637 lines
14 KiB
C
637 lines
14 KiB
C
/* $NetBSD: zs.c,v 1.40 2008/12/31 09:50:21 isaki Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998 Minoura Makoto
|
|
* Copyright (c) 1996 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Gordon W. Ross.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Zilog Z8530 Dual UART driver (machine-dependent part)
|
|
*
|
|
* X68k uses one Z8530 built-in. Channel A is for RS-232C serial port;
|
|
* while channel B is dedicated to the mouse.
|
|
* Extra Z8530's can be installed for serial ports. This driver
|
|
* supports up to 5 chips including the built-in one.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.40 2008/12/31 09:50:21 isaki Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/device.h>
|
|
#include <sys/file.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/time.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <arch/x68k/dev/intiovar.h>
|
|
#include <machine/z8530var.h>
|
|
|
|
#include <dev/ic/z8530reg.h>
|
|
|
|
#include "ioconf.h"
|
|
#include "zsc.h" /* NZSC */
|
|
#include "opt_zsc.h"
|
|
#ifndef ZSCN_SPEED
|
|
#define ZSCN_SPEED 9600
|
|
#endif
|
|
#include "zstty.h"
|
|
|
|
|
|
extern void Debugger(void);
|
|
|
|
/*
|
|
* Some warts needed by z8530tty.c -
|
|
* The default parity REALLY needs to be the same as the PROM uses,
|
|
* or you can not see messages done with printf during boot-up...
|
|
*/
|
|
int zs_def_cflag = (CREAD | CS8 | HUPCL);
|
|
int zscn_def_cflag = (CREAD | CS8 | HUPCL);
|
|
|
|
/*
|
|
* X68k provides a 5.0 MHz clock to the ZS chips.
|
|
*/
|
|
#define PCLK (5 * 1000 * 1000) /* PCLK pin input clock rate */
|
|
|
|
|
|
/* Default physical addresses. */
|
|
#define ZS_MAXDEV 5
|
|
static bus_addr_t zs_physaddr[ZS_MAXDEV] = {
|
|
0x00e98000,
|
|
0x00eafc00,
|
|
0x00eafc10,
|
|
0x00eafc20,
|
|
0x00eafc30
|
|
};
|
|
|
|
static uint8_t zs_init_reg[16] = {
|
|
0, /* 0: CMD (reset, etc.) */
|
|
0, /* 1: No interrupts yet. */
|
|
0x70, /* 2: XXX: IVECT */
|
|
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
|
|
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
|
|
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
|
|
0, /* 6: TXSYNC/SYNCLO */
|
|
0, /* 7: RXSYNC/SYNCHI */
|
|
0, /* 8: alias for data port */
|
|
ZSWR9_MASTER_IE,
|
|
ZSWR10_NRZ, /*10: Misc. TX/RX control bits */
|
|
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
|
|
((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
|
|
0, /*13: BAUDHI (default=9600) */
|
|
ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
|
|
ZSWR15_BREAK_IE,
|
|
};
|
|
|
|
static volatile struct zschan *conschan = 0;
|
|
|
|
|
|
/****************************************************************
|
|
* Autoconfig
|
|
****************************************************************/
|
|
|
|
/* Definition of the driver for autoconfig. */
|
|
static int zs_match(device_t, cfdata_t, void *);
|
|
static void zs_attach(device_t, device_t, void *);
|
|
static int zs_print(void *, const char *name);
|
|
|
|
CFATTACH_DECL_NEW(zsc, sizeof(struct zsc_softc),
|
|
zs_match, zs_attach, NULL, NULL);
|
|
|
|
static int zshard(void *);
|
|
static int zs_get_speed(struct zs_chanstate *);
|
|
|
|
|
|
/*
|
|
* Is the zs chip present?
