NetBSD/sys/arch/arm/imx/imxuart.c

2537 lines
57 KiB
C

/* $NetBSD: imxuart.c,v 1.8 2011/04/24 16:26:54 rmind Exp $ */
/*
* Copyright (c) 2009, 2010 Genetec Corporation. All rights reserved.
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* derived from sys/dev/ic/com.c
*/
/*-
* Copyright (c) 1998, 1999, 2004, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)com.c 7.5 (Berkeley) 5/16/91
*/
/*
* driver for UART in i.MX SoC.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: imxuart.c,v 1.8 2011/04/24 16:26:54 rmind Exp $");
#include "opt_imxuart.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_lockdebug.h"
#include "opt_multiprocessor.h"
#include "opt_ntp.h"
#include "opt_imxuart.h"
#include "opt_imx.h"
#include "rnd.h"
#if NRND > 0 && defined(RND_COM)
#include <sys/rnd.h>
#endif
#ifndef IMXUART_TOLERANCE
#define IMXUART_TOLERANCE 30 /* baud rate tolerance, in 0.1% units */
#endif
#ifndef IMXUART_FREQDIV
#define IMXUART_FREQDIV 2 /* XXX */
#endif
#ifndef IMXUART_FREQ
#define IMXUART_FREQ (56900000)
#endif
/*
* Override cnmagic(9) macro before including <sys/systm.h>.
* We need to know if cn_check_magic triggered debugger, so set a flag.
* Callers of cn_check_magic must declare int cn_trapped = 0;
* XXX: this is *ugly*!
*/
#define cn_trap() \
do { \
console_debugger(); \
cn_trapped = 1; \
} while (/* CONSTCOND */ 0)
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/poll.h>
#include <sys/tty.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/timepps.h>
#include <sys/vnode.h>
#include <sys/kauth.h>
#include <sys/intr.h>
#include <sys/bus.h>
#include <arm/imx/imxuartreg.h>
#include <arm/imx/imxuartvar.h>
#include <dev/cons.h>
#ifndef IMXUART_RING_SIZE
#define IMXUART_RING_SIZE 2048
#endif
typedef struct imxuart_softc {
device_t sc_dev;
struct imxuart_regs {
bus_space_tag_t ur_iot;
bus_space_handle_t ur_ioh;
bus_addr_t ur_iobase;
#if 0
bus_size_t ur_nports;
bus_size_t ur_map[16];
#endif
} sc_regs;
#define sc_bt sc_regs.ur_iot
#define sc_bh sc_regs.ur_ioh
uint32_t sc_intrspec_enb;
uint32_t sc_ucr2_d; /* target value for UCR2 */
uint32_t sc_ucr[4]; /* cached value of UCRn */
#define sc_ucr1 sc_ucr[0]
#define sc_ucr2 sc_ucr[1]
#define sc_ucr3 sc_ucr[2]
#define sc_ucr4 sc_ucr[3]
uint sc_init_cnt;
bus_addr_t sc_addr;
bus_size_t sc_size;
int sc_intr;
u_char sc_hwflags;
/* Hardware flag masks */
#define IMXUART_HW_FLOW __BIT(0)
#define IMXUART_HW_DEV_OK __BIT(1)
#define IMXUART_HW_CONSOLE __BIT(2)
#define IMXUART_HW_KGDB __BIT(3)
bool enabled;
u_char sc_swflags;
u_char sc_rx_flags;
#define IMXUART_RX_TTY_BLOCKED __BIT(0)
#define IMXUART_RX_TTY_OVERFLOWED __BIT(1)
#define IMXUART_RX_IBUF_BLOCKED __BIT(2)
#define IMXUART_RX_IBUF_OVERFLOWED __BIT(3)
#define IMXUART_RX_ANY_BLOCK \
(IMXUART_RX_TTY_BLOCKED|IMXUART_RX_TTY_OVERFLOWED| \
IMXUART_RX_IBUF_BLOCKED|IMXUART_RX_IBUF_OVERFLOWED)
bool sc_tx_busy, sc_tx_done, sc_tx_stopped;
bool sc_rx_ready,sc_st_check;
u_short sc_txfifo_len, sc_txfifo_thresh;
uint16_t *sc_rbuf;
u_int sc_rbuf_size;
u_int sc_rbuf_in;
u_int sc_rbuf_out;
#define IMXUART_RBUF_AVAIL(sc) \
((sc->sc_rbuf_out <= sc->sc_rbuf_in) ? \
(sc->sc_rbuf_in - sc->sc_rbuf_out) : \
(sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in)))
#define IMXUART_RBUF_SPACE(sc) \
((sc->sc_rbuf_in <= sc->sc_rbuf_out ? \
sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in) : \
sc->sc_rbuf_in - sc->sc_rbuf_out) - 1)
/* increment ringbuffer pointer */
#define IMXUART_RBUF_INC(sc,v,i) (((v) + (i))&((sc->sc_rbuf_size)-1))
u_int sc_r_lowat;
u_int sc_r_hiwat;
/* output chunk */
u_char *sc_tba;
u_int sc_tbc;
u_int sc_heldtbc;
/* pending parameter changes */
u_char sc_pending;
#define IMXUART_PEND_PARAM __BIT(0)
#define IMXUART_PEND_SPEED __BIT(1)
struct callout sc_diag_callout;
kmutex_t sc_lock;
void *sc_ih; /* interrupt handler */
void *sc_si; /* soft interrupt */
struct tty *sc_tty;
/* power management hooks */
int (*enable)(struct imxuart_softc *);
void (*disable)(struct imxuart_softc *);
struct {
ulong err;
ulong brk;
ulong prerr;
ulong frmerr;
ulong ovrrun;
} sc_errors;
struct imxuart_baudrate_ratio {
uint16_t numerator; /* UBIR */
uint16_t modulator; /* UBMR */
} sc_ratio;
} imxuart_softc_t;
int imxuspeed(long, struct imxuart_baudrate_ratio *);
int imxuparam(struct tty *, struct termios *);
void imxustart(struct tty *);
int imxuhwiflow(struct tty *, int);
void imxuart_shutdown(struct imxuart_softc *);
void imxuart_loadchannelregs(struct imxuart_softc *);
void imxuart_hwiflow(struct imxuart_softc *);
void imxuart_break(struct imxuart_softc *, bool);
void imxuart_modem(struct imxuart_softc *, int);
void tiocm_to_imxu(struct imxuart_softc *, u_long, int);
int imxuart_to_tiocm(struct imxuart_softc *);
void imxuart_iflush(struct imxuart_softc *);
int imxuintr(void *);
int imxuart_common_getc(dev_t, struct imxuart_regs *);
void imxuart_common_putc(dev_t, struct imxuart_regs *, int);
int imxuart_init(struct imxuart_regs *, int, tcflag_t);
int imxucngetc(dev_t);
void imxucnputc(dev_t, int);
void imxucnpollc(dev_t, int);
static void imxuintr_read(struct imxuart_softc *);
static void imxuintr_send(struct imxuart_softc *);
static void imxuart_enable_debugport(struct imxuart_softc *);
static void imxuart_disable_all_interrupts(struct imxuart_softc *);
static void imxuart_control_rxint(struct imxuart_softc *, bool);
static void imxuart_control_txint(struct imxuart_softc *, bool);
static u_int imxuart_txfifo_space(struct imxuart_softc *sc);
static uint32_t cflag_to_ucr2(tcflag_t, uint32_t);
CFATTACH_DECL_NEW(imxuart, sizeof(struct imxuart_softc),
imxuart_match, imxuart_attach, NULL, NULL);
#define integrate static inline
void imxusoft(void *);
integrate void imxuart_rxsoft(struct imxuart_softc *, struct tty *);
integrate void imxuart_txsoft(struct imxuart_softc *, struct tty *);
integrate void imxuart_stsoft(struct imxuart_softc *, struct tty *);
integrate void imxuart_schedrx(struct imxuart_softc *);
void imxudiag(void *);
static void imxuart_load_speed(struct imxuart_softc *);
static void imxuart_load_params(struct imxuart_softc *);
integrate void imxuart_load_pendings(struct imxuart_softc *);
extern struct cfdriver imxuart_cd;
dev_type_open(imxuopen);
dev_type_close(imxuclose);
dev_type_read(imxuread);
dev_type_write(imxuwrite);
dev_type_ioctl(imxuioctl);
dev_type_stop(imxustop);
dev_type_tty(imxutty);
dev_type_poll(imxupoll);
const struct cdevsw imxcom_cdevsw = {
imxuopen, imxuclose, imxuread, imxuwrite, imxuioctl,
imxustop, imxutty, imxupoll, nommap, ttykqfilter, D_TTY
};
/*
* Make this an option variable one can patch.
