
isset(ic->ic_chan_active, i)) {
*++p = i;
count++;
}
}
*(p - count) = IWI_CHAN_5GHZ | count;
count = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]) &&
isset(ic->ic_chan_active, i)) {
*++p = i;
count++;
}
}
*(p - count) = IWI_CHAN_2GHZ | count;
DPRINTF(("Start scanning\n"));
return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1);
}
static int
iwi_auth_and_assoc(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct iwi_configuration config;
struct iwi_associate assoc;
struct iwi_rateset rs;
u_int32_t data;
int error;
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
/* enable b/g autodection */
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = 1;
config.multicast_enabled = 1;
config.bg_autodetection = 1;
config.noise_reported = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config,
sizeof config, 1);
if (error != 0)
return error;
}
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
printf("Setting ESSID to ");
ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
printf("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen, 1);
if (error != 0)
return error;
/* the rate set has already been "negociated" */
rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_NEGOCIATED;
rs.nrates = ni->ni_rates.rs_nrates;
memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
DPRINTF(("Setting negociated rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 1);
if (error != 0)
return error;
data = htole32(ni->ni_rssi);
DPRINTF(("Setting sensitivity to %d\n", (int8_t)ni->ni_rssi));
error = iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &data, sizeof data, 1);
if (error != 0)
return error;
memset(&assoc, 0, sizeof assoc);
assoc.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
IWI_MODE_11G;
assoc.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
if (sc->authmode == IEEE80211_AUTH_SHARED)
assoc.auth = (ic->ic_def_txkey << 4) | IWI_AUTH_SHARED;
memcpy(assoc.tstamp, ni->ni_tstamp.data, 8);
assoc.capinfo = htole16(ni->ni_capinfo);
assoc.lintval = htole16(ic->ic_lintval);
assoc.intval = htole16(ni->ni_intval);
IEEE80211_ADDR_COPY(assoc.bssid, ni->ni_bssid);
IEEE80211_ADDR_COPY(assoc.dst, ni->ni_bssid);
DPRINTF(("Trying to associate to %s channel %u auth %u\n",
ether_sprintf(assoc.bssid), assoc.chan, assoc.auth));
return iwi_cmd(sc, IWI_CMD_ASSOCIATE, &assoc, sizeof assoc, 1);
}
static int
iwi_init(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_firmware *fw = &sc->fw;
int i, error;
/* exit immediately if firmware has not been ioctl'd */
if (!(sc->flags & IWI_FLAG_FW_CACHED)) {
ifp->if_flags &= ~IFF_UP;
return EIO;
}
if ((error = iwi_reset(sc)) != 0) {
aprint_error("%s: could not reset adapter\n",
sc->sc_dev.dv_xname);
goto fail;
}
if ((error = iwi_load_firmware(sc, fw->boot, fw->boot_size)) != 0) {
aprint_error("%s: could not load boot firmware\n",
sc->sc_dev.dv_xname);
goto fail;
}
if ((error = iwi_load_ucode(sc, fw->ucode, fw->ucode_size)) != 0) {
aprint_error("%s: could not load microcode\n",
sc->sc_dev.dv_xname);
goto fail;
}
iwi_stop_master(sc);
sc->tx_cur = 0;
sc->tx_queued = 0;
sc->tx_old = IWI_TX_RING_SIZE - 1;
sc->cmd_cur = 0;
sc->rx_cur = IWI_RX_RING_SIZE - 1;
CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmd_ring_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, IWI_CMD_RING_SIZE);
CSR_WRITE_4(sc, IWI_CSR_CMD_READ_INDEX, 0);
CSR_WRITE_4(sc, IWI_CSR_CMD_WRITE_INDEX, sc->cmd_cur);
CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->tx_ring_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, IWI_TX_RING_SIZE);
CSR_WRITE_4(sc, IWI_CSR_TX1_READ_INDEX, 0);
CSR_WRITE_4(sc, IWI_CSR_TX1_WRITE_INDEX, sc->tx_cur);
CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->tx_ring_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, IWI_TX_RING_SIZE);
CSR_WRITE_4(sc, IWI_CSR_TX2_READ_INDEX, 0);
CSR_WRITE_4(sc, IWI_CSR_TX2_WRITE_INDEX, 0);
CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->tx_ring_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, IWI_TX_RING_SIZE);
CSR_WRITE_4(sc, IWI_CSR_TX3_READ_INDEX, 0);
CSR_WRITE_4(sc, IWI_CSR_TX3_WRITE_INDEX, 0);
CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->tx_ring_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, IWI_TX_RING_SIZE);
CSR_WRITE_4(sc, IWI_CSR_TX4_READ_INDEX, 0);
CSR_WRITE_4(sc, IWI_CSR_TX4_WRITE_INDEX, 0);
for (i = 0; i < IWI_RX_RING_SIZE; i++)
CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4,
sc->rx_buf[i].map->dm_segs[0].ds_addr);
/*
* Kick Rx
*/
CSR_WRITE_4(sc, IWI_CSR_RX_WRITE_INDEX, sc->rx_cur);
CSR_WRITE_4(sc, IWI_CSR_RX_READ_INDEX, 0);
if ((error = iwi_load_firmware(sc, fw->main, fw->main_size)) != 0) {
aprint_error("%s: could not load main firmware\n",
sc->sc_dev.dv_xname);
goto fail;
}
sc->flags |= IWI_FLAG_FW_INITED;
if ((error = iwi_config(sc)) != 0) {
aprint_error("%s: device configuration failed\n",
sc->sc_dev.dv_xname);
goto fail;
}
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_begin_scan(ic, 1);
else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
return 0;
fail: iwi_stop(ifp, 0);
return error;
}
static void
iwi_stop(struct ifnet *ifp, int disable)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_tx_buf *buf;
int i;
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SW_RESET);
/*
* Release Tx buffers
*/
for (i = 0; i < IWI_TX_RING_SIZE; i++) {
buf = &sc->tx_buf[i];
if (buf->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, buf->map);
m_freem(buf->m);
buf->m = NULL;
if (buf->ni != NULL) {
ieee80211_free_node(buf->ni);
buf->ni = NULL;
}
}
}
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}