|
|
*/
|
|
static int
|
|
zs_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
struct intio_attach_args *ia = aux;
|
|
struct zsdevice *zsaddr = (void *)ia->ia_addr;
|
|
int i;
|
|
|
|
if (strcmp(ia->ia_name, "zsc") != 0)
|
|
return 0;
|
|
|
|
for (i = 0; i < ZS_MAXDEV; i++)
|
|
if (zsaddr == (void *)zs_physaddr[i]) /* XXX */
|
|
break;
|
|
|
|
ia->ia_size = 8;
|
|
if (intio_map_allocate_region(parent, ia, INTIO_MAP_TESTONLY))
|
|
return 0;
|
|
|
|
if (zsaddr != (void *)zs_physaddr[i])
|
|
return 0;
|
|
if (badaddr((void *)IIOV(zsaddr)))
|
|
return 0;
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Attach a found zs.
|
|
*/
|
|
static void
|
|
zs_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct zsc_softc *zsc = device_private(self);
|
|
struct intio_attach_args *ia = aux;
|
|
struct zsc_attach_args zsc_args;
|
|
volatile struct zschan *zc;
|
|
struct zs_chanstate *cs;
|
|
int r, s, zs_unit, channel;
|
|
|
|
zsc->zsc_dev = self;
|
|
aprint_normal("\n");
|
|
|
|
zs_unit = device_unit(self);
|
|
zsc->zsc_addr = (void *)ia->ia_addr;
|
|
|
|
ia->ia_size = 8;
|
|
r = intio_map_allocate_region(parent, ia, INTIO_MAP_ALLOCATE);
|
|
#ifdef DIAGNOSTIC
|
|
if (r)
|
|
panic("zs: intio IO map corruption");
|
|
#endif
|
|
|
|
/*
|
|
* Initialize software state for each channel.
|
|
*/
|
|
for (channel = 0; channel < 2; channel++) {
|
|
device_t child;
|
|
|
|
zsc_args.channel = channel;
|
|
zsc_args.hwflags = 0;
|
|
cs = &zsc->zsc_cs_store[channel];
|
|
zsc->zsc_cs[channel] = cs;
|
|
|
|
zs_lock_init(cs);
|
|
cs->cs_channel = channel;
|
|
cs->cs_private = NULL;
|
|
cs->cs_ops = &zsops_null;
|
|
cs->cs_brg_clk = PCLK / 16;
|
|
|
|
if (channel == 0)
|
|
zc = (volatile void *)IIOV(&zsc->zsc_addr->zs_chan_a);
|
|
else
|
|
zc = (volatile void *)IIOV(&zsc->zsc_addr->zs_chan_b);
|
|
cs->cs_reg_csr = &zc->zc_csr;
|
|
cs->cs_reg_data = &zc->zc_data;
|
|
|
|
zs_init_reg[2] = ia->ia_intr;
|
|
memcpy(cs->cs_creg, zs_init_reg, 16);
|
|
memcpy(cs->cs_preg, zs_init_reg, 16);
|
|
|
|
if (zc == conschan) {
|
|
zsc_args.hwflags |= ZS_HWFLAG_CONSOLE;
|
|
cs->cs_defspeed = zs_get_speed(cs);
|
|
cs->cs_defcflag = zscn_def_cflag;
|
|
} else {
|
|
cs->cs_defspeed = 9600;
|
|
cs->cs_defcflag = zs_def_cflag;
|
|
}
|
|
|
|
/* Make these correspond to cs_defcflag (-crtscts) */
|
|
cs->cs_rr0_dcd = ZSRR0_DCD;
|
|
cs->cs_rr0_cts = 0;
|
|
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
|
|
cs->cs_wr5_rts = 0;
|
|
|
|
/*
|
|
* Clear the master interrupt enable.
|
|
* The INTENA is common to both channels,
|
|
* so just do it on the A channel.
|
|
*/
|
|
if (channel == 0) {
|
|
s = splzs();
|
|
zs_write_reg(cs, 9, 0);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Look for a child driver for this channel.
|
|
* The child attach will setup the hardware.