* But be warned: this must be a power of 2!
*/
u_int imxuart_rbuf_size = IMXUART_RING_SIZE;
/* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
u_int imxuart_rbuf_hiwat = (IMXUART_RING_SIZE * 1) / 4;
u_int imxuart_rbuf_lowat = (IMXUART_RING_SIZE * 3) / 4;
static struct imxuart_regs imxuconsregs;
static int imxuconsattached;
static int imxuconsrate;
static tcflag_t imxuconscflag;
static struct cnm_state imxuart_cnm_state;
u_int imxuart_freq = IMXUART_FREQ;
u_int imxuart_freqdiv = IMXUART_FREQDIV;
#ifdef KGDB
#include <sys/kgdb.h>
static struct imxuart_regs imxu_kgdb_regs;
static int imxu_kgdb_attached;
int imxuart_kgdb_getc(void *);
void imxuart_kgdb_putc(void *, int);
#endif /* KGDB */
#define IMXUART_UNIT_MASK 0x7ffff
#define IMXUART_DIALOUT_MASK 0x80000
#define IMXUART_UNIT(x) (minor(x) & IMXUART_UNIT_MASK)
#define IMXUART_DIALOUT(x) (minor(x) & IMXUART_DIALOUT_MASK)
#define IMXUART_ISALIVE(sc) ((sc)->enabled != 0 && \
device_is_active((sc)->sc_dev))
#define BR BUS_SPACE_BARRIER_READ
#define BW BUS_SPACE_BARRIER_WRITE
#define IMXUART_BARRIER(r, f) \
bus_space_barrier((r)->ur_iot, (r)->ur_ioh, 0, IMX_UART_SIZE, (f))
void
imxuart_attach_common(device_t parent, device_t self,
bus_space_tag_t iot, paddr_t iobase, size_t size, int intr, int flags)
{
imxuart_softc_t *sc = device_private(self);
struct imxuart_regs *regsp = &sc->sc_regs;
struct tty *tp;
bus_space_handle_t ioh;
aprint_naive("\n");
aprint_normal("\n");
sc->sc_dev = self;
if (size <= 0)
size = IMX_UART_SIZE;
sc->sc_intr = intr;
regsp->ur_iot = iot;
regsp->ur_iobase = iobase;
if (bus_space_map(iot, regsp->ur_iobase, size, 0, &ioh)) {
return;
}
regsp->ur_ioh = ioh;
callout_init(&sc->sc_diag_callout, 0);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
bus_space_read_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4);
sc->sc_ucr2_d = sc->sc_ucr2;
/* Disable interrupts before configuring the device. */
imxuart_disable_all_interrupts(sc);
if (regsp->ur_iobase == imxuconsregs.ur_iobase) {
imxuconsattached = 1;
/* Make sure the console is always "hardwired". */
#if 0
delay(10000); /* wait for output to finish */
#endif
SET(sc->sc_hwflags, IMXUART_HW_CONSOLE);
SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
}
tp = tty_alloc();
tp->t_oproc = imxustart;
tp->t_param = imxuparam;
tp->t_hwiflow = imxuhwiflow;
sc->sc_tty = tp;
sc->sc_rbuf = malloc(sizeof (*sc->sc_rbuf) * imxuart_rbuf_size,
M_DEVBUF, M_NOWAIT);
sc->sc_rbuf_size = imxuart_rbuf_size;
sc->sc_rbuf_in = sc->sc_rbuf_out = 0;
if (sc->sc_rbuf == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate ring buffer\n");
return;
}
sc->sc_txfifo_len = 32;
sc->sc_txfifo_thresh = 16; /* when USR1.TRDY, fifo has space
* for this many characters */
tty_attach(tp);
if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
int maj;
/* locate the major number */
maj = cdevsw_lookup_major(&imxcom_cdevsw);
if (maj != NODEVMAJOR) {
tp->t_dev = cn_tab->cn_dev = makedev(maj,
device_unit(sc->sc_dev));
aprint_normal_dev(sc->sc_dev, "console\n");
}
}
sc->sc_ih = intr_establish(sc->sc_intr, IPL_SERIAL, IST_LEVEL,
imxuintr, sc);
if (sc->sc_ih == NULL)
aprint_error_dev(sc->sc_dev, "intr_establish failed\n");
#ifdef KGDB
/*
* Allow kgdb to "take over" this port. If this is
* not the console and is the kgdb device, it has
* exclusive use. If it's the console _and_ the
* kgdb device, it doesn't.
*/
if (regsp->ur_iobase == imxu_kgdb_regs.ur_iobase) {
if (!ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
imxu_kgdb_attached = 1;
SET(sc->sc_hwflags, IMXUART_HW_KGDB);
}
aprint_normal_dev(sc->sc_dev, "kgdb\n");
}
#endif
sc->sc_si = softint_establish(SOFTINT_SERIAL, imxusoft, sc);
#if NRND > 0 && defined(RND_IMXUART)
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_TTY, 0);
#endif
/* if there are no enable/disable functions, assume the device
is always enabled */
if (!sc->enable)
sc->enabled = 1;
imxuart_enable_debugport(sc);
SET(sc->sc_hwflags, IMXUART_HW_DEV_OK);
//shutdownhook_establish(imxuart_shutdownhook, sc);
#if 0
{
uint32_t reg;
reg = bus_space_read_4(iot, ioh, IMX_UCR1);
reg |= IMX_UCR1_TXDMAEN | IMX_UCR1_RXDMAEN;
bus_space_write_4(iot, ioh, IMX_UCR1, reg);
}
#endif
}
/*
* baudrate = RefFreq / (16 * (UMBR + 1)/(UBIR + 1))
*
* (UBIR + 1) / (UBMR + 1) = (16 * BaurdRate) / RefFreq
*/
static long
gcd(long m, long n)
{
if (m < n)
return gcd(n, m);
if (n <= 0)
return m;
return gcd(n, m % n);
}
int
imxuspeed(long speed, struct imxuart_baudrate_ratio *ratio)
{
#define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
long b = 16 * speed;
long f = imxuart_freq / imxuart_freqdiv;
long d;
int err = 0;
/* reduce b/f */
while ((f > (1<<16) || b > (1<<16)) && (d = gcd(f, b)) > 1) {
f /= d;
b /= d;
}
while (f > (1<<16) || b > (1<<16)) {
f /= 2;
b /= 2;
}
if (f <= 0 || b <= 0)
return -1;
#ifdef DIAGNOSTIC
err = divrnd(((uint64_t)imxuart_freq) * 1000 / imxuart_freqdiv,
(uint64_t)speed * 16 * f / b) - 1000;
if (err < 0)
err = -err;
#endif
ratio->numerator = b-1;
ratio->modulator = f-1;
if (err > IMXUART_TOLERANCE)
return -1;
return 0;
#undef divrnd
}
#ifdef IMXUART_DEBUG
int imxuart_debug = 0;
void imxustatus(struct imxuart_softc *, const char *);
void
imxustatus(struct imxuart_softc *sc, const char *str)
{
struct tty *tp = sc->sc_tty;
aprint_normal_dev(sc->sc_dev,
"%s %cclocal %cdcd %cts_carr_on %cdtr %ctx_stopped\n",
str,
ISSET(tp->t_cflag, CLOCAL) ? '+' : '-',
ISSET(sc->sc_msr, MSR_DCD) ? '+' : '-',
ISSET(tp->t_state, TS_CARR_ON) ? '+' : '-',
ISSET(sc->sc_mcr, MCR_DTR) ? '+' : '-',
sc->sc_tx_stopped ? '+' : '-');
aprint_normal_dev(sc->sc_dev,
"%s %ccrtscts %ccts %cts_ttstop %crts rx_flags=0x%x\n",
str,
ISSET(tp->t_cflag, CRTSCTS) ? '+' : '-',
ISSET(sc->sc_msr, MSR_CTS) ? '+' : '-',
ISSET(tp->t_state, TS_TTSTOP) ? '+' : '-',
ISSET(sc->sc_mcr, MCR_RTS) ? '+' : '-',
sc->sc_rx_flags);
}
#endif
#if 0
int
imxuart_detach(device_t self, int flags)
{
struct imxuart_softc *sc = device_private(self);
int maj, mn;
if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE))
return EBUSY;
/* locate the major number */
maj = cdevsw_lookup_major(&imxcom_cdevsw);
/* Nuke the vnodes for any open instances. */
mn = device_unit(self);
vdevgone(maj, mn, mn, VCHR);
mn |= IMXUART_DIALOUT_MASK;
vdevgone(maj, mn, mn, VCHR);
if (sc->sc_rbuf == NULL) {
/*
* Ring buffer allocation failed in the imxuart_attach_subr,
* only the tty is allocated, and nothing else.