|
|
*/
|
|
child = config_found(self, (void *)&zsc_args, zs_print);
|
|
#if ZSTTY > 0
|
|
if (zc == conschan &&
|
|
((child && strcmp(device_xname(child), "zstty0")) ||
|
|
child == NULL)) /* XXX */
|
|
panic("%s: console device mismatch", __func__);
|
|
#endif
|
|
if (child == NULL) {
|
|
/* No sub-driver. Just reset it. */
|
|
uint8_t reset = (channel == 0) ?
|
|
ZSWR9_A_RESET : ZSWR9_B_RESET;
|
|
s = splzs();
|
|
zs_write_reg(cs, 9, reset);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now safe to install interrupt handlers.
|
|
*/
|
|
if (intio_intr_establish(ia->ia_intr, "zs", zshard, zsc))
|
|
panic("%s: interrupt vector busy", __func__);
|
|
zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL,
|
|
(void (*)(void *))zsc_intr_soft, zsc);
|
|
/* XXX; evcnt_attach() ? */
|
|
|
|
/*
|
|
* Set the master interrupt enable and interrupt vector.
|
|
* (common to both channels, do it on A)
|
|
*/
|
|
cs = zsc->zsc_cs[0];
|
|
s = splzs();
|
|
/* interrupt vector */
|
|
zs_write_reg(cs, 2, ia->ia_intr);
|
|
/* master interrupt control (enable) */
|
|
zs_write_reg(cs, 9, zs_init_reg[9]);
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
zs_print(void *aux, const char *name)
|
|
{
|
|
struct zsc_attach_args *args = aux;
|
|
|
|
if (name != NULL)
|
|
aprint_normal("%s: ", name);
|
|
|
|
if (args->channel != -1)
|
|
aprint_normal(" channel %d", args->channel);
|
|
|
|
return UNCONF;
|
|
}
|
|
|
|
|
|
/*
|
|
* For x68k-port, we don't use autovectored interrupt.
|
|
* We do not need to look at all of the zs chips.
|
|
*/
|
|
static int
|
|
zshard(void *arg)
|
|
{
|
|
struct zsc_softc *zsc = arg;
|
|
int rval;
|
|
int s;
|
|
|
|
/*
|
|
* Actually, zs hardware ipl is 5.
|
|
* Here we disable all interrupts to shorten the zshard
|
|
* handling time. Otherwise, too many characters are
|
|
* dropped.
|
|
*/
|
|
s = splhigh();
|
|
rval = zsc_intr_hard(zsc);
|
|
|
|
/* We are at splzs here, so no need to lock. */
|
|
if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq)
|
|
softint_schedule(zsc->zsc_softintr_cookie);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
/*
|
|
* Compute the current baud rate given a ZS channel.
|
|
*/
|
|
static int
|
|
zs_get_speed(struct zs_chanstate *cs)
|
|
{
|
|
int tconst;
|
|
|
|
tconst = zs_read_reg(cs, 12);
|
|
tconst |= zs_read_reg(cs, 13) << 8;
|
|
return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
|
|
}
|
|
|
|
/*
|
|
* MD functions for setting the baud rate and control modes.
|
|
*/
|
|
int
|
|
zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */)
|
|
{
|
|
int tconst, real_bps;
|
|
|
|
if (bps == 0)
|
|
return (0);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (cs->cs_brg_clk == 0)
|
|
panic("zs_set_speed");
|
|
#endif
|
|
|
|
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
|
|
if (tconst < 0)
|
|
return (EINVAL);
|
|
|
|
/* Convert back to make sure we can do it. */
|
|
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
|
|
|
|
#if 0 /* XXX */
|
|
/* XXX - Allow some tolerance here? */
|
|
if (real_bps != bps)
|
|
return (EINVAL);
|
|
#else
|
|
/*
|
|
* Since our PCLK has somewhat strange value,
|
|
* we have to allow tolerance here.