*/
tty_free(sc->sc_tty);
return 0;
}
/* Free the receive buffer. */
free(sc->sc_rbuf, M_DEVBUF);
/* Detach and free the tty. */
tty_detach(sc->sc_tty);
tty_free(sc->sc_tty);
/* Unhook the soft interrupt handler. */
softint_disestablish(sc->sc_si);
#if NRND > 0 && defined(RND_IMXU)
/* Unhook the entropy source. */
rnd_detach_source(&sc->rnd_source);
#endif
callout_destroy(&sc->sc_diag_callout);
/* Destroy the lock. */
mutex_destroy(&sc->sc_lock);
return (0);
}
#endif
#ifdef notyet
int
imxuart_activate(device_t self, enum devact act)
{
struct imxuart_softc *sc = device_private(self);
int rv = 0;
switch (act) {
case DVACT_ACTIVATE:
rv = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) {
rv = EBUSY;
break;
}
if (sc->disable != NULL && sc->enabled != 0) {
(*sc->disable)(sc);
sc->enabled = 0;
}
break;
}
return (rv);
}
#endif
void
imxuart_shutdown(struct imxuart_softc *sc)
{
struct tty *tp = sc->sc_tty;
mutex_spin_enter(&sc->sc_lock);
/* If we were asserting flow control, then deassert it. */
SET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED);
imxuart_hwiflow(sc);
/* Clear any break condition set with TIOCSBRK. */
imxuart_break(sc, false);
/*
* Hang up if necessary. Wait a bit, so the other side has time to
* notice even if we immediately open the port again.
* Avoid tsleeping above splhigh().
*/
if (ISSET(tp->t_cflag, HUPCL)) {
imxuart_modem(sc, 0);
mutex_spin_exit(&sc->sc_lock);
/* XXX will only timeout */
(void) kpause(ttclos, false, hz, NULL);
mutex_spin_enter(&sc->sc_lock);
}
/* Turn off interrupts. */
imxuart_disable_all_interrupts(sc);
/* re-enable recv interrupt for console or kgdb port */
imxuart_enable_debugport(sc);
mutex_spin_exit(&sc->sc_lock);
#ifdef notyet
if (sc->disable) {
#ifdef DIAGNOSTIC
if (!sc->enabled)
panic("imxuart_shutdown: not enabled?");
#endif
(*sc->disable)(sc);
sc->enabled = 0;
}
#endif
}
int
imxuopen(dev_t dev, int flag, int mode, struct lwp *l)
{
struct imxuart_softc *sc;
struct tty *tp;
int s;
int error;
sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
if (sc == NULL || !ISSET(sc->sc_hwflags, IMXUART_HW_DEV_OK) ||
sc->sc_rbuf == NULL)
return (ENXIO);
if (!device_is_active(sc->sc_dev))
return (ENXIO);
#ifdef KGDB
/*
* If this is the kgdb port, no other use is permitted.
*/
if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB))
return (EBUSY);
#endif
tp = sc->sc_tty;
if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
return (EBUSY);
s = spltty();
/*
* Do the following iff this is a first open.
*/
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
struct termios t;
tp->t_dev = dev;
#ifdef notyet
if (sc->enable) {
if ((*sc->enable)(sc)) {
splx(s);
aprint_error_dev(sc->sc_dev,
"device enable failed\n");
return (EIO);
}
sc->enabled = 1;
}
#endif
mutex_spin_enter(&sc->sc_lock);
imxuart_disable_all_interrupts(sc);
/* Fetch the current modem control status, needed later. */
#ifdef IMXUART_PPS
/* Clear PPS capture state on first open. */
mutex_spin_enter(&timecounter_lock);
memset(&sc->sc_pps_state, 0, sizeof(sc->sc_pps_state));
sc->sc_pps_state.ppscap = PPS_CAPTUREASSERT | PPS_CAPTURECLEAR;
pps_init(&sc->sc_pps_state);
mutex_spin_exit(&timecounter_lock);
#endif
mutex_spin_exit(&sc->sc_lock);
/*
* Initialize the termios status to the defaults. Add in the
* sticky bits from TIOCSFLAGS.
*/
if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
t.c_ospeed = imxuconsrate;
t.c_cflag = imxuconscflag;
} else {
t.c_ospeed = TTYDEF_SPEED;
t.c_cflag = TTYDEF_CFLAG;
}
t.c_ispeed = t.c_ospeed;
if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
SET(t.c_cflag, CLOCAL);
if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
SET(t.c_cflag, CRTSCTS);
if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
SET(t.c_cflag, MDMBUF);
/* Make sure imxuparam() will do something. */
tp->t_ospeed = 0;
(void) imxuparam(tp, &t);
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_lflag = TTYDEF_LFLAG;
ttychars(tp);
ttsetwater(tp);
mutex_spin_enter(&sc->sc_lock);
/*
* Turn on DTR. We must always do this, even if carrier is not
* present, because otherwise we'd have to use TIOCSDTR
* immediately after setting CLOCAL, which applications do not
* expect. We always assert DTR while the device is open
* unless explicitly requested to deassert it.
*/
imxuart_modem(sc, 1);
/* Clear the input ring, and unblock. */
sc->sc_rbuf_in = sc->sc_rbuf_out = 0;
imxuart_iflush(sc);
CLR(sc->sc_rx_flags, IMXUART_RX_ANY_BLOCK);
imxuart_hwiflow(sc);
/* Turn on interrupts. */
imxuart_control_rxint(sc, true);
#ifdef IMXUART_DEBUG
if (imxuart_debug)
imxustatus(sc, "imxuopen ");
#endif
mutex_spin_exit(&sc->sc_lock);
}
splx(s);
#if 0
error = ttyopen(tp, IMXUART_DIALOUT(dev), ISSET(flag, O_NONBLOCK));
#else
error = ttyopen(tp, 1, ISSET(flag, O_NONBLOCK));
#endif
if (error)
goto bad;
error = (*tp->t_linesw->l_open)(dev, tp);
if (error)
goto bad;
return (0);
bad:
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
/*
* We failed to open the device, and nobody else had it opened.
* Clean up the state as appropriate.
*/
imxuart_shutdown(sc);
}
return (error);
}
int
imxuclose(dev_t dev, int flag, int mode, struct lwp *l)
{
struct imxuart_softc *sc =
device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
struct tty *tp = sc->sc_tty;
/* XXX This is for cons.c. */
if (!ISSET(tp->t_state, TS_ISOPEN))
return (0);
(*tp->t_linesw->l_close)(tp, flag);
ttyclose(tp);
if (IMXUART_ISALIVE(sc) == 0)
return (0);
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
/*
* Although we got a last close, the device may still be in
* use; e.g. if this was the dialout node, and there are still
* processes waiting for carrier on the non-dialout node.