|
|
*/
|
|
if (BPS_TO_TCONST(cs->cs_brg_clk, real_bps) != tconst)
|
|
return (EINVAL);
|
|
#endif
|
|
|
|
cs->cs_preg[12] = tconst;
|
|
cs->cs_preg[13] = tconst >> 8;
|
|
|
|
/* Caller will stuff the pending registers. */
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zs_set_modes(struct zs_chanstate *cs, int cflag /* bits per second */)
|
|
{
|
|
int s;
|
|
|
|
/*
|
|
* Output hardware flow control on the chip is horrendous:
|
|
* if carrier detect drops, the receiver is disabled, and if
|
|
* CTS drops, the transmitter is stoped IN MID CHARACTER!
|
|
* Therefore, NEVER set the HFC bit, and instead use the
|
|
* status interrupt to detect CTS changes.
|
|
*/
|
|
s = splzs();
|
|
cs->cs_rr0_pps = 0;
|
|
if ((cflag & (CLOCAL | MDMBUF)) != 0) {
|
|
cs->cs_rr0_dcd = 0;
|
|
if ((cflag & MDMBUF) == 0)
|
|
cs->cs_rr0_pps = ZSRR0_DCD;
|
|
} else
|
|
cs->cs_rr0_dcd = ZSRR0_DCD;
|
|
if ((cflag & CRTSCTS) != 0) {
|
|
cs->cs_wr5_dtr = ZSWR5_DTR;
|
|
cs->cs_wr5_rts = ZSWR5_RTS;
|
|
cs->cs_rr0_cts = ZSRR0_CTS;
|
|
} else if ((cflag & MDMBUF) != 0) {
|
|
cs->cs_wr5_dtr = 0;
|
|
cs->cs_wr5_rts = ZSWR5_DTR;
|
|
cs->cs_rr0_cts = ZSRR0_DCD;
|
|
} else {
|
|
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
|
|
cs->cs_wr5_rts = 0;
|
|
cs->cs_rr0_cts = 0;
|
|
}
|
|
splx(s);
|
|
|
|
/* Caller will stuff the pending registers. */
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read or write the chip with suitable delays.
|
|
*/
|
|
|
|
uint8_t
|
|
zs_read_reg(struct zs_chanstate *cs, uint8_t reg)
|
|
{
|
|
uint8_t val;
|
|
|
|
*cs->cs_reg_csr = reg;
|
|
ZS_DELAY();
|
|
val = *cs->cs_reg_csr;
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
|
|
void
|
|
zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val)
|
|
{
|
|
*cs->cs_reg_csr = reg;
|
|
ZS_DELAY();
|
|
*cs->cs_reg_csr = val;
|
|
ZS_DELAY();
|
|
}
|
|
|
|
uint8_t
|
|
zs_read_csr(struct zs_chanstate *cs)
|
|
{
|
|
uint8_t val;
|
|
|
|
val = *cs->cs_reg_csr;
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
|
|
void
|
|
zs_write_csr(struct zs_chanstate *cs, uint8_t val)
|
|
{
|
|
*cs->cs_reg_csr = val;
|
|
ZS_DELAY();
|
|
}
|
|
|
|
uint8_t
|
|
zs_read_data(struct zs_chanstate *cs)
|
|
{
|
|
uint8_t val;
|
|
|
|
val = *cs->cs_reg_data;
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
|
|
void
|
|
zs_write_data(struct zs_chanstate *cs, uint8_t val)
|
|
{
|
|
*cs->cs_reg_data = val;
|
|
ZS_DELAY();
|
|
}
|
|
|
|
|
|
/****************************************************************
|
|
* Console support functions (x68k specific!)
|
|
* Note: this code is allowed to know about the layout of
|
|
* the chip registers, and uses that to keep things simple.
|
|
* XXX - I think I like the mvme167 code better. -gwr
|
|
****************************************************************/
|
|
|
|
/*
|
|
* Handle user request to enter kernel debugger.