*/
imxuart_shutdown(sc);
}
return (0);
}
int
imxuread(dev_t dev, struct uio *uio, int flag)
{
struct imxuart_softc *sc =
device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
struct tty *tp = sc->sc_tty;
if (IMXUART_ISALIVE(sc) == 0)
return (EIO);
return ((*tp->t_linesw->l_read)(tp, uio, flag));
}
int
imxuwrite(dev_t dev, struct uio *uio, int flag)
{
struct imxuart_softc *sc =
device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
struct tty *tp = sc->sc_tty;
if (IMXUART_ISALIVE(sc) == 0)
return (EIO);
return ((*tp->t_linesw->l_write)(tp, uio, flag));
}
int
imxupoll(dev_t dev, int events, struct lwp *l)
{
struct imxuart_softc *sc =
device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
struct tty *tp = sc->sc_tty;
if (IMXUART_ISALIVE(sc) == 0)
return (POLLHUP);
return ((*tp->t_linesw->l_poll)(tp, events, l));
}
struct tty *
imxutty(dev_t dev)
{
struct imxuart_softc *sc =
device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
struct tty *tp = sc->sc_tty;
return (tp);
}
int
imxuioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
struct imxuart_softc *sc;
struct tty *tp;
int error;
sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
if (sc == NULL)
return ENXIO;
if (IMXUART_ISALIVE(sc) == 0)
return (EIO);
tp = sc->sc_tty;
error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
if (error != EPASSTHROUGH)
return (error);
error = ttioctl(tp, cmd, data, flag, l);
if (error != EPASSTHROUGH)
return (error);
error = 0;
switch (cmd) {
case TIOCSFLAGS:
error = kauth_authorize_device_tty(l->l_cred,
KAUTH_DEVICE_TTY_PRIVSET, tp);
break;
default:
/* nothing */
break;
}
if (error) {
return error;
}
mutex_spin_enter(&sc->sc_lock);
switch (cmd) {
case TIOCSBRK:
imxuart_break(sc, true);
break;
case TIOCCBRK:
imxuart_break(sc, false);
break;
case TIOCSDTR:
imxuart_modem(sc, 1);
break;
case TIOCCDTR:
imxuart_modem(sc, 0);
break;
case TIOCGFLAGS:
*(int *)data = sc->sc_swflags;
break;
case TIOCSFLAGS:
sc->sc_swflags = *(int *)data;
break;
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
tiocm_to_imxu(sc, cmd, *(int *)data);
break;
case TIOCMGET:
*(int *)data = imxuart_to_tiocm(sc);
break;
#ifdef notyet
case PPS_IOC_CREATE:
case PPS_IOC_DESTROY:
case PPS_IOC_GETPARAMS:
case PPS_IOC_SETPARAMS:
case PPS_IOC_GETCAP:
case PPS_IOC_FETCH:
#ifdef PPS_SYNC
case PPS_IOC_KCBIND:
#endif
mutex_spin_enter(&timecounter_lock);
error = pps_ioctl(cmd, data, &sc->sc_pps_state);
mutex_spin_exit(&timecounter_lock);
break;
case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
mutex_spin_enter(&timecounter_lock);
#ifndef PPS_TRAILING_EDGE
TIMESPEC_TO_TIMEVAL((struct timeval *)data,
&sc->sc_pps_state.ppsinfo.assert_timestamp);
#else
TIMESPEC_TO_TIMEVAL((struct timeval *)data,
&sc->sc_pps_state.ppsinfo.clear_timestamp);
#endif
mutex_spin_exit(&timecounter_lock);
break;
#endif
default:
error = EPASSTHROUGH;
break;
}
mutex_spin_exit(&sc->sc_lock);
#ifdef IMXUART_DEBUG
if (imxuart_debug)
imxustatus(sc, "imxuioctl ");
#endif
return (error);
}
integrate void
imxuart_schedrx(struct imxuart_softc *sc)
{
sc->sc_rx_ready = 1;
/* Wake up the poller. */
softint_schedule(sc->sc_si);
}
void
imxuart_break(struct imxuart_softc *sc, bool onoff)
{
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
if (onoff)
SET(sc->sc_ucr1, IMX_UCR1_SNDBRK);
else
CLR(sc->sc_ucr1, IMX_UCR1_SNDBRK);
bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1);
}
void
imxuart_modem(struct imxuart_softc *sc, int onoff)
{
#ifdef notyet
if (sc->sc_mcr_dtr == 0)
return;
if (onoff)
SET(sc->sc_mcr, sc->sc_mcr_dtr);
else
CLR(sc->sc_mcr, sc->sc_mcr_dtr);
if (!sc->sc_heldchange) {
if (sc->sc_tx_busy) {
sc->sc_heldtbc = sc->sc_tbc;
sc->sc_tbc = 0;
sc->sc_heldchange = 1;
} else
imxuart_loadchannelregs(sc);
}
#endif
}
/*
* RTS output is controlled by UCR2.CTS bit.
* DTR output is controlled by UCR3.DSR bit.
* (i.MX reference manual uses names in DCE mode)
*
* note: if UCR2.CTSC == 1 for automatic HW flow control, UCR2.CTS is ignored.
*/
void
tiocm_to_imxu(struct imxuart_softc *sc, u_long how, int ttybits)
{
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
uint32_t ucr2 = sc->sc_ucr2_d;
uint32_t ucr3 = sc->sc_ucr3;
uint32_t ucr2_mask = 0;
uint32_t ucr3_mask = 0;
if (ISSET(ttybits, TIOCM_DTR))
ucr3_mask = IMX_UCR3_DSR;
if (ISSET(ttybits, TIOCM_RTS))
ucr2_mask = IMX_UCR2_CTS;
switch (how) {
case TIOCMBIC:
CLR(ucr2, ucr2_mask);
CLR(ucr3, ucr3_mask);
break;
case TIOCMBIS:
SET(ucr2, ucr2_mask);
SET(ucr3, ucr3_mask);
break;
case TIOCMSET:
CLR(ucr2, ucr2_mask);
CLR(ucr3, ucr3_mask);
SET(ucr2, ucr2_mask);
SET(ucr3, ucr3_mask);
break;
}
if (ucr3 != sc->sc_ucr3) {
bus_space_write_4(iot, ioh, IMX_UCR3, ucr3);
sc->sc_ucr3 = ucr3;
}
if (ucr2 == sc->sc_ucr2_d)
return;
sc->sc_ucr2_d = ucr2;
/* update CTS bit only */
ucr2 = (sc->sc_ucr2 & ~IMX_UCR2_CTS) |
(ucr2 & IMX_UCR2_CTS);
bus_space_write_4(iot, ioh, IMX_UCR2, ucr2);
sc->sc_ucr2 = ucr2;
}
int
imxuart_to_tiocm(struct imxuart_softc *sc)
{
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
int ttybits = 0;
uint32_t usr[2];
if (ISSET(sc->sc_ucr3, IMX_UCR3_DSR))
SET(ttybits, TIOCM_DTR);
if (ISSET(sc->sc_ucr2, IMX_UCR2_CTS))
SET(ttybits, TIOCM_RTS);
bus_space_read_region_4(iot, ioh, IMX_USR1, usr, 2);
if (ISSET(usr[0], IMX_USR1_RTSS))
SET(ttybits, TIOCM_CTS);
if (ISSET(usr[1], IMX_USR2_DCDIN))
SET(ttybits, TIOCM_CD);
#if 0
/* XXXbsh: I couldn't find the way to read ipp_uart_dsr_dte_i signal,
although there are bits in UART registers to detect delta of DSR.
*/
if (ISSET(imxubits, MSR_DSR))
SET(ttybits, TIOCM_DSR);
#endif
if (ISSET(usr[1], IMX_USR2_RIIN))
SET(ttybits, TIOCM_RI);
#ifdef notyet
if (ISSET(sc->sc_ier, IER_ERXRDY | IER_ETXRDY | IER_ERLS | IER_EMSC))
SET(ttybits, TIOCM_LE);
#endif
return (ttybits);
}
static uint32_t
cflag_to_ucr2(tcflag_t cflag, uint32_t oldval)
{
uint32_t val = oldval;
CLR(val,IMX_UCR2_WS|IMX_UCR2_PREN|IMX_UCR2_PROE|IMX_UCR2_STPB);
switch (cflag & CSIZE) {
case CS5:
case CS6:
/* not suppreted. use 7-bits */
case CS7:
break;
case CS8:
SET(val, IMX_UCR2_WS);
break;
}
if (ISSET(cflag, PARENB)) {
SET(val, IMX_UCR2_PREN);
/* odd parity */
if (!ISSET(cflag, PARODD))
SET(val, IMX_UCR2_PROE);
}
if (ISSET(cflag, CSTOPB))
SET(val, IMX_UCR2_STPB);
val |= IMX_UCR2_TXEN| IMX_UCR2_RXEN|IMX_UCR2_SRST;
return val;
}
int
imxuparam(struct tty *tp, struct termios *t)
{
struct imxuart_softc *sc =
device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
struct imxuart_baudrate_ratio ratio;
uint32_t ucr2;
bool change_speed = tp->t_ospeed != t->c_ospeed;
if (IMXUART_ISALIVE(sc) == 0)
return (EIO);
/* Check requested parameters. */
if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
return (EINVAL);
/*
* For the console, always force CLOCAL and !HUPCL, so that the port
* is always active.
*/
if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
SET(t->c_cflag, CLOCAL);
CLR(t->c_cflag, HUPCL);
}
/*
* If there were no changes, don't do anything. This avoids dropping
* input and improves performance when all we did was frob things like
* VMIN and VTIME.
*/
if ( !change_speed && tp->t_cflag == t->c_cflag)
return (0);
if (change_speed) {
/* calculate baudrate modulator value */
if (imxuspeed(t->c_ospeed, &ratio) < 0)
return (EINVAL);
sc->sc_ratio = ratio;
}
ucr2 = cflag_to_ucr2(t->c_cflag, sc->sc_ucr2_d);
mutex_spin_enter(&sc->sc_lock);
#if 0 /* flow control stuff. not yet */
/*
* If we're not in a mode that assumes a connection is present, then
* ignore carrier changes.
*/
if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
sc->sc_msr_dcd = 0;
else
sc->sc_msr_dcd = MSR_DCD;
/*
* Set the flow control pins depending on the current flow control
* mode.
*/
if (ISSET(t->c_cflag, CRTSCTS)) {
sc->sc_mcr_dtr = MCR_DTR;
sc->sc_mcr_rts = MCR_RTS;
sc->sc_msr_cts = MSR_CTS;
sc->sc_efr = EFR_AUTORTS | EFR_AUTOCTS;
} else if (ISSET(t->c_cflag, MDMBUF)) {
/*
* For DTR/DCD flow control, make sure we don't toggle DTR for
* carrier detection.
*/
sc->sc_mcr_dtr = 0;
sc->sc_mcr_rts = MCR_DTR;
sc->sc_msr_cts = MSR_DCD;
sc->sc_efr = 0;
} else {
/*
* If no flow control, then always set RTS. This will make
* the other side happy if it mistakenly thinks we're doing
* RTS/CTS flow control.
*/
sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
sc->sc_mcr_rts = 0;
sc->sc_msr_cts = 0;
sc->sc_efr = 0;
if (ISSET(sc->sc_mcr, MCR_DTR))
SET(sc->sc_mcr, MCR_RTS);
else
CLR(sc->sc_mcr, MCR_RTS);
}
sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
#endif
/* And copy to tty. */
tp->t_ispeed = t->c_ospeed;
tp->t_ospeed = t->c_ospeed;
tp->t_cflag = t->c_cflag;
if (!change_speed && ucr2 == sc->sc_ucr2_d) {
/* noop */
}
else if (!sc->sc_pending && !sc->sc_tx_busy) {
if (ucr2 != sc->sc_ucr2_d) {
sc->sc_ucr2_d = ucr2;
imxuart_load_params(sc);
}
if (change_speed)
imxuart_load_speed(sc);
}
else {
if (!sc->sc_pending) {
sc->sc_heldtbc = sc->sc_tbc;
sc->sc_tbc = 0;
}
sc->sc_pending |=
(ucr2 == sc->sc_ucr2_d ? 0 : IMXUART_PEND_PARAM) |
(change_speed ? 0 : IMXUART_PEND_SPEED);
sc->sc_ucr2_d = ucr2;
}
if (!ISSET(t->c_cflag, CHWFLOW)) {
/* Disable the high water mark. */
sc->sc_r_hiwat = 0;
sc->sc_r_lowat = 0;
if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) {
CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
imxuart_schedrx(sc);
}
if (ISSET(sc->sc_rx_flags,
IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED)) {
CLR(sc->sc_rx_flags,
IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED);
imxuart_hwiflow(sc);
}
} else {
sc->sc_r_hiwat = imxuart_rbuf_hiwat;
sc->sc_r_lowat = imxuart_rbuf_lowat;
}
mutex_spin_exit(&sc->sc_lock);
#if 0
/*
* Update the tty layer's idea of the carrier bit, in case we changed
* CLOCAL or MDMBUF. We don't hang up here; we only do that by
* explicit request.
*/
(void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
#else
/* XXX: always report that we have DCD */
(void) (*tp->t_linesw->l_modem)(tp, 1);
#endif
#ifdef IMXUART_DEBUG
if (imxuart_debug)
imxustatus(sc, "imxuparam ");
#endif
if (!ISSET(t->c_cflag, CHWFLOW)) {
if (sc->sc_tx_stopped) {
sc->sc_tx_stopped = 0;
imxustart(tp);
}
}
return (0);
}
void
imxuart_iflush(struct imxuart_softc *sc)
{
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
#ifdef DIAGNOSTIC
uint32_t reg = 0xffff;
#endif
int timo;
timo = 50000;
/* flush any pending I/O */
while (ISSET(bus_space_read_4(iot, ioh, IMX_USR2), IMX_USR2_RDR)
&& --timo)
#ifdef DIAGNOSTIC
reg =
#else
(void)
#endif
bus_space_read_4(iot, ioh, IMX_URXD);
#ifdef DIAGNOSTIC
if (!timo)
aprint_error_dev(sc->sc_dev, "imxuart_iflush timeout %02x\n", reg);
#endif
}
int
imxuhwiflow(struct tty *tp, int block)
{
struct imxuart_softc *sc =
device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
if (IMXUART_ISALIVE(sc) == 0)
return (0);
#ifdef notyet
if (sc->sc_mcr_rts == 0)
return (0);
#endif
mutex_spin_enter(&sc->sc_lock);
if (block) {
if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
SET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED);
imxuart_hwiflow(sc);
}
} else {
if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) {
CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
imxuart_schedrx(sc);
}
if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
CLR(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED);
imxuart_hwiflow(sc);
}
}
mutex_spin_exit(&sc->sc_lock);
return (1);
}
/*
* (un)block input via hw flowcontrol
*/
void
imxuart_hwiflow(struct imxuart_softc *sc)
{
#ifdef notyet
struct imxuart_regs *regsp= &sc->sc_regs;
if (sc->sc_mcr_rts == 0)
return;
if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
CLR(sc->sc_mcr, sc->sc_mcr_rts);
CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
} else {
SET(sc->sc_mcr, sc->sc_mcr_rts);
SET(sc->sc_mcr_active, sc->sc_mcr_rts);
}
UR_WRITE_1(regsp, IMXUART_REG_MCR, sc->sc_mcr_active);
#endif
}
void
imxustart(struct tty *tp)
{
struct imxuart_softc *sc =
device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
int s;
u_char *tba;
int tbc;
u_int n;
u_int space;
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
if (IMXUART_ISALIVE(sc) == 0)
return;
s = spltty();
if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
goto out;
if (sc->sc_tx_stopped)
goto out;
if (!ttypull(tp))
goto out;
/* Grab the first contiguous region of buffer space. */
tba = tp->t_outq.c_cf;
tbc = ndqb(&tp->t_outq, 0);
mutex_spin_enter(&sc->sc_lock);
sc->sc_tba = tba;
sc->sc_tbc = tbc;
SET(tp->t_state, TS_BUSY);
sc->sc_tx_busy = 1;
space = imxuart_txfifo_space(sc);
n = MIN(sc->sc_tbc, space);
bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, n);
sc->sc_tbc -= n;
sc->sc_tba += n;
/* Enable transmit completion interrupts */
imxuart_control_txint(sc, true);
mutex_spin_exit(&sc->sc_lock);
out:
splx(s);
return;
}
/*
* Stop output on a line.