|
|
*/
|
|
void
|
|
zs_abort(struct zs_chanstate *cs)
|
|
{
|
|
int rr0;
|
|
|
|
/* Wait for end of break to avoid PROM abort. */
|
|
/* XXX - Limit the wait? */
|
|
do {
|
|
rr0 = *cs->cs_reg_csr;
|
|
ZS_DELAY();
|
|
} while (rr0 & ZSRR0_BREAK);
|
|
|
|
#ifdef DDB
|
|
Debugger();
|
|
#else
|
|
printf("BREAK!!\n");
|
|
#endif
|
|
}
|
|
|
|
|
|
#if NZSTTY > 0
|
|
|
|
#include <dev/cons.h>
|
|
cons_decl(zs);
|
|
|
|
static int zs_getc(void);
|
|
static void zs_putc(int);
|
|
|
|
static struct zs_chanstate zscn_cs;
|
|
|
|
/*
|
|
* Polled input char.
|
|
*/
|
|
static int
|
|
zs_getc(void)
|
|
{
|
|
int s, c, rr0;
|
|
|
|
s = splzs();
|
|
/* Wait for a character to arrive. */
|
|
do {
|
|
rr0 = zs_read_csr(&zscn_cs);
|
|
} while ((rr0 & ZSRR0_RX_READY) == 0);
|
|
|
|
c = zs_read_data(&zscn_cs);
|
|
splx(s);
|
|
|
|
/*
|
|
* This is used by the kd driver to read scan codes,
|
|
* so don't translate '\r' ==> '\n' here...
|
|
*/
|
|
return (c);
|
|
}
|
|
|
|
/*
|
|
* Polled output char.
|
|
*/
|
|
static void
|
|
zs_putc(int c)
|
|
{
|
|
int s, rr0;
|
|
|
|
s = splzs();
|
|
/* Wait for transmitter to become ready. */
|
|
do {
|
|
rr0 = zs_read_csr(&zscn_cs);
|
|
} while ((rr0 & ZSRR0_TX_READY) == 0);
|
|
|
|
zs_write_data(&zscn_cs, c);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
zscninit(struct consdev *cn)
|
|
{
|
|
volatile struct zschan *cnchan = (volatile void *)IIOV(ZSCN_PHYSADDR);
|
|
int s;
|
|
|
|
memset(&zscn_cs, 0, sizeof(struct zs_chanstate));
|
|
zscn_cs.cs_reg_csr = &cnchan->zc_csr;
|
|
zscn_cs.cs_reg_data = &cnchan->zc_data;
|
|
zscn_cs.cs_channel = 0;
|
|
zscn_cs.cs_brg_clk = PCLK / 16;
|
|
memcpy(zscn_cs.cs_preg, zs_init_reg, 16);
|
|
zscn_cs.cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_ONESB; /* XXX */
|
|
zscn_cs.cs_preg[9] = 0;
|
|
zs_set_speed(&zscn_cs, ZSCN_SPEED);
|
|
s = splzs();
|
|
zs_loadchannelregs(&zscn_cs);
|
|
splx(s);
|
|
conschan = cnchan;
|
|
}
|
|
|
|
/*
|
|
* Polled console input putchar.
|
|
*/
|
|
int
|
|
zscngetc(dev_t dev)
|
|
{
|
|
return (zs_getc());
|
|
}
|
|
|
|
/*
|
|
* Polled console output putchar.
|
|
*/
|
|
void
|
|
zscnputc(dev_t dev, int c)
|
|
{
|
|
zs_putc(c);
|
|
}
|
|
|
|
void
|
|
zscnprobe(struct consdev *cd)
|
|
{
|
|
int maj;
|
|
extern const struct cdevsw zstty_cdevsw;
|
|
|
|
/* locate the major number */
|
|
maj = cdevsw_lookup_major(&zstty_cdevsw);
|
|
/* XXX: minor number is 0 */
|
|
|
|
if (maj == -1)
|
|
cd->cn_pri = CN_DEAD;
|
|
else {
|
|
#ifdef ZSCONSOLE
|
|
cd->cn_pri = CN_REMOTE; /* higher than ITE (CN_INTERNAL) */
|
|
#else
|
|
cd->cn_pri = CN_NORMAL;
|
|
#endif
|
|
cd->cn_dev = makedev(maj, 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
zscnpollc(dev_t dev, int on)
|
|
{
|
|
}
|
|
|
|
#endif
|