*/
void
imxustop(struct tty *tp, int flag)
{
struct imxuart_softc *sc =
device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
mutex_spin_enter(&sc->sc_lock);
if (ISSET(tp->t_state, TS_BUSY)) {
/* Stop transmitting at the next chunk. */
sc->sc_tbc = 0;
sc->sc_heldtbc = 0;
if (!ISSET(tp->t_state, TS_TTSTOP))
SET(tp->t_state, TS_FLUSH);
}
mutex_spin_exit(&sc->sc_lock);
}
void
imxudiag(void *arg)
{
#ifdef notyet
struct imxuart_softc *sc = arg;
int overflows, floods;
mutex_spin_enter(&sc->sc_lock);
overflows = sc->sc_overflows;
sc->sc_overflows = 0;
floods = sc->sc_floods;
sc->sc_floods = 0;
sc->sc_errors = 0;
mutex_spin_exit(&sc->sc_lock);
log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
device_xname(sc->sc_dev),
overflows, overflows == 1 ? "" : "s",
floods, floods == 1 ? "" : "s");
#endif
}
integrate void
imxuart_rxsoft(struct imxuart_softc *sc, struct tty *tp)
{
int (*rint)(int, struct tty *) = tp->t_linesw->l_rint;
u_int cc, scc, outp;
uint16_t data;
u_int code;
scc = cc = IMXUART_RBUF_AVAIL(sc);
#if 0
if (cc == imxuart_rbuf_size-1) {
sc->sc_floods++;
if (sc->sc_errors++ == 0)
callout_reset(&sc->sc_diag_callout, 60 * hz,
imxudiag, sc);
}
#endif
/* If not yet open, drop the entire buffer content here */
if (!ISSET(tp->t_state, TS_ISOPEN)) {
sc->sc_rbuf_out = sc->sc_rbuf_in;
cc = 0;
}
outp = sc->sc_rbuf_out;
#define ERRBITS (IMX_URXD_PRERR|IMX_URXD_BRK|IMX_URXD_FRMERR|IMX_URXD_OVRRUN)
while (cc) {
data = sc->sc_rbuf[outp];
code = data & IMX_URXD_RX_DATA;
if (ISSET(data, ERRBITS)) {
if (sc->sc_errors.err == 0)
callout_reset(&sc->sc_diag_callout,
60 * hz, imxudiag, sc);
if (ISSET(data, IMX_URXD_OVRRUN))
sc->sc_errors.ovrrun++;
if (ISSET(data, IMX_URXD_BRK)) {
sc->sc_errors.brk++;
SET(code, TTY_FE);
}
if (ISSET(data, IMX_URXD_FRMERR)) {
sc->sc_errors.frmerr++;
SET(code, TTY_FE);
}
if (ISSET(data, IMX_URXD_PRERR)) {
sc->sc_errors.prerr++;
SET(code, TTY_PE);
}
}
if ((*rint)(code, tp) == -1) {
/*
* The line discipline's buffer is out of space.
*/
if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
/*
* We're either not using flow control, or the
* line discipline didn't tell us to block for
* some reason. Either way, we have no way to
* know when there's more space available, so
* just drop the rest of the data.
*/
sc->sc_rbuf_out = sc->sc_rbuf_in;
cc = 0;
} else {
/*
* Don't schedule any more receive processing
* until the line discipline tells us there's
* space available (through imxuhwiflow()).
* Leave the rest of the data in the input
* buffer.
*/
SET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
}
break;
}
outp = IMXUART_RBUF_INC(sc, outp, 1);
cc--;
}
if (cc != scc) {
sc->sc_rbuf_out = outp;
mutex_spin_enter(&sc->sc_lock);
cc = IMXUART_RBUF_SPACE(sc);
/* Buffers should be ok again, release possible block. */
if (cc >= sc->sc_r_lowat) {
if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED)) {
CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED);
imxuart_control_rxint(sc, true);
}
if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED)) {
CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED);
imxuart_hwiflow(sc);
}
}
mutex_spin_exit(&sc->sc_lock);
}
}
integrate void
imxuart_txsoft(struct imxuart_softc *sc, struct tty *tp)
{
CLR(tp->t_state, TS_BUSY);
if (ISSET(tp->t_state, TS_FLUSH))
CLR(tp->t_state, TS_FLUSH);
else
ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
(*tp->t_linesw->l_start)(tp);
}
integrate void
imxuart_stsoft(struct imxuart_softc *sc, struct tty *tp)
{
#ifdef notyet
u_char msr, delta;
mutex_spin_enter(&sc->sc_lock);
msr = sc->sc_msr;
delta = sc->sc_msr_delta;
sc->sc_msr_delta = 0;
mutex_spin_exit(&sc->sc_lock);
if (ISSET(delta, sc->sc_msr_dcd)) {
/*
* Inform the tty layer that carrier detect changed.
*/
(void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
}
if (ISSET(delta, sc->sc_msr_cts)) {
/* Block or unblock output according to flow control. */
if (ISSET(msr, sc->sc_msr_cts)) {
sc->sc_tx_stopped = 0;
(*tp->t_linesw->l_start)(tp);
} else {
sc->sc_tx_stopped = 1;
}
}
#endif
#ifdef IMXUART_DEBUG
if (imxuart_debug)
imxustatus(sc, "imxuart_stsoft");
#endif
}
void
imxusoft(void *arg)
{
struct imxuart_softc *sc = arg;
struct tty *tp;
if (IMXUART_ISALIVE(sc) == 0)
return;
tp = sc->sc_tty;
if (sc->sc_rx_ready) {
sc->sc_rx_ready = 0;
imxuart_rxsoft(sc, tp);
}
if (sc->sc_st_check) {
sc->sc_st_check = 0;
imxuart_stsoft(sc, tp);
}
if (sc->sc_tx_done) {
sc->sc_tx_done = 0;
imxuart_txsoft(sc, tp);
}
}
int
imxuintr(void *arg)
{
struct imxuart_softc *sc = arg;
uint32_t usr1, usr2;
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
if (IMXUART_ISALIVE(sc) == 0)
return (0);
mutex_spin_enter(&sc->sc_lock);
usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
do {
bus_space_write_4(iot, ioh, IMX_USR2,
usr2 & (IMX_USR2_BRCD|IMX_USR2_ORE));
if (usr2 & IMX_USR2_BRCD) {
/* Break signal detected */
int cn_trapped = 0;
cn_check_magic(sc->sc_tty->t_dev,
CNC_BREAK, imxuart_cnm_state);
if (cn_trapped)
continue;
#if defined(KGDB) && !defined(DDB)
if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB)) {
kgdb_connect(1);
continue;
}
#endif
}
if (usr2 & IMX_USR2_RDR)
imxuintr_read(sc);
#ifdef IMXUART_PPS
{
u_char msr, delta;
msr = CSR_READ_1(regsp, IMXUART_REG_MSR);
delta = msr ^ sc->sc_msr;
sc->sc_msr = msr;
if ((sc->sc_pps_state.ppsparam.mode & PPS_CAPTUREBOTH) &&
(delta & MSR_DCD)) {
mutex_spin_enter(&timecounter_lock);
pps_capture(&sc->sc_pps_state);
pps_event(&sc->sc_pps_state,
(msr & MSR_DCD) ?
PPS_CAPTUREASSERT :
PPS_CAPTURECLEAR);
mutex_spin_exit(&timecounter_lock);
}
}
#endif
#ifdef notyet
/*
* Process normal status changes
*/
if (ISSET(delta, sc->sc_msr_mask)) {
SET(sc->sc_msr_delta, delta);
/*
* Stop output immediately if we lose the output
* flow control signal or carrier detect.
*/
if (ISSET(~msr, sc->sc_msr_mask)) {
sc->sc_tbc = 0;
sc->sc_heldtbc = 0;
#ifdef IMXUART_DEBUG
if (imxuart_debug)
imxustatus(sc, "imxuintr ");
#endif
}
sc->sc_st_check = 1;
}
#endif
usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
} while (usr2 & (IMX_USR2_RDR|IMX_USR2_BRCD));
usr1 = bus_space_read_4(iot, ioh, IMX_USR1);
if (usr1 & IMX_USR1_TRDY)
imxuintr_send(sc);
mutex_spin_exit(&sc->sc_lock);
/* Wake up the poller. */
softint_schedule(sc->sc_si);
#if NRND > 0 && defined(RND_COM)
rnd_add_uint32(&sc->rnd_source, iir | lsr);
#endif
return (1);
}
/*
* called when there is least one character in rxfifo
*
*/
static void
imxuintr_read(struct imxuart_softc *sc)
{
int cc;
uint16_t rd;
uint32_t usr2;
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
cc = IMXUART_RBUF_SPACE(sc);
/* clear aging timer interrupt */
bus_space_write_4(iot, ioh, IMX_USR1, IMX_USR1_AGTIM);
while (cc > 0) {
int cn_trapped = 0;
sc->sc_rbuf[sc->sc_rbuf_in] = rd =
bus_space_read_4(iot, ioh, IMX_URXD);
cn_check_magic(sc->sc_tty->t_dev,
rd & 0xff, imxuart_cnm_state);
if (!cn_trapped) {
sc->sc_rbuf_in = IMXUART_RBUF_INC(sc, sc->sc_rbuf_in, 1);
cc--;
}
usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
if (!(usr2 & IMX_USR2_RDR))
break;
}
/*
* Current string of incoming characters ended because
* no more data was available or we ran out of space.
* Schedule a receive event if any data was received.
* If we're out of space, turn off receive interrupts.
*/
if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED))
sc->sc_rx_ready = 1;
/*
* See if we are in danger of overflowing a buffer. If
* so, use hardware flow control to ease the pressure.
*/
if (!ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED) &&
cc < sc->sc_r_hiwat) {
sc->sc_rx_flags |= IMXUART_RX_IBUF_BLOCKED;
imxuart_hwiflow(sc);
}
/*
* If we're out of space, disable receive interrupts
* until the queue has drained a bit.
*/
if (!cc) {
sc->sc_rx_flags |= IMXUART_RX_IBUF_OVERFLOWED;
imxuart_control_rxint(sc, false);
}
}
/*
* find how many chars we can put into tx-fifo
*/
static u_int
imxuart_txfifo_space(struct imxuart_softc *sc)
{
uint32_t usr1, usr2;
u_int cc;
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
if (usr2 & IMX_USR2_TXFE)
cc = sc->sc_txfifo_len;
else {
usr1 = bus_space_read_4(iot, ioh, IMX_USR1);
if (usr1 & IMX_USR1_TRDY)
cc = sc->sc_txfifo_thresh;
else
cc = 0;
}
return cc;
}
void
imxuintr_send(struct imxuart_softc *sc)
{
uint32_t usr2;
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
int cc = 0;
usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
if (sc->sc_pending) {
if (usr2 & IMX_USR2_TXFE) {
imxuart_load_pendings(sc);
sc->sc_tbc = sc->sc_heldtbc;
sc->sc_heldtbc = 0;
}
else {
/* wait for TX fifo empty */
imxuart_control_txint(sc, true);
return;
}
}
cc = imxuart_txfifo_space(sc);
cc = MIN(cc, sc->sc_tbc);
if (cc > 0) {
bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, cc);
sc->sc_tbc -= cc;
sc->sc_tba += cc;
}
if (sc->sc_tbc > 0)
imxuart_control_txint(sc, true);
else {
/* no more chars to send.
we don't need tx interrupt any more. */
imxuart_control_txint(sc, false);
if (sc->sc_tx_busy) {
sc->sc_tx_busy = 0;
sc->sc_tx_done = 1;
}
}
}
static void
imxuart_disable_all_interrupts(struct imxuart_softc *sc)
{
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
sc->sc_ucr1 &= ~IMXUART_INTRS_UCR1;
sc->sc_ucr2 &= ~IMXUART_INTRS_UCR2;
sc->sc_ucr3 &= ~IMXUART_INTRS_UCR3;
sc->sc_ucr4 &= ~IMXUART_INTRS_UCR4;
bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4);
}
static void
imxuart_control_rxint(struct imxuart_softc *sc, bool enable)
{
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
uint32_t ucr1, ucr2;
ucr1 = sc->sc_ucr1;
ucr2 = sc->sc_ucr2;
if (enable) {
ucr1 |= IMX_UCR1_RRDYEN;
ucr2 |= IMX_UCR2_ATEN;
}
else {
ucr1 &= ~IMX_UCR1_RRDYEN;
ucr2 &= ~IMX_UCR2_ATEN;
}
if (ucr1 != sc->sc_ucr1 || ucr2 != sc->sc_ucr2) {
sc->sc_ucr1 = ucr1;
sc->sc_ucr2 = ucr2;
bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 2);
}
}
static void
imxuart_control_txint(struct imxuart_softc *sc, bool enable)
{
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
uint32_t ucr1;
uint32_t mask;
/* if parameter change is pending, get interrupt when Tx fifo
is completely empty. otherwise, get interrupt when txfifo
has less characters than threshold */
mask = sc->sc_pending ? IMX_UCR1_TXMPTYEN : IMX_UCR1_TRDYEN;
ucr1 = sc->sc_ucr1;
CLR(ucr1, IMX_UCR1_TXMPTYEN|IMX_UCR1_TRDYEN);
if (enable)
SET(ucr1, mask);
if (ucr1 != sc->sc_ucr1) {
bus_space_write_4(iot, ioh, IMX_UCR1, ucr1);
sc->sc_ucr1 = ucr1;
}
}
static void
imxuart_load_params(struct imxuart_softc *sc)
{
uint32_t ucr2;
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
ucr2 = (sc->sc_ucr2_d & ~IMX_UCR2_ATEN) |
(sc->sc_ucr2 & IMX_UCR2_ATEN);
bus_space_write_4(iot, ioh, IMX_UCR2, ucr2);
sc->sc_ucr2 = ucr2;
}
static void
imxuart_load_speed(struct imxuart_softc *sc)
{
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
int n, rfdiv, ufcr;
#ifdef notyet
/*
* Set the FIFO threshold based on the receive speed.
*
* * If it's a low speed, it's probably a mouse or some other
* interactive device, so set the threshold low.
* * If it's a high speed, trim the trigger level down to prevent
* overflows.
* * Otherwise set it a bit higher.
*/
if (t->c_ospeed <= 1200)
sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_1;
else if (t->c_ospeed <= 38400)
sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_8;
else
sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_4;
#endif
n = 32 - sc->sc_txfifo_thresh;
n = MAX(2, n);
rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv);
ufcr = (n << IMX_UFCR_TXTL_SHIFT) |
(rfdiv << IMX_UFCR_RFDIV_SHIFT) |
(16 << IMX_UFCR_RXTL_SHIFT);
/* keep DCE/DTE bit */
ufcr |= bus_space_read_4(iot, ioh, IMX_UFCR) & IMX_UFCR_DCEDTE;
bus_space_write_4(iot, ioh, IMX_UFCR, ufcr);
/* UBIR must updated before UBMR */
bus_space_write_4(iot, ioh,
IMX_UBIR, sc->sc_ratio.numerator);
bus_space_write_4(iot, ioh,
IMX_UBMR, sc->sc_ratio.modulator);
}
static void
imxuart_load_pendings(struct imxuart_softc *sc)
{
if (sc->sc_pending & IMXUART_PEND_PARAM)
imxuart_load_params(sc);
if (sc->sc_pending & IMXUART_PEND_SPEED)
imxuart_load_speed(sc);
sc->sc_pending = 0;
}
#if defined(IMXUARTCONSOLE) || defined(KGDB)
/*
* The following functions are polled getc and putc routines, shared
* by the console and kgdb glue.
*
* The read-ahead code is so that you can detect pending in-band
* cn_magic in polled mode while doing output rather than having to
* wait until the kernel decides it needs input.
*/
#define READAHEAD_RING_LEN 16
static int imxuart_readahead[READAHEAD_RING_LEN];
static int imxuart_readahead_in = 0;
static int imxuart_readahead_out = 0;
#define READAHEAD_IS_EMPTY() (imxuart_readahead_in==imxuart_readahead_out)
#define READAHEAD_IS_FULL() \
(((imxuart_readahead_in+1) & (READAHEAD_RING_LEN-1)) ==imxuart_readahead_out)
int
imxuart_common_getc(dev_t dev, struct imxuart_regs *regsp)
{
int s = splserial();
u_char c;
bus_space_tag_t iot = regsp->ur_iot;
bus_space_handle_t ioh = regsp->ur_ioh;
uint32_t usr2;
/* got a character from reading things earlier */
if (imxuart_readahead_in != imxuart_readahead_out) {
c = imxuart_readahead[imxuart_readahead_out];
imxuart_readahead_out = (imxuart_readahead_out + 1) &
(READAHEAD_RING_LEN-1);
splx(s);
return (c);
}
/* block until a character becomes available */
while (!((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR))
;
c = 0xff & bus_space_read_4(iot, ioh, IMX_URXD);
{
int cn_trapped = 0; /* unused */
#ifdef DDB
extern int db_active;
if (!db_active)
#endif
cn_check_magic(dev, c, imxuart_cnm_state);
}
splx(s);
return (c);
}
void
imxuart_common_putc(dev_t dev, struct imxuart_regs *regsp, int c)
{
int s = splserial();
int cin, timo;
bus_space_tag_t iot = regsp->ur_iot;
bus_space_handle_t ioh = regsp->ur_ioh;
uint32_t usr2;
if (!READAHEAD_IS_FULL() &&
((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR)) {
int cn_trapped = 0;
cin = bus_space_read_4(iot, ioh, IMX_URXD);
cn_check_magic(dev, cin & 0xff, imxuart_cnm_state);
imxuart_readahead_in = (imxuart_readahead_in + 1) &
(READAHEAD_RING_LEN-1);
}
/* wait for any pending transmission to finish */
timo = 150000;
do {
if (bus_space_read_4(iot, ioh, IMX_USR1) & IMX_USR1_TRDY) {
bus_space_write_4(iot, ioh, IMX_UTXD, c);
break;
}
} while(--timo > 0);
IMXUART_BARRIER(regsp, BR | BW);
splx(s);
}
/*
* Initialize UART for use as console or KGDB line.
*/
int
imxuart_init(struct imxuart_regs *regsp, int rate, tcflag_t cflag)
{
struct imxuart_baudrate_ratio ratio;
int rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv);
uint32_t ufcr;
if (bus_space_map(regsp->ur_iot, regsp->ur_iobase, IMX_UART_SIZE, 0,
&regsp->ur_ioh))
return ENOMEM; /* ??? */
if (imxuspeed(rate, &ratio) < 0)
return EINVAL;
/* UBIR must updated before UBMR */
bus_space_write_4(regsp->ur_iot, regsp->ur_ioh,
IMX_UBIR, ratio.numerator);
bus_space_write_4(regsp->ur_iot, regsp->ur_ioh,
IMX_UBMR, ratio.modulator);
/* XXX: DTREN, DPEC */
bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR3,
IMX_UCR3_DSR|IMX_UCR3_RXDMUXSEL);
ufcr = (8 << IMX_UFCR_TXTL_SHIFT) | (rfdiv << IMX_UFCR_RFDIV_SHIFT) |
(1 << IMX_UFCR_RXTL_SHIFT);
/* XXX: keep DCE/DTE bit */
ufcr |= bus_space_read_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR) &
IMX_UFCR_DCEDTE;
bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR, ufcr);
bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_ONEMS,
imxuart_freq / imxuart_freqdiv / 1000);
bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR2,
IMX_UCR2_IRTS|
IMX_UCR2_CTSC|
IMX_UCR2_WS|IMX_UCR2_TXEN|
IMX_UCR2_RXEN|IMX_UCR2_SRST);
/* clear status registers */
bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR1, 0xffff);
bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR2, 0xffff);
bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR1,
IMX_UCR1_UARTEN);
return (0);
}
#endif
#ifdef IMXUARTCONSOLE
/*
* Following are all routines needed for UART to act as console
*/
struct consdev imxucons = {
NULL, NULL, imxucngetc, imxucnputc, imxucnpollc, NULL, NULL, NULL,
NODEV, CN_NORMAL
};
int
imxuart_cons_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate,
tcflag_t cflag)
{
struct imxuart_regs regs;
int res;
regs.ur_iot = iot;
regs.ur_iobase = iobase;
res = imxuart_init(&regs, rate, cflag);
if (res)
return (res);
cn_tab = &imxucons;
cn_init_magic(&imxuart_cnm_state);
cn_set_magic("\047\001"); /* default magic is BREAK */
imxuconsrate = rate;
imxuconscflag = cflag;
imxuconsregs = regs;
return 0;
}
int
imxucngetc(dev_t dev)
{
return (imxuart_common_getc(dev, &imxuconsregs));
}
/*
* Console kernel output character routine.
*/
void
imxucnputc(dev_t dev, int c)
{
imxuart_common_putc(dev, &imxuconsregs, c);
}
void
imxucnpollc(dev_t dev, int on)
{
}
#endif /* IMXUARTCONSOLE */
#ifdef KGDB
int
imxuart_kgdb_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate,
tcflag_t cflag)
{
int res;
if (iot == imxuconsregs.ur_iot &&
iobase == imxuconsregs.ur_iobase) {
#if !defined(DDB)
return (EBUSY); /* cannot share with console */
#else
imxu_kgdb_regs.ur_iot = iot;
imxu_kgdb_regs.ur_ioh = imxuconsregs.ur_ioh;
imxu_kgdb_regs.ur_iobase = iobase;
#endif
} else {
imxu_kgdb_regs.ur_iot = iot;
imxu_kgdb_regs.ur_iobase = iobase;
res = imxuart_init(&imxu_kgdb_regs, rate, cflag);
if (res)
return (res);
/*
* XXXfvdl this shouldn't be needed, but the cn_magic goo
* expects this to be initialized
*/
cn_init_magic(&imxuart_cnm_state);
cn_set_magic("\047\001");
}
kgdb_attach(imxuart_kgdb_getc, imxuart_kgdb_putc, &imxu_kgdb_regs);
kgdb_dev = 123; /* unneeded, only to satisfy some tests */
return (0);
}
/* ARGSUSED */
int
imxuart_kgdb_getc(void *arg)
{
struct imxuart_regs *regs = arg;
return (imxuart_common_getc(NODEV, regs));
}
/* ARGSUSED */
void
imxuart_kgdb_putc(void *arg, int c)
{
struct imxuart_regs *regs = arg;
imxuart_common_putc(NODEV, regs, c);
}
#endif /* KGDB */
/* helper function to identify the imxu ports used by
console or KGDB (and not yet autoconf attached) */
int
imxuart_is_console(bus_space_tag_t iot, bus_addr_t iobase, bus_space_handle_t *ioh)
{
bus_space_handle_t help;
if (!imxuconsattached &&
iot == imxuconsregs.ur_iot && iobase == imxuconsregs.ur_iobase)
help = imxuconsregs.ur_ioh;
#ifdef KGDB
else if (!imxu_kgdb_attached &&
iot == imxu_kgdb_regs.ur_iot && iobase == imxu_kgdb_regs.ur_iobase)
help = imxu_kgdb_regs.ur_ioh;
#endif
else
return (0);
if (ioh)
*ioh = help;
return (1);
}
#ifdef notyet
bool
imxuart_cleanup(device_t self, int how)
{
/*
* this routine exists to serve as a shutdown hook for systems that
* have firmware which doesn't interact properly with a imxuart device in
* FIFO mode.
*/
struct imxuart_softc *sc = device_private(self);
if (ISSET(sc->sc_hwflags, IMXUART_HW_FIFO))
UR_WRITE_1(&sc->sc_regs, IMXUART_REG_FIFO, 0);
return true;
}
#endif
#ifdef notyet
bool
imxuart_suspend(device_t self PMF_FN_ARGS)
{
struct imxuart_softc *sc = device_private(self);
UR_WRITE_1(&sc->sc_regs, IMXUART_REG_IER, 0);
(void)CSR_READ_1(&sc->sc_regs, IMXUART_REG_IIR);
return true;
}
#endif
#ifdef notyet
bool
imxuart_resume(device_t self PMF_FN_ARGS)
{
struct imxuart_softc *sc = device_private(self);
mutex_spin_enter(&sc->sc_lock);
imxuart_loadchannelregs(sc);
mutex_spin_exit(&sc->sc_lock);
return true;
}
#endif
static void
imxuart_enable_debugport(struct imxuart_softc *sc)
{
bus_space_tag_t iot = sc->sc_regs.ur_iot;
bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) {
/* Turn on line break interrupt, set carrier. */
sc->sc_ucr3 |= IMX_UCR3_DSR;
bus_space_write_4(iot, ioh, IMX_UCR3, sc->sc_ucr3);
sc->sc_ucr4 |= IMX_UCR4_BKEN;
bus_space_write_4(iot, ioh, IMX_UCR4, sc->sc_ucr4);
sc->sc_ucr2 |= IMX_UCR2_TXEN|IMX_UCR2_RXEN|
IMX_UCR2_CTS;
bus_space_write_4(iot, ioh, IMX_UCR2, sc->sc_ucr2);
sc->sc_ucr1 |= IMX_UCR1_UARTEN;
bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1);
}
}
void
imxuart_set_frequency(u_int freq, u_int div)
{
imxuart_freq = freq;
imxuart_freqdiv = div;
}